THE MAXIMUM DEVIATION OF SAMPLE SPECTRAL DENSITIES

By MicuaeL B. Wooproore' axp Joun W. VAN Ness?
Carnegie-Mellon Univérs;ty and University of Washington
0. Summary. The present paper gives sufficient conditions on a linear process
{X,} and its spectral density f( -) for the following limit relation to hold:
(0.1) [[Wl;™(N/2my log mu)! max_raazr [fx(N) — fONI/FN)] — 1

in probability as N — « where fy() is the usual windowed sample spectral
density, myW (my-) is the (varying) window, and my 7 « as N — « at a suit-
able rate. Under the same conditions it is shown that

(0.2) Play ' IN'my™? [Wl™ maxiq gmy [fv(N.0) — FOF/FOR,)]
— by] < ) — exp (—exp (—z))

as N — o for —o < z <  where \y.;, ar, and by are defined by (2.1) and
(2.2).

Observe that the difference between the maximum deviation and the deviation
at a single \ point [5] manifests itself in the factor (log my)~*. Thus in practice a
confidence band for all N is O((logm x)}) times that for a finite set.

1. Introduction. In this paper we will study spectral estimation in the case of
a real-valued, discrete parameter, linear stochastic process { X;:t = 0, %1, ---}—
i.e., a process for which

(1.1) X = 2w abi

where - -+ £, &, &, -+ - are independent, identically distributed random vari-
ables, and Y |ax| < . In this case {X,} has the spectral density

(1.2) FN) = (2m) 7 | i g™

so that

(1.3) R(v) = E{XXu} = [Z.ef(N) dN.

The most commonly used spectral density estimates, fx(\), are those obtained
by weighting the periodogram,

(1.4) In(\) = (20N) 7|20 X ™,

Received 1 July 1966.
1 The work of M. Woodroofe was supported by the Office of Naval Research NONR

225(52) at Stanford University.
2 The work of J. Van Ness was supported by the Army Research Office under Grant

DA-ARO(D)-31-124-G726 at Stanford University and by the National Science Foundation
under Grant GP7519 at the University of Washington.
1558

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to )

The Annals of Mathematical Statistics. MINORY

www.jstor.org



THE MAXIMUM DEVIATION OF SAMPLE SPECTRAL DENSITIES 1559

in the following manner [5]:
(1.5) Iu(N) = mu [Zo W (mw(u — N))In(u) du

where {my} is a sequence of positive integers increasing to « with N at a suitable
rate and W(-) is a suitable non-negative, even, weight function. It will be as-
sumed that W(-) has a Fourier representation,

(1.6) W) = (2m)7 [2 6™ w(v) dv

so that, since W( ) is non-negative,

(1.7) w(v) = [Z, e W(\) dA.

We will also require w(0) = 1. Then (1.5) can be written

(1.8) v\ = (2m)7 202w € ™ Ru(v)w(vmy )

where Rx( ) is the covariance estimate,

(1.9) Ry(v) = N7 273 X X1y = Ry(—v0), v=0.

If w(-) has compact support (i.e., for some V, w(v) = 0if [v] > V), fu(+) will
be called a fruncated spectral estimate.

Our main theorems, Theorems 2.1 and 2.2, describe the asymptotic behavior as
N — o« of the maximum deviation of fx(-) from both f(-) and E(fx(-)) where
fx(-) is a truncated estimate of f(-). (0.1) and (0.2) are particular cases. The
proof of the theorems is divided into two major parts. First, they are proved for
the pure white noise process itself (Section 3). The second part of the proof
(Section 4) involves reducing the linear process case to the pure white noise case.
Section 2 contains a statement of the theorems together with some preliminary
material.

There are some related results in the literature. Similar problems in the case of
the periodogram itself are discussed in [7], and the maximum of trigonometric
polynomials with random coefficients is studied in [9]. [3], Chapter 6, contains a
version of our Theorem 2.2 in which first N — « with m fixed and then m — .
See also [4].

2. The main theorems. Since our theorems hold under varying combinations
of assumptions, it is convenient to label the more common ones:

(A1) -+ ,&4,%,&, - are independent and identically distributed with
E(&) = 0,E&f = 1,and E|&° < .

(A2) X, has the representation (1.1), and |az| = Ok~ "), as k — «, where
B> 3

(Aa) f(+) is everywhere positive and satisfies a uniform Lipschitz condition.

(As') f(-) is everywhere positive and has a bounded second derivative.

(As) fu(- )1struncated andmy = O(N*) asN — =, a < &.

(As) W(-) is a non-negative, even, bounded, lntegrable function satisfying
(1.6) and (1.7). w(0) = 1, and w"(0) exists.
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In addition, we will need the following notation: for N so large that my = 2,
say N = Ny, let

(2.1) M = m il /my, i= —my, -, mx,
(2.2) ayx = (2log (2my))7H
by = (2log (2my))} — 1(2log (2my)) *{loglog (2my) + log 2}.
TaeorEM 2.1. Assume (A1)—(As); if Nlog N = o(my") as N — », v < 4,
then
(2.3)  maxp<» (N/2my logmy)} [fx(N) — ExOO|/[|[W]fN) — 1

in probability as N — «, and (0.1) holds if v < 3. If, in addition, (As) s satis-
fied, then (2.3) is true provided v < 8, and (0.1) s true provided v < 5.

TaEOREM 2.2. Assume (A1)—(As);if NlogN = o(my" )y < 4,as N — o,
then

lim v Pay [Ny W]

(24) ‘maxq <my Ufx(A¥.2) — BEON DI/FOF )] — byl < )
= exp (—exp (—z))

for —o < & < w;and (0.2) kolds if v < 3. If, in addition, (As') holds then (2.4)
18 true provided v < 8, and (0.2) s true provided v < 5.
We conclude this section with a lemma which will be used in the next.
LemMa 2.1. Let p(A) = X 5__; o, exp (1) be a trigonometric polynomial. Then

max, [p'(N)| £ (2% + 1) maxx [p(M)]

where p'( ) denotes the derivative of p( - ).
CoROLLARY 2.1. Let \; = = (4/7k), |i| < rk. Then

maxp - [p(N)| £ maxjs < [p(N) /(1 — 3mr7)].
Lemma, 2.1 is proved in [12]; the corollary then follows from

maxp <« [PV £ maxji <o [p(N:)| + (7/7k) maxp<r [p'(N)].

3. The pure white noise case. In this section we consider the special case in
which X, = &, for all ¢. In this case we will denote the spectral density estimate by
gn(-). Theorem 3.1 (below) says that (N/mN)%(ngN()\) — 1) is equal for fixed
\ to a sum of independent, identically distributed random variables plus an error
term which is uniformly negligible as N — . We remind the reader that
Yy = op(ay) as N — « iffay 'Yy — 0 in probability as N — «. A sufficient
condition for this is E |Y»* = o(ax’) as N — «. Throughout this section and
the next B will denote a positive real number which is independent of N and A
and may change from one usage to the next.

- TaroreM 3.1. Assume (A1), (As), and (As), and let Uy (-) be defined by (3.6).
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Then as N — «
maxoa<x [(N/mn)}(2rgn(N) — 1) — Unx(N)| = op([logma]™).

Proor. Since m = my = o(N*) as N — o iff em does for every constant c,
we may assume that w(u) = 0-for |u| = 1. Thus from (1.8) and (1.9) we find
that

(3.1) (N/m) (2mgn(N) — 1) = Zy(\) + rv(N) + v
where for0 SN=7m1=¢t=<N,andN =12, ---
(32a) Zy(\) = N* Z L Zaa(N),
Zn (N = 2m7F 2005 Eew(om ™) cos (0N),

(32b)  rx(N) = 2(Nm) ™ D tayemiz Domv—eia Ekeraw(vm ™) cos (0N),

ry = (Nm)™ 200 (&7 — 1).
Since for N =1, 2, - --

E{max, [rv(N)[} < 2(Nm) ™ 2000 B | 2 0nmy £idunal,
(3.3) E|D v bkl < 0 < m, v=1,---,m, and

Elrs £ m E|&" — 1],

we have maxy [ry(\) + x| = 0,([log m] ™) as N — «, and it suffices to consider
the stochastic processes Zy(A),0 SN =1, N = 1,2, - -- defined by (3.2a) and

(3.2b).
LEmMaA 3.1. Assume (A1) and (As); then the random variables Zy (N), - -+,

Z n,x(N) have zero means and covariances
Cov (Zya(M), Zwa(N)) = (4/m) Dv=t w(vm™)*(cos vhi) (cos vhg)

fOTOé)\iér,’i= 1,2,(1//LdN= 1,2,"'.Ift1<t2<t3 <t4and0§)\¢§7r
i=1,--,4,then

E(ZyiyM)Zwis(N)) = 0 = E(JTici Zn,;(N)).
M oreover, there exists a constant B for which
IB{] <1 Zy.u(M)}| < B if h==t and t3 =1t
SBn™ i h=thFE AL

I\

foro =N, =mi=1,---,4and N =1,2, ...
Proor. The first assertion is obvious. The second follows from the fact that if
< tifor ¢ # 1, then B{]]: £rbuirns} = Blk) - Elbio, [Lom bubtisn,}) in each
of the multiple sums which compose its left and right-hand sides. The final as-
sertion involves a rather tedious consideration of cases the details of which will be

omitted.
LemmA 3.2, Assume (As); if A(N) = mAy — 0 and 0 S Ay < mas N — o,
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then
(i) (2/m) X _vzs w(vm™)* cos Ay = O(h(N)™)

as N — oo ; and of lim infy. h(N) = 1, then
(ii) lim supwo. (2/m)| > vt w(vm™)* cos hw| < ||W]|5°.
Proor. Routine Fourier analysis yields

m™ Y w(om™)? cos Ny

= [Z Isin (m — $)(y + M) Wa(y)/sin (3)(y + w)ldy
where Wy(y) = D 2. W« W(my + 2kmz), % denotes convolution in
Ly(— o, «), and the sum converges in L;( —, 7). Since for Ay < ,
Jon sna Isin (m = 3)(y + Na)/sin (3)(y + )| Wn(y) dy

< |sin PN [Z. Wa(y) dy < 2a/h(N),
and

Jowizay Isin (m — 3)(y + M) /sin 3(y + )| Waly) dy
= 2m f2|y| =m—tnwy Wa(y) dy = O(h(N)—1)>

the first assertion of the lemma follows. To establish the second, consider a subse-
quence {N;} for which the left side of (ii) is approached and h(N;) — h,
1=h = ®wasj— o.If h = «, then (ii) follows from (i). If » < «, then as
Jj— ©
(2/m)| 2_v= w(vm™)? cos vh,|

— |2 [T w(u)® cos (hu) du| < 2 [t w(w) du = |W||:"

COROLLARY 3.1. Let ox°(N) = Var (Zy1(N\)), 0 EN<m, N =1,2, --- ;then
ox’(N) is uniformly bounded and

o’(\) = [W]lS" as N — o

uniformly on [m™" log m, =].
CoroLLARY 3.2. Let rx(N1, N2) be the correlation coefficient of Zni1(N) and
ZN,].(Xg),O é )\i é 1l',1: = 1, 2,the'n

SUDmn gl 2 logm? [T¥ (A1, N)| = O([log m] ™),
1lim SUP ¥-»ew SUP—a,l zm-1 [Ta(Ar, A2)| < 1.
The corollaries follow directly from the preceding lemma. For example, if Ay is
chosen to maximize |ox*(N) — |W]|s| for m " log m < X\ £ m, then
oxn(Axy) = (2/m) 2vt wlom™)? + (2/m) 275 w(vm™)® cos (20hy).

When N — « the first sum clearly tends to |||, ; the second is O([log m]™") by
Lemma 3.2.
The random variables Zy1(N), - -+, Zy ¥(A),0 EN =7, N =1,2, --- have
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the desirable property of m-dependence, which we will now exploit. Let
k = ky = [m(logm)*] where [-] denotes the greatest integer function. We may

then write N = nk + r where0 < r < k. Fori=1,---,n,0 £\ < m, and
N = Ny, let e

(3.4a) Un,iN) = K (Zy,goesN) + -+ + Zy,am(N)),

(3.4b) Vai\) = m (ZyamaN) + -+ + Zx,a(N)),

VaoN) = Zyapn(N) + -+ + Zyx(N).
Then clearly
(35)  Zx(\) = (nk/N)X(Un(\) + (m/k)'Vx(N) 4+ N7V ,o(N)
where :
(36a) Ux(\) =022 Uns(), 0 =\N=m N 2N,
(36b) VyA) =n? L2 Vyeid), O=ZXN=wm N2 N,.

Moreover, for N sufficiently large Ux(X\) and Vx(\) are sums of independent,
identically distributed random variables. Finally, we note that by Lemma 3.1

(3.7) ElVs.M|'= B, E|Uy:\)[* < Bkm™.
This fact will be used repeatedly below. Let
UxiN) = Ux:i(N\): if |UnN\)| = N

=0: it |Uyi\)| > N
VN,i()\)I = VN,i()\): if |VN,i()\)l =< No'3
=0: it |Va.\)| > N°%

UrsN)" = [Un,iN) — E(Ux,N)))/Var (Un:N));
VW) = [VaiN)' — E(Vy:\)))/Var (V:(\));

and let Ux(\)’, VN(}\) Ux(N)”, Va(\)” ben™ times their respectlve sums. (For
example, U N(}\) is defined exactly as was Ux(\) with Ux,«(\)’ replacing Ux,«(\)

fori =1, ,n.) Then in view of Lemma 2.1 and our choice of k, Theorem 3.1
would follow from

(3.8a) maxo a1 [Vo(N)| = 0p(N"*(logm)™),

(3.8b) P(Vy(Aw.;)" # Va(\y,;), forsome j)— 0,

(3.8¢) max; [Va(Ax.;) — Va(Ans)"| < O(1) max; |[Va(hn,;)"| + o(1),

(3.8d) max; [Va(Aw,;)"| = 0p(logm),

asN—> o where\y,; = mj/[mlogm],j =0, - - -, [m log m]. (3.8a) follows easily
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from
E{max) [VyoM[} = 2(’”)_% oy E | Dkt Eierol,
B i bbe) SN —nk =1 < k.
(3.8b) follows from (3.7) since by Markov’s inequality
P(Vy'(Aw;) # Vu(Ay;) forsome j) < 23N "°E|Vy(An,)|* < BN
and (3.8¢) follows similarly from (3.7). Finally, since for e > 0
P(max; [Va(An)"| Z elogm) £ 2 P(IVa(Any)"| 2 2(2logm)?)

if N is sufficiently large, (3.8d) is an easy consequence of Lemma 3.3 part (i)
(below). In Lemma 3.3 we have used ®( - ) to denote the standardized, univariate
normal distribution function and ¢,( -, -) to denote the standardized, bivariate
normal density with parameter r.
LemMA 3.3. Assume (A1), (A4), and (As). If 0 < 2y — » and zy = o(logm)
as N — o, then as N — o
(i) P(|[VaN)"| = 2x) ~ 2(1 — ®(zw)) uniformly on [0, =), and

(i) P(£Ux(M)" = 2w, 2Ux(N)" = 2w)
~ [Z [ omounn (w1, :tyz) dyy dys

untformly on Sy = {(M,N):0 =N, S, i =1,2and [\ — No| = . More-
over, forp = 1,2, ---

(iii) P(xUx(\)" Z 2w, i=1,-++,p) ~[(1 — &(zx))]"
untformly on Sy, = {(M, -+, Xp): 0 = Ny =m0 = 1,---, p and

minge; N — Nj| = m ™~ (logm)*}.
(iv) P(£Ux(\)" Z2w,i=1,--,p)
~ (1 — ®(en))"" ZfZN f:v eryounn (£, £y2) dyrdye

uniformly on Sl'v,p = {(\, 5N ke — N = mH N — Ny = m T [log m]?,
i=3,--,pl
Proor. We will prove (ii) in the case that both the signs are +-; the other cases
are proved similarly. Since Uy(-) is continuous wp one, we may choose
AV = (MY, NY) to maximize
= |1 — P(Ux(N)" 2 2w, © = 1, 2)[J% [Ty ewonan(¥1, v2) dyr dyo] ™|

fora = A\, N\) e Sy. Let ry = (N, N\.V); then we may select a subsequence
{N,} for which Ry, approaches its limit superior and

pw; = Cov (Us,(M)", Un,(W™)") —
as j — ». Moreover, p < 1 by Corollary 3.2 since by (3.7)
(3.9) |Cov (Uxi(M), Uxi(N)) — Cov (Uxa(N)', Uva(N))| < N™°Blkm™
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for0 =M =me=12.
From Theorem 5.1 of [11] on the large deviations of sums of independent,
indentically distributed random vectors, we may infer that as j — o«

P( UNj(kiNi)” = 2n;, 7= 1; 2) ~ f:ofv,- I?Nj ‘PpN,'(yl ) Y2) dy1 dys .
Moreover, it follows from (5.5) of [11] and (our) (3.9) that
?Ni I?Nf ¢9N,'(y1 ) y2) ~ f.:m f;on ¢rN,-(y1 ) yz) dy1 dy2 N

as j — . Thus (ii) is established.
CoroOLLARY 3.3. P(|[Ux(\)"| = 2v) ~ 2(1 — &(2x)) as N — « uniformly on
[0, .
COROLLARY 3.4. There is a 6 > 0 for which
maxp,ag zmt P([Ux(N)"| 2 2,1 = 1,2)(1 = &(2x))" < Be "N

for N sufficiently large.
Proor. By Corollary 3.2 there is an 7 < 1 for which |[ry(\, N2)| = 7 for all
A = (M, N\) € Sy and N sufficiently large. Since by Lemma 2 of [1]

Jov [ov ermvounar (91, 92) dyr dys
(310)  ~ (2me) (L + v, MDY/IL = Irv(n, M)
cexp {—zn/(1 4+ | ra(M, M)}
< By exp (—izx — X1 — r)zx’),

the corollary follows. The asymptotic equality in (3.10) may also be deduced
from equation (5.5) of [11].
TaroreM 3.2. Under the hypotheses of Theorem 3.1

maxo<n<r (N/2m log m)? [2xgy(N)— 1]/|W|; — 1 n probabiilty as N — .
Proor. By Theorem 3.1, Lemma 3.2, and (3.9) we may write

(3.11)  (N/m)}(2mgs(\) — 1) = Ux(N) + ra(N)’

Un(N)"on(N)" + re(N)” + ra(N)

where max; {[ry(Ay.e)'| + [rv(Av,)"[} = 0p([logm]™) and ox(N\)” — [[W]s as
N —  unifermly on [m " log m, =]. Thus, by Lemma 2.1, it will suffice to show
that for arbitrary e > 0,

(3.12a) lim P (max; |[Ux(Ax.)" lox(Aw.;)" = (1 + €)[|[W][2(2log m)?) = 0,
(3.12b)  lim P (max; Ux(Ax,0)"on(Ani) < (1 — €)||W]s(2logm)?) = 0.

To establish (3.12a) let S be the set of integers j for which 1 = j £ p =
[ log m] and Ny,; = m " log m. Then if e = 2¢ > 0 is given, we find from Corol-
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laries 3.1 and 3.3 that for N sufficiently large
P(maxjes [Un(Aw.1)" lox(Aw.5)" Z (1 + €)|[W]l2(2 log m)?)
< 2iesP|Ux(M)"| 2 (1 + €)(2 log m)?h)
< dmlog m(1 — &((1 + €)(2log m)})) = o(1)
as N — o, and
P(maxjes [Un(Aw.i) "lox(Aws)” Z (1 + ¢)[|W]x(2 log m)*)
(3.13) < D s P|Ux(Ar3)"| 2 ¢(2 log m)?)
< 2(log m)*(1 — ®(¢(2 log m)h)) = o(1)

as N — o« where ¢’ > 0 is a lower bound for | W]’ /aN (\)". This establishes
(3.12a). (3.12b) may be established by essentially the same arguments that are
used in [2] to establish an analogous assertion. Full details are given in [10]
The final theorem of this section gives the limiting distribution of a restricted
maximum. Indeed, let
My = aN—l(m&X0§i§m (N/m)%|(21rgN()\;,,-) - 1)/||W”2| — bw)

for N = Ny, where ay, by, and \y; are given by (2.1) and (2.2). Then we
have
TuEOREM 3.3. Under the hypotheses of Theorem 3.1

limy.w P(My < 2) = exp (—exp(—2))

for —o < 2 < o,

Proor. By Theorem 3.1, Corollary 3.1, and (3.11), and (3.13), it will suffice to
prove the theorem with

My* = ay ' (maxiogmzizm |[Uv(M.5)"| — by)
replacing M y. For every integer [ = 1, we have by Bonferrai’s inequalities
(3.14) 2n (—1)"MTwy(z) £ P(My*(2) 2 @) S 255 (—1)"'Tw (x)
where
Tyo(2) = LwnP(Us\L)"| 2 axe + by, j = 1, -, p)

and Z( v denotes summation over all subsets of size p drawn from {A¥ (1o m1,
, Avm}. (3.14) has been used in [8] in a similar connection. Moreover, in
view of Lemma 3.3 (part.s (iii) and (iv)) and Corollary 3.3, it follows essentially
as in [8] that
Tyo—exp (—px)/p! as N —
for each fixed p, so that the theorem follows from the arbitrariness of .

4. Reduction to white noise. The proof of Theorems 2.1 and 2.2 will be com-
pleted by showing that under the appropriate hypotheses as N — =
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(4.1) maxp <« [f(\) — E(fx\)I/FN)| = o(fm/N log NTP),
(4.2) maxp < |[fx(N) — EGOIFO) — (2mgx(N) — 1)
= 0,([m/N log NT').

LemMa 4.1. Let W(-) satisfy (As); if either (i) (A;) and N log N = o(mx®)
as N — », or (ii) (Ay) and N log N = o(m’), as N — o, then (4.1) holds.
Proor. The left side (4.1) is dominated by
B maxp<x [fN) — m [ZoW(m(h — u))f(u) dul
+ B maxpem [Zo W(m(N — u))(f(w) — E(In(w)))du| = Bi + Ra.
If (A;) is satisfied, then clearly
Ri = max Bjj<r [ZulfON) — FON — um™)|W(u) du < Bm™ [Z, |u|W(u) du;
and if (As)) is satisfied we may expand (f(A\) — f(A — wm™)) in a Taylor Series
to obtain R, < Bm ™ [Zw’W (u) du from the symmetry of W(-). Since it is
well-known ([6]) that
maxp <« [f(\) — E(Ix(N))| = Blog N/N
if f(-) satisfies a uniform Lipschitz condition, the lemma follows.
TuEOREM 4.1. Assume (A;1)—(As). If either (i) N log N = o(my*) or (ii)
(As) and N log N = o(my") then (4.2) holds.
Proor. Since the left side of (4.2) is dominated by
R + Ry, = B max\ <r lme(m[)\ - u])
AIn(u) — E(In(u)) — f(u)(Jn(u) — E(Jn(u)))} dul
+ Bmax, m [ W(mh — uD)[f(N) — f(w)]Tx(w) — E(Jx(u))]dul
where Jy(-) is the periodogram of the {£:} process, it will suffice to show that
R; = 0,((m/N log N)¥), ¢ = 1, 2. Consider first Ry = maxp<- R1(\). Using
(1.1), (1.2), and (1.9), we may (after some manipulation) write
Rl()\) = (27"N)—1 Z Z:,s=—°° x5 drso‘)
where
drs(>\) = ZZﬁ;,v2=l - Z:T:’r+1 i:£s+1 W( (7)1 - vz)/m)e—i(“_”»
'(gvl—rgvz—s - Rf(vl — U =T + s)).

Let C, . x denote the set of lattice points in the two sums not common to both
sums, then

drs()\) = Z ZC,,S,N ’LU((U1 ol vz)/m)e_i(”’—”)x(S,,,_,E,,z_s - Rz(l& — Vg — T + S)).

Let v = v; — v and u = vy then

ax (N—1,N+r—s—1) — i\ -1
drs(x) = 11)1'.=min(—N+l,t-N+r+l—s) € w u)(vm )

.ZDr.s,N (&vrurbu—s — Re(v — r 4+ 8))
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where D, ,,, is the set of integers in the projection onto the v axis of that part of
the line o1 — v, = v which intersects C,, 5.
Now

E max, drs()\) = 22:?: Iw(vm“l)lEl ZDr,s.v Evurbue — Rg(l) +r — s)l’
and due to the independence of the £;,
EIZDr.s,v £v+u—r£u_s —_ RE(?) _|_ r — 8)|2

IIA

2N |rlor|s| > N

lIA

|| + |s|  otherwise
ifv # r — s.If v = r — s then a constant term appears involving Et;*. Therefore
E(log N/mN)! maxy 2 D7 @ drs(N)

< B((m log N)/N){D 5 X< laad(Jr] + [s])!
+ 2w Xinisn laa|NY
B(mlog N/NY > Y yrla, + N* D nisnan)

< B (mlog N)'N™® = o(1).
Thus Ry = O,([m/N log NI') as N — . An argument similar to the above can
be found in [3], p. 191.

Now consider B, = max)\ <~ R2(N). By the Schwartz inequality and (Aj)
we have

Ro(N)* < B [Zowm™ [ u(N — wm™) = E(Jx(N — um™))['W (u) du
= Bm " 2y smw” () e™ X0 gtiori<nicre Ta(or) T(:)
— E(Tx(01)Tx(12))

where 7T'y( - ) is the covariance estimate for the {£;} process. Since by Lemma 1 in
3], p. 186

(4.3)  E{D2u—vstimy<rizi2 Tn(v) Ta(v) — E(Tw(v))Tn(1))}> < B/N

we find E|R,> < B/mN* which is O((m/N log N)) under condition (i). Thus
(4.2) holds under condition (i). Now let (ii) be satisfied. Then

Rx(N) £ BIf m™ [ZaoulI v\ — um™) — E(Jx(N — um™))IW (u) du]
+ Bm [ TxN — um™) — E(J (N — um ™) W (u) du
= R’(\) + R(N).

1A

Now
RY(N) £ B Xociuiam @' (om™) (Tw(v) — E(Tn(v)))e™|
so that E(maxj < |R2’(N)]) < BN*. And by the Schwartz inequality
RN < B [Zo|Ix(N — um™) — E(Jy(A — um™)|WW(u) du
= Bm™* )y <mw” (Im)e™
'{Zvl—v2=l,|v,~|§1v,i=1,2 Tn(v1)Tx(v:) — E(Tx(v1)Tw(ve))}
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so that by (4.3) E(maxp <. Ry’ (N)[?) £ Bm™®N~* which is O(m/N log N)
under (ii). Thus Theorem 4.1 (and therefore Theorems 2.1 and 2.2) are es-
tablished.

The authors would like to thank the referee for his helpful comments.
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