A NOTE ON CONSERVATIVE CONFIDENCE REGIONS FOR THE
MEAN OF A MULTIVARIATE NORMAL
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1. Introduction. Suppose z; = (%;i, -, Tms)’ (¢ = 1, - -+ , n) are independent
observations from a m-variate normal population with mean vector u and co-
variance matrix 2. Let Z;. = >iwg/n and sf = X (xy — &)Y/ (n — 1).
If Z is a diagonal matrix, a confidence region for u can be constructed from

(1) PI‘{|25|§C¢,'L.= 1,'“,’"7/} = H?Pr{lzil éci}

with 2z, = n*(a’:i. — p:)/o; if the diagonal elements, o, of £ are known, and
z; = n}(&;. — u:)/s; otherwise. Dunn [1] conjectured that, for any =,

(2) Prile < c,i=1,---,m 2 [ITPrifal < cf.

She proved the conjecture when = is of a special form, and in general for m = 2
and m = 3, and used the relation to construct conservative confidence limits for
u. The purpose of this note is to provide a general proof of the conjecture. When
the variances are known, the conjecture has been proved with a different method
by Sidak [2].

2. Diagonal elements of = kown. In this case z = (21, -, Z=s)’ has a normal
distribution with E(z;) = 0, E(z?) = 1 and covariance matrix A4’ say (2_; a%;
=1,7=1, --.,m). It is always possible to choose 4 so that a; = 0 (z = 2,

.,m). Lety = A™%, and let R,, , Rmn—1 be the regions {y:| > 7= a:yi] < ¢:,
i=1,---,m}and {y:| Drsaiy; < ¢, i =2, -, m} respectively. Since
aa=0(@ =2+ ,m),Rn=Runn{| 2T a1y;] < ci}.

LEMMA 1. Pri{ye R, = [®(¢c;) — ®(—c1)] Pri{y e R}

Proor. The Lemma has been proved essentially by Dunn form = 2. If m > 2,
it is enough to show that

(3) Pr{R,|yeP} = ®(c1) —®(—c1)] Pr{Rm|yeP}

for every plane P containing the z; — axis.

Choose such a plane P. By an orthogonal transformation of (ys, ---, Ym)
P can be taken to be the co-ordinate plane {y:y; = 0,7 = 3, ---, m}. Then
equation (3) becomes

(4) Prilawy: + auysl < 1,y S &} 2 @(a) —@(—a)] Prilyl < o).
But this follows immediately from the case for m = 2 [since a3; + a32 < 1]. Now
Pr{le] £ ¢c;,i=1,---,m} = PriyeR.}.

Received 10 Jan. 1966.
278

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to ©

£

The Annals of Mathematical Statistics. RINOIRY

www.jstor.org



CONSERVATIVE CONFIDENCE REGIONS 279

and
Pr{lzi| < ¢} = ®(c;) — ®(—c;).

Theorem 1 then follows from Lemma 1 by induction.
TueoreM 1. If the diagonal elements of T are known

PI‘{IZ," = C,',’i = 17 )m} g H;nPr{IZJ = Ci}

3. Diagonal elements of 2 unknown. Let A and y be as in the preceding sec-
tion.

Lemma 2. Pri{| X sapyl Z ¢, =1, - ,m} = [[FPrilyd = ¢}

Proor. Suppose m = 2,

Pr {Iauy1 + a12?/2| = Cl} Pr {Iauy1 + alzy2| =6, I?/zl = 02}

+ Pr{lany: + awyel < a1, |2 = c)

v

Prilyl = a1, |yl < ¢
+ Pr{lauy: + awys < o, |ye| = ¢

by Theorem 1.
But

Pr {|auy: + awy:| £

Pr{|y| = ¢ (ail + al, = 1)
Prilyil = 1, lyal = e + Prilyi] < a1, |y 2

Therefore

A

Pr{lauy: + awyel = 1, [l Z of} < Prilyyl < e, lyal = ¢}
so that

v

r {lanys + @yl 2 o1, lyel = e} = Prijydl = ar, e 2 e

The proof for m > 2 proceeds just as the proof of Theorem 1.

Let V be the matrix with elements vi; = (z;; — u) / o:let H be ann X n
orthogonal matrix with nth column equal to (1/a}, 1 /nt, . , 1/n})" and let
U = V H. Then the columns of U are 1ndependent and 1dentlcally distributed
with E(u;;) = 0 and E(u?;) = 1. Moreover z; = (n — 1) o/ (15 W)Y,
Let the covariance matrix of each column vector be BB" with B chosen so that
bu=0(i{=2,---,m), and let ¥ = B™U. Then

t{led S eiyi=1,-+,m = Prius; = [c/(n — 1)] 275 ul,
t=1 ---,m
= Pr{[2 cbatial’ < [c/(n — 1)] 215 [0 baiesl’,
t=1 ... m}

2 Pr{yia < [e/(n — D)] 255 120 bayasl’,

i=1,--,m
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by Theorem 1
2 Pr {Z/fn = [cf/(n - 1)][2?;12 (Ek bikykj)2 + yfn—ll,

i=1,---,m

2 Priyh < [/ — D) X3Syl i= 1,0, m)
by repeated application of Lerama 2
= II7 Prilyal < [e/(n — DI i1,
i=1,---,m
= JIt Pr{lel < ci.

This proves:
TuporemM 2. If z; = n'(m; — w)/s:, then

Pr{lzil = Ci’i= ly e )m} = HTPI‘{lZ@‘ = C,-}
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CORRECTION NOTE

CORRECTION TO

CALCULATION OF EXACT SAMPLING DISTRIBUTION OF
RANGES FROM A DISCRETE POPULATION

By Irving W. BUrr

Purdue University

Correction to page 530, Ann. Math. Statist. 26, 530-532, the lower limit on the
summation in equation (2) should read j = 7 notj = 1, as it was printed.



