AN OSCILLATING SEMIGROUP'

By Davip A. FREEDMAN
University of California, Berkeley

1. Introduction. Let I be a countably infinite set. For each ¢t = 0, let P(f) =
{P(t,7,37)} be a stochastic matrix on I, such that P(¢ 4+ s) = P(t)P(s), P(0) is
the identity matrix, and P(¢) — P(0) coordinatewise at ¢ — 0. Then P is called
a standard stochastic semigroup on I. As is well known, P has a coordinatewise
derivative @ at 0. However, many elements of @ may vanish. In view of this,
L. E. Dubins asked me whether P(¢, 7, 7)/P(t, ¢, k) converged as ¢ — 0. The
object of this note is to provide a counterexample.

(1) TuroREM. There is a countable set I, with elements 0, 1, 2 and a standard
stochastic semigroup P on I, satisfying

(2) lim sup:.o P(t, 0, 1)/P(t, 0, 2)
Hm inf,,0 P(¢, 0, 1)/P(t, 0, 2)
M oreover, there 1s a Markov chain with stationary transitions P, starting from 0, all

of whose sample functions are step functions. In particular, all elements of Q are

Jinite.
The construction is given in Section 2, two preliminary facts in Section 3,
and the verification in Section 4. Section 5 contains some technical remarks.

[e.¢]

0.

2. Construction. The state space I consists of 0, 1, 2, (1, n, m) and (2, n, m)
for positive integer n and m = 1, -- - | f(n). Here f(n) is positive integer to be
chosen later. Think of it as large.

Let 0 < gnm < o, and let
(3) Cp = ;(:}l) q;.lm .

The ¢, will be chosen later. Think of them as very large. Let a, > 0,b, > 0,
Z:;l (an + bn) = ]-7

(4) Ony1 + Qg2 + -+ = 0(an),
bn+l + bn+2 + cer = O(bn),
(5) lim SUPgsw An/bn = lim inf, .« @,/b, = 0.

Let 7o be exponential with parameter 1, and 7, . exponential with parameter
Gum,forn=12 ..., m=1,--- f(n), all independent. In particular,

P(tam=t) = e for ¢=0.
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" Here is a stochastic process. The process starts in 0, stays there time 7o ,then
jumps to (1, n, 1) with probability a, and to (2, n, 1) with probability b, , for
anyn = 1,2, --- . Having reached (7, n, m) for ¢ = 1 or 2, the process stays
there time 7, , then jumps to (7, n, m + 1), unless m = f(n), in which case the
process jumps to . Having reached 7, the process stays there. As is easily verified,
this process is a Markov chain with stationary standard transition, call them P.

(It is easy to make the chain more attractive. Let it stay in 1 or 2 for an in-
dependent, exponential time, then return to 0. This complicates thé argument,
but not much. For some of the details in this modification, see Section 5.)

3. Preliminaries. The elementary proofs of (6) and (8) are omitted.
(6) Fact. P(ro+ a1 S t) = o(t) ast — 0. ’
Recall (3) and let

)
(7) Op = ,/,.(:1 Tn,m «
(8) FacT. o, has mean ¢, and variance Y 4% 1/q% m .

4. Verification. The program is to define ¢,,. inductively on », and with them
a sequence ¢, | O such that

(9) P(tn,0,1) & 3ntn
and
(10) P(t,,0,2) & 3buts .

As usual, 2, & y, means ,/y, — 1. In view of (5), this establishes (1).
Fix a sequence ¢, > 0 with

(11) en = 0(a,) and e, = o(b,).
Let f(1) = 1, = 1, u1 = %. Suppose f(n), tn, ga,- Chosen for all n < k.

Recall (3) and (7). By (8), P(70 + 0n < t) = 0(¢) for all n < k. Choose ¢, with
0< e < %tk_1 and

(12) P(‘To + on < tk) é éktk forall = < k.
F(k)

Let ¢, = 1t . Now choose f(k) and gx.. 50 ¢x = 2_4%) 1/gem, while 225 1/¢2
is so small that

(13) P(ro+ou<tn)/P(ro+ ¢ < t)—1 uniformlyin n <k as k— .

Use (8) to see that (13) can be done.

Now (9) and (10) follow, but only (9) will be argued. To estimate P(¢, ,0, 1),
let Py be the distribution of the chain starting from 0, and let A (k, t)be the event
that, on leaving 0, the chain jumps to (1, &, 1), and is in 1 at time ¢. Plainly,
P(t,0,1) = D oa PofA(K, t)], and Po[A(k, t)] = axP[ro + ox < t]. By (13),
PolA(n, t)] & auPlro + o < tu], and Plro + ¢o < t,] = 1 — ¢

.(tn — ¢n) = %t, . Thus,

(14) PO[A(n7 tn)] ~ %antn .
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Similarly, D feni1 PdA (K, t.)] & Drentr @x(tn — ¢x). But & — ¢ < 36, , 50 (4)
implies

(15) - 2 init PolA (K, t2)] = 0(ants).
Finally, using (12), 225 PolA(k, ta)] £ D75 Gjenta < entn - By (11),
(16) )3y Po[A(k, tn)] = o(antn).

Combine (14), (15) and (16) to get (9), completing the proof of (1).

6. Technical remarks. Let r; be an exponential random variable, independent
of 7o and {74,m} . Modify the chain so that, on first reaching 1 or 2, it stays there
time 7; , then jumps to 0. On returning to 0, the chain restarts afresh. The con-
clusions and proof of Theorem 1 apply to this chain also, provided that ¢ satis-
fies (17) in addition to (12):

17 Plro+ n < &) = s .

Indeed, let B(k, t) be the event that, starting from 0, on leaving 0 the chain
jumps to (1, k, 1), and is in 1 at time ¢, without having returned to 0 on (0, ).
Clearly,

Po[B(lﬂ, t)] = akP(‘ro F o <t < 7o + o + Tl);
by conditioning on 7o and oy ,
akP(ro 4+ o < t)P(T1 > t) = Po[B(k, t)] =< akP(To =+ o < t).

Thus, as t— 0, Po[B(k, t)] & axP (70 + ox < t) uniformly in k. Now, for the chain
to bein 1 at time ¢, , and to have returned to 0 before time £, , implies 7o + 71 < ¢, ,
an event of probability at most e,t, .

For the modified chain, let 6, = 7oand let 6y, 62, - - - be the holding times in the
first, second, - - - state visited after 0. Thus, on B(k, t), 0m = 7&,m . Given the
order of states, the 6’s are independent and exponential, so one might expect
Po(6p+ 60+ 6, = t) = o(t*). Since 1 can be reached from 0 in two jumps but
not in one, a similar heuristic argument leads one to expect P (¢, 0,1) ~ £. Both
of these estimates are false. For, letting X; be the chain at time ¢, P(¢,0,1) =
Po[X;= 1,00+ 61 + 6, < t] + Po[X: = 1,00 + 61 + 62 > ¢]. The second term is
aPofro+ 11 S t < 70 + 11 + 12 = 3 + o(f). Similarly for P(¢, 0, 2).
From (1), lim sup:.o 2P X = 1,600+ 6+ 6 S 8] = oo.
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