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1. Introduction and summary. The object of the present investigation is to
generalize the results of Greenberg (1966) to a wider class of robust estimators
which includes her estimator as a special case.

As in Greenberg (1966), we consider an incomplete block design D consisting
of J blocks of (constant) size b to which ¢(>b) treatments are applied, there
being n; replications of the jth block, forj = 1, --- ,J.Letn = Y j= n; and let
S; consist of the numbers of the b treatments applied in the jth block, for
j =1, .--,J. The observable random variables are then

(1.1) Xija = v+ &+ i + Bia + Uija,

Ot=1,"',’ﬂ/j; 7:€Sj; j=1)"')J)
where £; is the ith treatment-effect, u; the jth replication effect, B;. the effect of
the ath block in the jth replication set and U;.’s are independent and identically

distributed residual error componentswith a common distribution F(u). We
may set (without any loss of generality) that

(1.2) Se18:=0, Diap=0; D.riBia=0 forall j=1,---,J.
Our intention is to provide some robust estimators of contrasts among £;/’s and to
study their various properties.

2. A class of rank order estimates. Define
(2.1) Yinie = Xije — Xija, Ay = & — &, Uiyie = Usje — Utja

foralla =1, ---,n;,(te8;,te8;),j =1, ---,J, and we denote the common
cumulative distribution function (edf) of U, yje by G(u). By definition G(u) is
symmetric about ¥ = 0 and if it has a finite variance that will be equal to
o = 20¢°, where ¢ is the variance of Usje. From (1.1) and (2.1), the cdf of
Y niais G(u — As). Let

(2:2) Yini = (Yani, o5 Yo, (2, ) eS;, 7=1,---,.J.
We consider the rank order statistic
<2~3> hnj(Y(i,t)i) = Z:j=1 Enj,a Z;z;’t;/nj 3
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where E,;,. is the expected value of the ath order statistic of a sample of size n;
drawn from a distribution

¥ (2) = ¥(x) — ¥(—z—), z =0,

(2.4) =0, <0,
V() =1—¥(—z—),—o <2< »;
and Z 5,'1 '2 = 1if the ath smallest observation among |¥ . jalya =1, , M, 1S

from a positive Y ;4. and Z ﬁ,'] ) = 0, otherwise. In passing, we remark that the
cdf ¥(x) in (2.4) is assumed to satisfy the conditions of Theorem 1 of Chernoff
and Savage (1958).

Let us denote by I,; the n;-vector having all elements equal to 1 and define

(25) A;kt(j.) = sup {a:hnj(Y(i,t)i - a'Inj) > ”’}7
A:‘kg*(]) = in.f{a;: hnj(Y(i,t)j - a/Inj> < M},

u being the point of symmetry of the cdf of h,; when for the edf G(w — A;) of
Y(i,g)ja , Ay = 0. It is well known (Gf [ ] [5]) that

(2.6) A:f) = 1A} *(J) + A**(j)]

is a translation invariant estimator of A,; and its distribution is symmetric about 0.
It may be noted that if we work with ¥(z) = (x 4+ 1)/2, —1 < z < 1, we obtain
the Wilcoxon-type of estimator which has been studied in detail by Greenberg
(1966). Another important estimator, termed the normal score estimator, may be
obtained by using ¥(z) as the standardized normal cdf and will be shown to have
some desirable properties.

Let us denote

(2.7) AP = (1/b) X us; AY (where A = 0),

and we define the compatible or adjusted estimator of ALY as

(2.8) 7 = AP — AP forall 4,te8;, j=1,---,4J.
For the study of the asymptotic distribution of the adjusted estimators in

(2.8), we shall assume that

(2.9) n; = np;i0 < p; <1 forall j=1,---,J; n— w,

Then, we have the following.

THEOREM 2.1. If the density function g(x) = Q' (z) satisfies the regularity con-
ditions of Lemma 3(a) of Hodges and Lehmann (1961) and the cdf ¥(z) in(2.4)
satisfies the conditions of Theorem 1 of Chernoff and Savage (1958), then subject
to (2.9)

é(Z(])_Ait) i,tSSj, j=17"°;Jﬁ

have asymptotically a joint normal distribution with means zero and a covariance
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matric having elements

T jit,j'4't’
=0, if 4,7,¢1¢ aredistinctand j =7 orif j#j,
(2.10) = A%/p;B’, if j=4, i=4, t=1¢,
= 8/2p;, if j=4, i=4 or t=1¢,
= =82, if j=4, i=1 or t=7,
where
(2.11) A" = [ J%(w)du, B = [2,(d/dz)J[G(z)]dG(z),
(2.12) §* = (2/b)[A* + (b — 2)\(D)]/B,

(213)  N(F) = [Za [Z JIG(@)TG()] G (2, y), J = ¥,

and G*(x, y) is the joint ¢df of Ui pja, Uwinialt 5 t') whose marginal cdf’s are
G(z) and G(y), respectively.

Since the Z{’s are linear functions of A{, ,teS;,5=1,---,J,itis enough
to prove the following:

Lemma 2.2. Under the assumptions of Theorem 2.1, the random variables
(A — Aw), 4, te8;,5 =1,--+,J, have asymptotically a multi-normal dis-
tribution with null mean vector and covariance matrix having the elements

%
Tjit,j’i'e

=0 if 4,4,t,{ aredistinctand j=j orif js=j
(2.14) = A%/p;B’ if j=4, i=7dandt="¢
= N(F)/p;B? if j=4, i=4 or t=1¢

= —N(F)/p;B® it j=4, i=¢ or t=1,

where A®, B® and N;(F) are defined by (2.11) and (2.13).

The proof of this lemma follows from Theorem 3.1 of Puri and Sen (1966) as
does Lemma 1 of Greenberg (1966) from Theorem 1 of Lehmann (1964). The
computations of the covariance terms in (2.14) are straightforward and are there-
fore omitted.

Also, it has been shown by Puri and Sen (1966) that N,(F) < 34’ for all con-
tinuous distributions F. As such, upon considering the balanced incomplete
block designs (for which n; = --- = n;) and proceeding as in the proof of
Theorem 1 of Greenberg (1966), we obtain the following theorem with the aid of
our Lemma 2.2.

TrHEOREM 2.3. In the class R of all linear functions of the random variables
AP, i, te8;,j = 1,--+, J, which are unbiased estimators of A , an asymp-

ity

totically minimum variance unbiased estimator is obtained by substituting Z<) for
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i yhteS;, 5 =1,---,J, in the classical least square estimate, where Cly is de-
fined by (4) in Greenberg (1966). If N;(F) < LA, this is the unique asymptotically
minimum variance unbiased estimator in R.

3. Asymptotic efficiency of the estimates. On defining S by (2.12), we may
note that [ef. Lemma 3 of Greenberg (1966) and our Theorem 2.1] {(2 /S ynt
(Z§ — Au), 4 teS;,5 =1, ,J}and {n}(Cly — Aw), i, te8;,j =1, -+, J}
having the same limiting normal dlstnbutlon whenn; = --- = n, (i.e., n =Jny).
Hence, the asymptotic relative efficiency (ARE) of Z;! 9 with respect to the least
square estimate Cj; is given by

(3.1) e(¥) = 26°/8" = ba’B*/[A®> + (b — 2)M(F)],

where A*) B and \,(F) are defined by (2.11) and (2.13). It may be noted that
(3.1) is independent of 7,2 S;,j = 1, - -+ , J, but depends on b, the block size.
On substituting b = ¢ (the number of treatments), (3.1) agrees with the expres-
sion for the efficiency in the complete block experiments [cf. Puri and Sen (1966),
(3.11)]. Again, if we take ¥(z) = (z + 1)/2: —1 £ z < 1, we obtain the results
of Greenberg (1966) and of Lehmann (1964) (when b = c¢). Since, ¢°, B?, A® and
A;(F) are all independent of b (and ¢) and \;(F) < 3A” [cf. Puri and Sen (1966)],
it is easily seen that (3.1) is an increasing function of b: 2 < b < c¢; its minimum
value being equal to 26°B°/A”. Thus,

(3.2) 20°B* /A < e(¥) = ¢a®B*/[A® + (¢ — 2)A(F)].

Now, if we use ¥(z) as the standardized normal cdf (i.e., (2.3) as the one-sample
normal score test-statistic), then noting that the cdf G( x) [of Ui yia] has the
variance 2¢°, we get from (2.11) and the well-known result of Chernoff and
Savage (1958) that

(3.3) infg 26°B°/A® = 1

where G is the class of all continuous edf’s and the equality sign in (3.3) holds
only when G is a normal cdf. Thus from (3.2) and (3.3), we get for the normal
score estimator

(3.4) infoeg e(¥) = 1 forall b=2 ¢

where the equality sign holds only for normal G’s.

Finally, it can be shown that the efficiency (2.7) holds not only for the differ-
ences £; — £; but extends to the estimation of any contrast 6 = D > du(£; — £).
The details are omitted for intended brevity.
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