A NOTE ON CONSERVATIVE CONFIDENCE REGIONS FOR THE MEAN OF A MULTIVARIATE NORMAL

By Alastair Scott

The London School of Economics

1. Introduction. Suppose $x_i = (x_{li}, \dots, x_{mi})'$ $(i = 1, \dots, n)$ are independent observations from a *m*-variate normal population with mean vector μ and covariance matrix Σ . Let $\bar{x}_{i.} = \sum_{j} x_{ij}/n$ and $s_i^2 = \sum_{j} (x_{ij} - \bar{x}_{i.})^2/(n-1)$. If Σ is a diagonal matrix, a confidence region for μ can be constructed from

(1)
$$\Pr\{|z_i| \le c_i, i = 1, \dots, m\} = \prod_{i=1}^m \Pr\{|z_i| \le c_i\}$$

with $z_i = n^{\frac{1}{2}}(\bar{x}_i - \mu_i)/\sigma_i$ if the diagonal elements, σ_i^2 , of Σ are known, and $z_i = n^{\frac{1}{2}}(\bar{x}_i - \mu_i)/s_i$ otherwise. Dunn [1] conjectured that, for any Σ ,

(2)
$$\Pr\{|z_i| \leq c_i, i = 1, \dots, m\} \geq \prod_{i=1}^m \Pr\{|z_i| \leq c_i\}.$$

She proved the conjecture when Σ is of a special form, and in general for m=2 and m=3, and used the relation to construct conservative confidence limits for μ . The purpose of this note is to provide a general proof of the conjecture. When the variances are known, the conjecture has been proved with a different method by Sidak [2].

2. Diagonal elements of Σ kown. In this case $z=(z_1,\cdots,z_m)'$ has a normal distribution with $E(z_i)=0$, $E(z_i^2)=1$ and covariance matrix AA' say ($\sum_j a_{ij}^2 a_{ij}$

LEMMA 1. Pr $\{y \in R_m\} \geq [\Phi(c_1) - \Phi(-c_1)] \Pr \{y \in R_{m-1}\}$

PROOF. The Lemma has been proved essentially by Dunn for m = 2. If m > 2, it is enough to show that

(3)
$$\Pr\{R_m \mid y \in P\} \ge [\Phi(c_1) - \Phi(-c_1)] \Pr\{R_{m-1} \mid y \in P\}$$

for every plane P containing the x_1 – axis.

Choose such a plane P. By an orthogonal transformation of $(y_2, \dots, y_m)'$, P can be taken to be the co-ordinate plane $\{y: y_i = 0, i = 3, \dots, m\}$. Then equation (3) becomes

(4)
$$\Pr\{|a_{11}y_1 + a_{12}y_2| \le c_1, |y_2| \le c_2'\} \ge [\Phi(c_1) - \Phi(-c_1)] \Pr\{|y_2| \le c_2'\}.$$

But this follows immediately from the case for m=2 [since $a_{11}^2+a_{12}^2\leq 1$]. Now

$$\Pr\{|z_i| \leq c_i, i = 1, \cdots, m\} = \Pr\{y \in R_m\}.$$

Received 10 Jan. 1966.

and

$$\Pr\{|z_i| \leq c_i\} = \Phi(c_i) - \Phi(-c_i).$$

Theorem 1 then follows from Lemma 1 by induction.

Theorem 1. If the diagonal elements of Σ are known

$$\Pr\{|z_i| \le c_i, i = 1, \dots, m\} \ge \prod_{i=1}^m \Pr\{|z_i| \le c_i\}$$

3. Diagonal elements of Σ unknown. Let A and y be as in the preceding section.

Lemma 2. Pr
$$\{|\sum_{i} a_{ij}y_{i}| \geq c_{i}, i = 1, \dots, m\} \geq \prod_{i=1}^{m} \Pr\{|y_{i}| \geq c_{i}\}$$
 Proof. Suppose $m = 2$,

$$\Pr\{|a_{11}y_1 + a_{12}y_2| \le c_1\} = \Pr\{|a_{11}y_1 + a_{12}y_2| \le c_1, |y_2| \le c_2\}$$

$$+ \Pr\{|a_{11}y_1 + a_{12}y_2| \le c_1, |y_2| \ge c_2\}$$

$$\ge \Pr\{|y_1| \le c_1, |y_2| \le c_2\}$$

$$+ \Pr\{|a_{11}y_1 + a_{12}y_2| \le c_1, |y_2| \ge c_2\}$$

by Theorem 1.

But

$$\Pr\{|a_{11}y_1 + a_{12}y_2| \le c_1\} = \Pr\{|y_1| \le c_1\} \qquad (a_{11}^2 + a_{12}^2 = 1) \\
= \Pr\{|y_1| \le c_1, |y_2| \le c_2\} + \Pr\{|y_1| \le c_1, |y_2| \ge c_2\}$$

Therefore

$$\Pr\{|a_{11}y_1 + a_{12}y_2| \le c_1, |y_2| \ge c_2|\} \le \Pr\{|y_1| \le c_1, |y_2| \ge c_2\}$$

so that

$$\Pr \left\{ \left| a_{11} y_1 \, + \, a_2 y_2 \right| \, \ge \, c_1 \, , \, \left| y_2 \right| \, \ge \, c_2 \right\} \, \ge \, \Pr \left\{ \left| y_1 \right| \, \ge \, c_1 \, , \, \left| y_2 \right| \, \ge \, c_2 \right\}$$

The proof for m > 2 proceeds just as the proof of Theorem 1.

Let V be the matrix with elements $v_{ij} = (x_{ij} - \mu_i)/\sigma_i$ let H be an $n \times n$ orthogonal matrix with nth column equal to $(1/n^{\frac{1}{2}}, 1/n^{\frac{1}{2}}, \dots, 1/n^{\frac{1}{2}})'$ and let U = VH. Then the columns of U are independent and identically distributed with $E(u_{ij}) = 0$ and $E(u_{ij}^2) = 1$. Moreover $z_i = (n-1)^{\frac{1}{2}}u_{in}/(\sum_{j=1}^{n-1}u_{ij}^2)^{\frac{1}{2}}$. Let the covariance matrix of each column vector be BB' with B chosen so that $b_{i1} = 0$ $(i = 2, \dots, m)$, and let $Y = B^{-1}U$. Then

$$\Pr\{|z_{i}| \leq c_{i}, i = 1, \dots, m\} = \Pr\{u_{ni}^{2} \leq [c_{i}^{2}/(n-1)] \sum_{j=1}^{n-1} u_{ji}^{2}, i = 1, \dots, m\}$$

$$= \Pr\{\left[\sum_{k} b_{ik} y_{kn}\right]^{2} \leq \left[c_{i}^{2}/(n-1)\right] \sum_{j=1}^{n-1} \left[\sum_{k} b_{ik} y_{kj}\right]^{2}, i = 1, \dots, m\}$$

$$\geq \Pr\{y_{in}^{2} \leq \left[c_{i}^{2}/(n-1)\right] \sum_{j=1}^{n-1} \left[\sum_{k} b_{ik} y_{kj}\right]^{2}, i = 1, \dots, m\}$$

280 A. J. SCOTT

by Theorem 1

$$\geq \Pr\{y_{in}^{2} \leq [c_{i}^{2}/(n-1)][\sum_{j=1}^{n-2}(\sum_{k}b_{ik}y_{kj})^{2} + y_{in-1}^{2}],$$

$$i = 1, \dots, m\}$$

$$\vdots$$

$$\geq \Pr\{y_{in}^{2} \leq [c_{i}^{2}/(n-1)]\sum_{j=1}^{n-1}y_{ij}^{2}, i = 1, \dots, m\}$$
by repeated application of Lemma 2
$$= \prod_{1}^{n}\Pr\{|y_{in}| \leq [c_{i}/(n-1)^{\frac{1}{2}}][\sum_{j=1}^{n-1}y_{ij}^{2}]^{\frac{1}{2}},$$

$$i = 1, \dots, m\}$$

$$= \prod_{1}^{n}\Pr\{|z_{i}| \leq c_{i}\}.$$

This proves:

THEOREM 2. If $z_i = n^{\frac{1}{2}}(m_i - \mu_i)/s_i$, then

$$\Pr\{|z_i| \le c_i, i = 1, \dots, m\} \ge \prod_{i=1}^m \Pr\{|z_i| \le c_i\}$$

4. Acknowledgment. I would like to thank the referee for pointing out reference [2].

REFERENCES

- Dunn, Olive Jean. (1958). Estimation of the means of dependent variables. Ann. Math. Statist. 29 1095-1111.
- [2] Sidak, Zbynek (1965). Rectangular confidence regions for means of multivariate normal distributions. 35th Session of the International Statistical Institute, Belgrade.

CORRECTION NOTE

CORRECTION TO

CALCULATION OF EXACT SAMPLING DISTRIBUTION OF RANGES FROM A DISCRETE POPULATION

By IRVING W. BURR

Purdue University

Correction to page 530, Ann. Math. Statist. 26, 530-532, the lower limit on the summation in equation (2) should read j = i not j = 1, as it was printed.