A SEQUENTIAL SEARCH PROCEDURE'

By Mivton C. CHEW, JR.

Carnegie Institute of Technology®

1. Introduction and summary. Many optimization problems in mathematics
and statistics are concerned with a quantity, or procedure, that yields some op-
timum value rather than the value itself. Frequently, they are referred to as
searching problems. In this paper we consider a problem of this nature, which is
described as follows.

An object to be found is located in one of R locations. A prior probability p;
that the object is in ¢ is given ( D_; p: = 1), along with an overlook probability
a; that if the object is in ¢, it is not found there on a given inspection of
1(0< a; <1,2=1,---,R). The R locations—or boxes—can be searched one
at a time, and it is assumed that all outcomes are independent, conditional on the
location of the object and the inspection procedure used. Consequently, if the
object is in 7, the realization of the ‘first success™—the detection of the object—
follows a geometric distribution with parameter 1 — a;. A search procedure
8 = (8, 62, ---) is a sequence indicating the location to be inspected at each
stage of the search, and one is interested in a é that in some sense is optimal.

In his notes on dynamic programming, Blackwell (see [3]) has shown that if, in
addition, an inspection of ¢ costs ¢;, the procedure minimizing the expected
searching cost is a one-stage procedure, which instructs the searcher to inspect at
each stage that box for which the ratio of the current detection probability, and
the cost of an inspection there, is greatest. It is assumed here that ¢; = 1,
i=1,---,R.If 6" = (&% &% - - ) denotes an optimal one-stage procedure and
8,* = j, then the detection probability for j on the nth inspection is

(1.1) P (1 — o) = maxi {pC" V(1 — a4},

where m(%, n, 8) is the number of inspections of 7 among the first n inspections

made using 4.
In the next section §* is shown to be strongly optimal in the sense that

(1.2) 'PIN >n|8" < PIN >n|d,

foreachn = 0, 1, 2, - - -, and every séarch procedure 6. (Here N denotes the
(random) number of inspections required to find the object.) The use of pro-
cedure 8 thus ensures the greatest chance of finding the object within any fixed
number of inspections, or, according to B. O. Koopman [2], it “optimally allocates
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the available search effort ®” for any number & of inspections. As a conse-
quence of (1.2), 6* also minimizes the expected ‘cost’ of the search (since
E[N | 8] = 2_n=oP[N > n|é]), which is Blackwell’s result for this case.

Among the many interesting problems which arise in connection with this
searching problem is the question of periodic features of the optimal procedure.
Staroverov [5] and Matula [3] concerned themselves with this question, which was
virtually answered by Matula who found necessary and sufficient conditions en-
suring ultimate periodicity. We attempt to answer a different question in Section
3, where the same search problem is considered with the modification that
> pi =1 — ¢ < 1. That is, the object is in one of R + 1 locations, but searching
is permitted only among the first . (For instance, the (R + 1)st location could
be the rest of the world.) In this problem every search procedure has positive
probability of never terminating, making it necessary to couple a stopping rule s
(integer-valued) with any procedure 4. A loss function is defined by imposing on
the searcher a penalty cost ¢(>0), payable when searching stops if the object
has not been found. Thus, one either pays the cost of unsuccessful inspection plus
the penalty cost, or simply the cost of inspection if the object is found prior to
stopping. A procedure (9, s) is sought which minimizes the expected cost to the
searcher, i.e. which yields the Bayes risk.

Such a procedure exists and is shown to be (8%, s*), where §* is a strongly
optimal procedure satisfying (1.2). The determination of s* is the more difficult
problem, however, and the main part of Section 3 is devoted to it. Instead of s*
itself we consider the problem of finding the Bayes stopping region Sz , that set of
posterior probabilities p = (p1, -+, pz) for which the Bayes risk equals the
penalty cost c. Regions S; and Sy are given which bound S in the sense that
S. € Sz € Sy. In Section 4, it is shown that for sufficiently large ¢, Si. and Sy
‘differ’ by at most R inspections taken according to 8% and no more than one
additional inspection is required in each of the R boxes. If (8*, sy) is a procedure
which searches according to 4*, but stops once the posterior distribution p & Sy ,
a constant independent of ¢, is exhibited which bounds the difference between
the Bayes risk and the expected risk using (8, sp).

2. Strong optimality of 8*. By virtue of the assumption that outcomes of
different inspections are independent, given the location 7 of the object and the
search procedure &, we have

(2.1) PIN >n |8 = > ipPIN >nls i = D ipal™™?,

Thus, in order to establish (1.2) for each n and every procedure §, it is necessary
to show for each n and every R-tuple in I, = {(n(1), ---, n(R)):n(z) = 0,
integer; >_:n(7) = n} that

(2.2) 2ipe® = D p.ﬂi".m,

where n*() = m(4, n, 8*). This holds trivially for n = 0, since both sides of (2.2)
equal one. If (2.2) holds for some n = 0, and all (n(1), --- ,n(R)) € I, , then



496 MILTON C. CHEW, JR.

we must show it holds for n + 1 and all (n(1), --- , n(R)) € L4 . It is sufficient
to establish this for each (n(1),---, n(u) + 1,:---, n(R)), where
(n(l), ---, n(u), ---, n(R)) e I,. Indeed, if (n(1), -+, n(R)) & I,41 then
n(wu) > 0 for some u, and (n(1), --- ,n(u) — 1, --- ,n(R)) & I, . Furthermore,
it is sufficient to consider (n(1l),---, n(u) + 1,---, n(R)) where
(n(1), --- ,n(R)) e I, and also n(u) = n*(w).For, if n(u) < n*(u) for some u,
there is a v such that n(v) > n*(v) since X :n(z) = D.in*() = n. Hence
(n(1), -+ ,n(®) — 1, - ,n(u) +1,---,n(R)) eI, and n(v) — 1 = n*(v).

Therefore, let (n(1), -+, n(R)) €I, so that by assumption (2.2) holds. If

n(u) = n*(u) (this must hold for some u = 1, --- , R), then since o, < 1 and
"™ < @™, (2.2) for n gives
Zz;éup[ n@ n*(z)] Du [ un *u) aun(u)] > pu[aun*(u)+l _ aun(u)+l],

which becomes
+1 ) *(u)+1 *(4
(2 3) DPulty ne + Zi;&u piain(z) = Pully e + Zz‘;éu piain (i)

If 6%, = u, then (2.3) is (2.2) forn + 1. If 5,1 = v 5 u, then p,a,” (1 — a,,)
> pac "*(")(1 — a,) from (1.1), and hence

(2.4) pua” M 4+ D pa® 2 pa,” M 4 3k pa™?.
Combining (2.3) and (2.4), we have (2.2) for n 4+ 1 and
(n(l)’ T n(u) + 1, Tty n(R)) SIn+1 .

Thus, by mathematical induction, (1.2) is true for all positive integers n and
every procedure §, establishing the following:

THEOREM 2.1. A one-stage optimal search procedure 8, as defined by (1.1), is
strongly optimal.

3. Bounds for the Bayes stopping region. In this section the prior probabilities
pisatisfy D_:p: = 1 — ¢ < 1, and a penalty cost ¢ is charged to the searcher if the
object is not found prior to termination of the search. Since the choice of a pro-
cedure & dictates initially in what order we will examine the locations and thus
what the successive posterior distributions will be until the object is found,
s = s(p) is known in advance for each stopping rule s, once a prior distribution p
is given. Consequently, if the truncated procedure (8, s) is used then the expected
risk, or cost, to the searcher is

(31)  E[C|(5,8)] = SounPIN =n]|8 + (s + ¢)PIN > s3],

where C is the (random) cost of the search. We seek a procedure (3%, s*) which
minimizes (3.1).

The expected risk may be expressed in the following form:
(3.2) E[C (5, 8)] = D4 PIN > n|8] + cP[N > s|4l.

Now, if @ denotes the event that the object is in the (R + 1)st location,
PIN >n|é8 = (1 — ¢)P[N > n]|s Q1+ ¢P[N > n|s, Q], for any n. But
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PIN > n|8,Q° = P'[N > n| 4], the probability that N > n, given procedure 3,
in the search problem with prior probabilities p;’ = pi/1—gq. Since X :pi = 1,
a strongly optimal procedure 8* implies that P'[N > n | 8] = P'[N > n | §*] for
all n. Moreover, P[N > n |§, @ = 1 for all n, so that (3.2) becomes

E[C|(8, 8)] = (1 — ){ 25 P'IN > n|8] + cP'IN > 5|0}
+ g(c + s) = E[C|(5% s)]

for every s, establishing the first part of the following theorem.

TuroREM 3.1. For every stopping rule s, B[C |(8%, s)] < E[C|(8, )] where 5™ is
a strongly optimal procedure, and & vs any other search procedure. M oreover, there
exists a stopping rule s* such that E[C |(8%, s*)] < E[C (8, s)], for all procedures
(8,8).

It remains to establish the last statement of the theorem. Since P[N > s | 6] = ¢,
for all s and é, then from (3.1), E[C |(8, s)] = (s + ¢)q. Hence, for arbitrary 8,
the expected cost increases without bound as s increases. Since it is finite for finite
s it must attain a minimum for some s = s*(p, 8), where s*(p, ) is a known func-
tion of (p, 8). Thus, E[C (8%, s*(6¥))] = E[C |(s%, s*(5))] < E[C[(8, s*(8))] <
EI[C |(8, s)] for all procedures (3, s), implying the existence of a Bayes procedure.

To determine s*, we consider the equivalent problem of determining the Bayes
stopping region Sg , the set of posterior probabilities p = (p1, - - - , pr) for which
the expected risk equals the penalty cost ¢. Equivalently, we are determining
those p for which s*(p) = 0.If Tsp = (p1, - -+, pr’) is the posterior probability
vector, after an inspection in z, then by Bayes’ rule,

(33) pi = pi/lpii+ (L —p))l, j#=1i; pi = p/lpei + (1 — pi)],

so that at any given stage of the search the probabilities of detection are propor-
tional to the posterior detection probabilities. Thus, the strongly optimal pro-
cedure 8* could have been defined as well interms of these latter probabilities.
Now, prior to a first inspection there are B + 1 choices available to the searcher.
He may take no inspection at all, paying the penalty ¢, or he may inspect any
of the R locations. If he decides to inspect 7, continuing after that according to the
optimal procedure, his expected risk would be 1 + (1 — pi(1 — a)E'[C | (6%, s™)],
where E’ is expectation with respect to the posterior distribution 7. The optimal
choice at the outset of the search is that which yields the smallest of these R + 1
quantities. Hence, by Bellman’s Principle of Optimality ([1], p. 83), the minimal
expected risk when p = (p1, - - -, pr) is the prior probability distribution, satisfies
the functional equation

(3.4) f(p) = min {¢, min, [1 + (1 — p1 — @) )f(Tip)]}.
Thus, the Bayes stopping region Sz = {p: p = (p1, -, Pr), Zipi < 1;
f(p) = ¢}.

In order to estimate Sg, we define the following p-sets. Let

Sy = {p:p = (p1, , pr), max;p(l — a;) <1/ct and S. = N S:,
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where
S:={p:p=(p1, " ,p2), Pl — &) + (¢ /¢) 2juipi(l — &) < 1/c},
and ¢ = 1/min; (1 — ay).

TarorEM 3.2. The regions Sy, Sy and Sz satisfy the inclusion relation
S.C Sz C Sy , the first of which holds when ¢ = c¢o . M oreover, the second inclusion s
proper.

Proor. (i) Sz < Sy

Let p € Sp . Then,

¢ =f(p) Smin;[1 + (1 — pl — «))f(T:p)] = min; [1 + (1 — pi(1 — as))e]
=14 [1 — max;p:(1 — ay)]c.
Hence, max; p.(1 — a;) = 1/c, so that p £ Sy . The inclusion is proper as the
following example shows. Let p € Sy such that pi(1 — o) = pa(l —a2) =1/c,
andlets = 2,6 = (1,2,8;, ---), where §; , 7 = 3, are arbitrary. Then from (3.1)
ElC|(s,8)] =1/c+2/c+ (24 ¢c)(1 —2/c) =c—1/c<ec,

so that f(p) = E[C (8, s)] < c and p ¢ S&’.
(ii) 8, <€ S, whenc¢ = ¢.
Suppose there is a p £ S n Sp°. Then, by (3.4),
¢ > f(p) = min; [1 + (1 — pi(1 — ai))f(Tp)]
=1+ (1 — p(1l — «;))f(T;p) forsome j = j(1)
=21+ (1 —1/¢)f(T;p), since clearly pe S,
implies p;(1 — a;) < 1/c.
Thus, f(T;up) < ¢. Now,if p ¢ Spimplies Tip € S ,72 = 1, - -+ , R, the preceding
argument shows that for some j = j(2), f(TioTiwp) < ¢, and T;jeTiayp € St .
Hence, by applying the above argument repeatedly, we would have
f(Timy -+ Tiwyp) < cforn = 1,2, --- . This implies that the search procedure
yielding the minimal expected risk never terminates, contradicting the conclu-
sion of Theorem 3.1. It suffices then, to prove that peS., = TpeS.,
i=1,--+,R.
Let Tp = (p1, -+, p’). Then, since p = (p1, -+, Pz) € Sz,
paai(l — ;) + (co/e) Dkwi pa(1 — )
= pi(1 — &) + (co/e) 2w pr(1 — ax) — pi(1 — @)” < 1/c — py(1 — @)’
/el — pi1 — )]+ [1/c — (1 — a)lp(l — ;) = 1/l — p(1—ai)],

sincec = ¢ = 1/(1 — ai).

Dividing both sides of the inequality by 1 — p«(1 — i) = pws + (1 — pi),
we obtain, by (3.3),

pi(1 — a;) + (co/c) 2awivi’ (1 — @) < 1/c and hence TipeS;.
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For

74 Pl — ) + (eo/e)pai(l — @) + 2iurive(l — )]
pi(l — ;) + (co/e) 2w pa(l — o) — (co/e)pi(1 — @)’
S 1/efl — epi(1 — )] £ 1/efll — p(1 — ay)],

since ¢o = 1/(1 — a;),j = 1, - -+ , R. Therefore, by (3.3) again, p;/ (1 — ;) +
(co/c) Dowmipi (1 — ) < 1/c so that TpeS;, j = 1,---, R. Hence,
T e i S; = S, and the proof is complete.

The assumption that ¢ = ¢ is crucial in the above argument in establishing
that S, € Sz . It can be shown in a similar manner that Sz is the set of all prob-
ability vectorsp = (p1, - -+ ,Pr), 2o Pi < 1, wheneverc < ¢; = 1/max (1 — a;).
That is, for such small penalty costs ¢ it is not worthwhile taking any inspec-
tions. If at least two «; are distinct, however, the interval (¢, ¢o) is non-de-
generafe, and presumably there are occasions when searching should be done for
ce (e, co). In this case Sy is not an inner-bounding region of Sp (possibly some
restriction of S; works), and we pursue it no further at present.

4. An approximation to (3%, s*). The ‘closeness’ of Sy, and Sy, and hence the
‘closeness’ of either to the Bayes stopping region Sp, is demonstrated in the
following

TreoreM 4.1. Suppose the prior probability distribution p e Sy and

c=c(R—1)+co.
Then, if 8. = j(3),i =1, -+ , R, Tia -+ Ticyp € Sy for some k < R. Moreover,
J(1), -+ -, j(k) are distinct integers among 1, - - - , R.
The following lemma will be needed in the proof of the above theorem:
LemMA 4.1. For eachu,v =1, .-+ | R, define

cu(l) = [eo(B — 1) + 1]/(1 — au),
cu(®) = [eo(R — v+ D i) + 01/ (1L —au), o u<v
= [eo(R — v+ 2i5e) +ol/(1—a) of uzw
Then, c.(v) < c’(R — 1) + ¢o, for all u and v.

Proor. Cle_arly, cu(1) = c(R — 1) + cofor all u, since ¢p = 1/min; (1 — «;). The
remainder of the lemma will be proved if it is shown that ¢,(v) are decreasing in

v for each u. For u = 2,
cu(2) [eol R — 2+ 1) +2]/(1 —ay) =[c(BR—1)+1
+ (1 - Co(l - al))]/(]- - au) = cu(1)7

and
a(2) = [eo(R — 2 + a2) + 2]/(1 — a1)
=[co(R—1) + 14 (1 =co(l = a))l/(1—=a1) = a(l).
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For v > 1, consider two cases:
(i) w = v + 1. Then,

c(v+1) =le(B —v — 14 2iaa) + v+ 1]/(1 — a)
= [eo(R — v+ 25 as) + v+ (1 — a1 — a))]/(1 — o) < cu(0).
(i) w < v + 1. Then,
4+ 1) =R —v—1+ D2 ) + 0+ 11/ — o).

So that

c(v +1) = [eo(B — v+ 27 1e) + 04 (1 — el — ar))]/(1 — ),
if w = v, and

cu(v+1) =[eo(R — v+ Dictigu o) + 04 (1 — co(1 — @pa))]/(1 — a),

if u < v. In either case, c.(v + 1) = c.(v), completing the proof of the lemma.

Proor oF THEOREM. Let p ¢ Sy and suppose the locations are renumbered so
that m = --- = 7z, where m; = pi(1 — «;). Further, let p(k) = (pu(k), -- -,
pe(k)) and wi(k) = pi(k)(1 — ), where p(k) = Tj - - - Tiwp, and (i) = 6.5,
the 7th location inspected according to the optimal procedure 8. Since &* = 1
(i.e., m1 = maX; 7;), and the fact that =; < 1/c, then (3.3) gives m(1) = 7r1a1/
(1 —m) far/(c—1)and7(l) =7/(1 —m) £ 1/(c — 1),2 = 2, , R.
Therefore, m(1) + (co/c) D rpmi(l) < ar/(c — 1) + co(R — 1)/c(c - 1)
The quantity on the right is <1/c¢ if and only if ¢ = ¢(1), by simple computa-
computation. However, ¢(1) < ¢ (R — 1) 4+ ¢ by the above lemma.
Hence, ¢ = ¢o’(R — 1) + coimplies that p(1) € 81 . Now, if p(1) & Sz , then since
m(1) = --+ = wer(1), it is easily seen that p(1) € 8;,7 = 3, --- , R, and hence
p(1) eS8, . If p(1) £8;, then

(1) + (eo/e) DEami(l) £ 1/c < m(1) + (co/e) Dimami(1)

which gives (1 — co/c)(m(1) — m(1)) > 0. Thus, m(1) > m(1) since
¢ = c’(R—1) 4 co> co,andsos* = 2. (Here, and in what follows, we assume
that if wi(k) = m;(k), ¢ < j, then 641 = %, the smaller index. If this is not the
case, we simply interchange the locations.)
Now, suppose that for somel < k < R, inspections have beenmade inlocations
, kin that order according to 8 and p(k) € S;,i =1, - -+ , k. If p(k) & Spy1 ,
then as above, p(k) € S;,7 =k + 2, ---, R, and so p(k) € Sy . If p(k) 2 Si41,
another inspection is required. By the same argument used for p(1), remember-
ing that my1(k) = -+ - = we(k), it is seen that 74(k) < mp(k),c =1, -+, R,
with strict inequality holding for ¢ < k, so that 441 = & + 1. Therefore, by (3.3),
and the fact that we have searched 1, - - - , & + 1 once each, p ¢ Sy,

rk + 1) = mae/(1 — 24 71) Soif(c —k—1), i=1,---,k+1,

and
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ik + 1) =m/(1 = 22587) s 1/(c—k—1), i=k+2 R,
so that
mi(k + 1) + (co/c) 2jeimi(k + 1)

Saif(c —k—1) + (c/)(R —k— 1+ 2% jmia;)/(c —k —1)]

fore =1, --- ,k+1

The quantity on the right is <1/c¢ if and only if ¢c,(k + 1) = ¢, which is true by

Lemma 4.1 since ¢ = ¢(R — 1) + ¢o. Thus, p(k + 1) e8:,7i=1,--- ,k+ 1.

Therefore, by induction, p(R) £ 8;,7 = 1, - - - , R, which means that p(R) € S, ,
completing the proof.

Consider now the search procedure (3%, sy), where 8* is a strongly optimal
procedure, and sy is the smallest integer k such that T;uy - - - Tiwp € Su , where
§(3) = 8;*. Theorem 4.1 guarantees that if ¢ = ¢’ (R — 1) + ¢o, sy will not differ
from s* by more than R. That is, if the searcher always inspects the location
most likely leading to discovery of the object, and makes at most one additional
inspection in each location whenever all detection probabilities are less than 1/c,
then he shall have taken at most B more than required to minimize his expected
risk. How much more one might expect to ‘pay’ than necessary, using (8", s¢),

is answered in the following
THEOREM 4.2. If ¢ = ¢o(R — 1) + co, then

B[C | (8% s0)] — EIC | (8%, s)] < Rg/2c(co — 1),

where ¢ = 1 — Z,pz
Proor. By (3.2) for sy < s* (otherwise sy = s*),

E[C| (8%, sv)] — EIC| (%, s")]
(4.1) = — D 0T PIN > n|8"] + cP[s* =2 N > sy | 6"
= — Y U 30PN > sy +n| 8] 4+ cP[s* = N > sy 6%

Now if sy = n(1) + -+ + n(R), n(¢) = m(3, sy, 8*), then for k = sy and
j(’L) = 5,'*, Tj(k) ce Tj(l)p & SU implies that

P (1 — @) /(X;pia” + @) = 1/c,
by (3.3). Since the denominator on the left is P[N > sy | 8], we have
(4.2) pii®(1 — a;) £ (1/c)PIN > sp|8*], i =1, ---, R.

If the locations had been rearranged so that m; = --- = mx (as in the proof of
Theorem 4.1), then ép4; = 7,7 = 1, - -+ , R, by Theorem 4.1, where again k = sy .
Thus, adding the inequalities in (4.2) for< =1, --- , n(n £ R),

(43) P[N > sy|8%] — PIN > sy +n|8%] < (n/c)PIN > sy | 8],
so that
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(43) PIN > sy + 0|81 = (1 — n/c)PIN > s|8%], n =1, ---, R.

Further, by dividing the ¢th inequality in (4.2) by 1 — «; and adding all of them,
we obtain

PIN > sy |86*] — ¢ £ PIN > sy | 8% 22:1/¢(1 — i),
yielding
(4.4) PIN > sy |6 = ¢/[1 — 22i1/¢(1 — )]
By (4.3) and (4.3"), the right side of (4.1) is smaller than
— DUV PIN > sy | 8%(1 — n/e) + (s* — sp)PIN > sy | 6%
= PIN > sp | 6" ] 255 n/c = PIN > sy | 6¥](s* — sp)(s* — sg — 1)/2¢

< R(R — 1)g/2[c — 2_:1/(1 — ay)],

by (4.4) and the fact that s* — sy < R. Since ¢ = co2(R — 1) 4+ ¢ and
c=1/(1 — ai), 2 =1, .-+, R, the quantity on the right is smaller than
Rq/2co(co — 1), as was to be proved.

The bound is independent of ¢, and appears from the proof above to be attain-
able. The relative error will not vary much with R, since the penalty cost ¢ must
grow linearly with R. Accuracy is lost for large g, but in this case few inspections
will be made, if any, and greater error is expected. It is interesting to note, how-
ever, that if max; «; is close to one, then ¢, is large and greater accuracy is
achieved. To illustrate the size of the maximum error, let R = 20, ¢ = %, and
co = 2 (i.e., max; a; = 3). Then, for ¢ = 78, the bound is 2.5. Also, if some
p: = 3 and a; = 0, then E[C | (8% sy)] = PN = 1|5%] + ¢P[N > sp|8%] =
1 + 78¢ = 39.5, yielding a relative error less than 6.3 per cent.

Acknowledgment. I wish to express my sincere appreciation to Professor
M. H. DeGroot for advice and guidance during the course of this research, and

for suggesting the original problem.

REFERENCES

[1] BeLLmAN, R. (1957). Dynamic Programming. Princeton University Press.

[2] KoopMmaN, B. O. (1957). The theory of search III: The optimum distribution of effort.
Operations Res. b 613-626.

[3] MaTuLa, D. (1964). A periodic optimal search. Amer. Math. Monthly. T1 15-21.

[4] Scawarz, G. (1962). Asymptotic shapes of Bayes sequential testing regions. Ann. Math,
Statist. 33 224-236.

[5] StarOVEROV, O. V. (1963). On a searching problem. Theor. Prob. Appl. 8 184-187.



