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0. Summary. A special group structure common to many statistical problems
is presented. In the context of equivariant estimation, this leads to a charac-
terization of equivariant estimators (Section 3). Under further conditions,
measurable equivariant estimators are characterized (Section 4). Some examples
are presented in Section 5 and Section 6 contains a brief discussion of related
work in which the special group structure is useful.

1. Introduction. The purpose of this paper is to discugs and illustrate a group
structure common to many statistical problems. This is done in the context of
estimation when a natural requirement of equivariance (called invariance by
many writers) can be imposed. As a consequence, the structure leads to a specific
characterization of equivariant estimators (Sections 3 and 4). We begin with
some preliminaries.

X is a random variable taking its values in the measurable space (X, ®@). @ is
the model: a class of probability distributions for X (i.e., probability measures on
@) and #:® — O is a mapping of ® onto an arbitrary set ©. For P ¢ @, #(P) will
be referred to as the parameter associated with P.X is observed. It is then de-
sired to estimate the parameter associated with its distribution, the latter being
assumed a member of @, but otherwise unknown. I.e., one desires a mapping
©:X — O that has certain reasonable properties. Often, © is endowed with a
o-field ® and estimators are required to be measurable. G is a group of one-one
bimeasurable transformations of X onto itself that leaves @ invariant. That is, if
X has distribution P & ®, then for all g ¢ G, Pg™", the distribution of ¢X is also in
®. Thus ¢ acting on X induces a transformation § of ® onto itself. (P(4A) =
P(gT'A), for all A e@). It is easily verified that the collection G, of induced
transformations is also a group and the correspondence g—§ is a homomorphism
(see [14]). The following concepts are central to the discussion.

1. DEFINITION. A mapping ¢ of & onto a set Y is said to commute with G if
the map ¢g is a function of ¢. That is, if z, «’ & & and px = ¢z’, then pgz = ogz’
for all g £ G.

ReMmARK. If ¢ is one-one, it automatically commutes with G. A map that com-
mutes with G induces in a natural way a group of transformations on its range.
More specifically:

2. ProposITION. If ¢ mapping X onto Y commutes with G, then to g ¢ G cor-
responds a mapping g,:Y — Y so that (i) G, = {g,:g ¢ G} ts a group and g — g, s a
homomorphism, (ii) for all x ¢ &, g € G, gz = g ot.
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Proor. For g G, y %Y, let 9oy = ¢4, where y = gx. This definition is un-
ambiguous since y = o = or’ = ggr = @ga’. Statement (i) is easily verified
(see, e.g. [14], pp. 213-214) and (ii) holds by construction.

ReMARK. If G, is trivial ¢ is said to be G-invariant. More generally, we define
the concept of equivariance.

3. DeriNrTION. Suppose to G acting on % there corresponds a group G acting
on a set Y (g% & G* denotes the element corresponding to g ¢ G). A mapping
01X — Y is (@, @*)-equivariant if for all z £ X, g ¢ @, gz = ¢ p.

If ¢ is equivariant, the correspondence between G and G acting on range ¢ is
necessarily a homomorphism. The following easily proved statement connects the
two notions introduced above.

4. PROPOSITION. A mapping ¢ of X onto % is (@, G*)-equivariant < ¢ commutes
with G and G, = G*.

An equivariant estimation problem can arise if under the structure discussed
above, 3:® — © commutes with G. For then, letting G* denote the group ¢
induces on O, ¢ is (G, G*)-equivariant. Under these circumstances, it seems
reasonable to inquire about the possibility of finding estimators ¢ that are
(G, G*)-equivariant. The rationale, oft stated (see e.g., [2], p. 209) is that since
@ is G-invariant, we may arbitrarily transform X to gX without destroying the
model. Under such circumstances, using a given estimator ¢, we may estimate
3(GP) = g*9(P) by ¢(gX). It seems inconsistent to have (g*) p(9X) # o(X),
for then (¢*)0(gX) can be put forth as a competing estimator of ¢ The un-
desirability of this lies in the arbitrariness of g.

Hence we consider the possibility of obtaining (@, G*)-equivariant estimators
¢: € — 0. Without measurability requirements, a complete characterization of
such estimators is easily given. We discuss this in Section 2. We introduce a
special group structure in Section 3 and discuss the particularly simple form equi-
variant estimators then have. In Section 4, measurability requirements are con-
sidered. No considerations of optimality are presented here, but it is known that
minimax considerations sometimes lead to equivariant estimators [2], [5], [6], [8],
[11], [12], [13], [20]. On occasion, they are even admissible, but not always [3],
[4], [5], [10], [18]. The basic concepts used here relating to transformation groups
may be found in [14] and [16]. Throughout, if G, is a subgroup of G, G/G, denotes
the collection of left cosets of Gy .

2. Characterization of equivariant functions. We take as given the domain
(%, @) and range (©, G*) and seek to characterize the equivariant mappings
¢:X — 0. Note that the necessary homomorphic relation exists between G and
@, since they are both connected by homomorphisms with G. Choose z ¢ % and
let G, = {ge@:gx = z} be the isotropy subgroup of G at z. If ¢: X — O is
(G, G*)-equivariant, then necessarily, for all g £ G, oT = ogu = g*ex. That is,
oz must be a fixed point of (G,) the image of G, in G*: (@,)*ex = ga. Clearly
thls is only poss1b1e if (@)™ has a fixed point; i.e., if @, = {0:(G,)*8 = 6} is not
empty. If O, is not empty for some x & X, this is true of every point in Gz, the
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G-orbit containing z (@ = ¢*0,). That the O, be non-void is necessary and
sufficient for there to exist (G, G*)-equivariant mappings, as is shown by the
following:

1. TuEOREM. Given (X, @) and (O, G™) as above, there exist (G, G*)-equivariant
mappings ¢:€ — O & for every x £ X, O, 7s not empty.

RemaRK. In view of the above discussion, it is necessary and sufficient that the
condition in the theorem hold for one point in each G-orbit.

Proor. The necessity is outlined above. When for all z ¢ %, ©. is not empty,
equivariant mappings ¢ may be constructed orbit-by-orbit. Simply choose = & X
and a value gz £ ©, . Then at y = gz € Gz, let oy = g¥ox € O, . It is clear that this
yields all equivariant mappings.

The preceding proof shows that as G is transitive on an orbit, an equivariant
map is determined there by its value at one point. Thus all equivariant maps of &
may be obtained by piecing together the simpler equivariant maps on the oribits:
Let %, denote an orbit, z, £ X, , a reference point, G, , the isotropy subgroup of
G at . and let ©®, = {6:(G.)*0 = 6}. An equivariant map ¢,:%, — O is deter-
mined by @ota € Ou: 0afa = ¢ 0ua¥s and if ¢ is defined to be g, on X , ¢ is equi-
variant. Conversely, an equivariant ¢ is determined by {¢.}, its restrictions to the
orbits. The collection {z,} is called a cross-section; a set that intersects every
orbit once. Thus an equivariant map is determined by its values on (any) cross-
section. We shall see in the next section that in some cases, a very natural cross-
section is available. (See also [21]).

The above construction is not always satisfactory if there are uncountably
many orbits. For it is often desired to obtain measurable equivariant mappings
and it is not clear how to piece together uncountably many maps and have the
result be measurable. Of course if there are at most countably many orbits, then
¢ will be measurable & the ¢, are chosen to be measurable. We defer general
measurability considerations to Section 4.

3. A special group structure. We now discuss a special group structure for
which the characterization in Section 2 assumes a particularly interesting form.
This structure is common to many equivariant estimation problems. For another
reference to the same structure, embedded in a topological context, see [21],
Theorem 6.

Suppose there is a further group H of one-one bimeasurable transformations of
X onto itself such that

(i) Every element of G commutes with every element of H.
(i) fge G, he H,x e X and gz = hz, then gxr = z.
(iii) The group K = GH is transitive on .
Property (ii) is a strong requirement that G' and H be disjoint. It clearly implies
that G n H = {e}, where e is the identity map on X. Moreover, (i) and (ii) insure
that K = GH is the direct product of G and H. Under (iii), & is homogeneous re-
garding K. Thus all of the isotropy subgroups K, are isomorphic and X is itself
isomorphic to all of the factor sets K/K, . (That is, there is a one-one relation
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between X and any K/K, .) Below, we specify the natural isomorphism; the one
that induces on the factor set the natural action of K. This isomorphism is equi-
variant with respect to K acting on % and K/K, . In addition, (i) and (ii) insure
that K/K, is a direct product as well:

1. Proposrrion. Under conditions (i)—(iii), K/K. = G/Gz-H/H, , where (i)
and (ii) insure that multiplication of cosets is unambiguously defined.

Proor. By (i),if k = ghe K, ,then ge G, and h e H, . Thus K, = G.H, and
if ¥ = ¢g'h'eK, k'K, = ¢'G./'H, . This representation of K,-cosets is unam-
biguous, since ghK, = g'h'K,= g '¢'h W' ¢ K, = ¢G, = ¢'G, and hH, = L'H,.

We choose a reference point x, £ % and let Gy ete. denote the isotropy subgroups
there. Then the mapping 7 sending = ghxo to gGohH, is an isomorphism between
% and G/Gy-H/H, . This last space is just the direct product of the twofactor
spaces and we stress this by writing it as G/Gy X H/H, . The group K; induced by
i on the product space acts thus: if k = gh e K, ki(g'Go, k'Ho) = (9g'Go , hh' Hy).
We omit the subseript 7 when it is not likely to cause confusion. Composing ¢ with
projection onto G/G, produces a mapping, i¢, of % that is (maximally) H-in-
variant and (@, G.)-equivariant. (At x = ghxo , te(z) = gGo.) A dual statement
holds for H and, of course, 7 = i¢ X %z . (The ranges of the maximal invariants
¢ and ix are chosen for convenience to be the factor sets. Equivalent sets, such as
the orbits Gxy and Hzx, can and will be used when preferable.

In view of the isomorphism between X and G/Gy X H/H,, thereis an exact
correspondence between equivariant mappings (into @) of the two sets, related
by 7. We will work with the product space and interpret results obtained for the
latter in terms of . Since (G, G*)-equivariance is desired and g & G acting on the
product space leaves the H-coordinate fixed, the problem reduces to studying
(@, G*)-equivariant mappings of G/G, , on which @ acts transitively. Upon not-
ing that Gois the isotropy subgroup of G at Gy ¢ G/Gy , we obtain as a corollary to
Theorem 2.1:

2. CoroLLARY. These exist (G, G*)-equivariant mappings ¢:G/Go— © = 0y =
{0:(Go)* 0 = 6} is not empty. Moreover, ¢ is determined by its value at any point
of G/Go , Gosay:o(gGo) = g*o(Go),whereo(Go) & O .

Thus the (G, G*)-equivariant mappings of G/Gy X H/H, into © are obtained
by choosing for each hH,e H/H, a (G, G*)-equivariant mapping (-, hH,):
G/Gy — O and piecing them together. Letting ¢o(+) = ¢(Gy, +); eo: H/Hy — B,
and

(3.1) o(gGo , hHy) = g*oo( hH,).

Thus under conditions (i)—(iii), H/H, is a convenient cross-section for the
G-orbits of the product space. In & itself, this becomes Hzx, and the characteriza-
tion becomes: to every (G, G*)-equivariant mapping ¢:% — © there corresponds
a mapping ¢o: Hzo — &9 which uniquely determines ¢ and at x = ghxo ,

(3:2) ox = g*euhzy .
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4. Measurable equivariant mappings. We reintroduce into our considera-
tions the o-fields @ and ® for & and O respectively and seek to characterize the
equivariant mappings defined by (3.2) that are measurable. Under the conditions
given below, the requirement becomes simply that ¢, be measurable. It is here that
the product space representation becomes particularly useful.

Let G« = 7(@) denote the measurable structure for X transferred to the product
space. Let Gg (resp. Gx) be the o-field induced on G/Gy by 7 (resp. on H/H, by
w).

1. TaeorEM. Under the conditions

(a) G’X = Qg X Qy and

(b) the mapping of G/Gy X O into © defined by (gGo, 0) — g*0 is G X ®

measurable,
an equivariant mapping ¢, necessarily of the form (3.1), is (@, ®) measurable
& @ 18 (Qa , B) measuradle. )

Proor. The forward implication follows from (a) since ¢o( ) = (Go, -).
Conversely, choosing B ¢ ®:{(gGo, hHo) :90(gGo, hHy) € B} = {(gGy, hH,):
g¥eo(hHo) e B} = (e X o) H{(gGo, 0) € G/Gy X Oo:g*0 e B}, where e is the
identity map on G/G, . That the last set in braces belongs to @¢ X ® is precisely
condition (b); the conclusion follows since e X ¢ is @¢ X @z measurable.

In some applications, it happens that G, is trivial. Then Q¢ is a o-field for G
itself and condition (b) requires that the mapping (g, 8) — ¢*0 be @¢ X ® meas-
urable. Cf. [14], p. 225, Theorem 4.

We may interpret Theorem 1 in terms of X, thereby removing the necessity
for considering a measurable structure on G/G, . In condition (a), Gy is replaced
by @ and G¢ and Gz become induced o-fields for Gy and Hx, respectively. Con-
dition (b) is then that the mapping (g, , 8) — g*0 be @g X ® measurable. (Note
that this mapping is well-defined only if 6 ¢ @9 .) The theorem then states that
under conditions (a) and (b), all mappings of the form (3.2) having measurable
@0 are measurable and conversely.

5. Examples. Some examples illustrating the preceding ideas are presented.
Throughout, X is essentially R”, Euclidean n-space and X represents a vector of
independent and indentically distributed (IID) random variables. Where con-
venient, we identify the collection ® of power-product measures with the cor-
responding family of distributions on the real line. G is correspondingly abused
when its elements act coordinatewise in the same manner.

1. Let ® be the family of all continuous distributions on the real line having
unique medians. For P ¢ @, let $(P) = F» (%), where F» is the CDF associated
with P. ¢(P) is thus the median associated with P and ® = R. The group G of
real-valued one-one onto increasing functions on R (acting coordinatewise on R")
leaves @ invariant. It is easily checked that ¢ commutes with G and G™ is just G
acting on ® = R:i.e.,#(FP) = F;5 (%) = (Fpg ) (%) = g¢(P). Wemay then
require estimators of the median to be (G, G*)-equivariant.

» A group H satisfying conditions (i)—(iii) of Section 3 is the group of permuta-
tions on n letters, applied to the coordinates of X. This is easily checked; in order
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that K = GH be transitive we remove from R" the ®-null set of points with two or
more equal coordinates. Choosing z, = (1, 2,---, n), if £ = ghxy, then
(g(1), -+ ,g(n)) = (x)is the coordinates of x arranged in increasing order and &
rearranges the coordinates to give x. The coset gG, is thus identified with (z), the
common values of its elements on {1, - - - , n} while H has only trivial isotropy sub-
groups. We may thus choose ¢(z) = (z) (i.e., replacing the range G/G; by Gx,)
and 2z(x) = hy , where h,(x) = z. We may make explicit the representation (3.2)
upon delineating @,: @G, contains all transformations that fix {1, - - n} pointwise
but are otherwise arbitrary. It is clear that 6 is fixed by (Go)* only if 6 & {1, - - - , n}.
Thus @ == {1,---, n} and from (3.2), px = geohx,, where x = ghx, and
eohwo £ {1, -+ -, n}. Le., if pohxy = m, ox = g(m), the mth coordinate of (x).
Thus equivariant estimators of medians (or any other fractile) must be order
statistics. .

In this characterization, the choice of order statistic is allowed to depend on
hs ;1.e., on how z is rearranged to get (x). This presumably irrelevant flexibility
disappears under a further equivariance requirement: H also leaves @ invariant
(pointwise) and we may thus require ¢ to be (K, K*)-equivariant. (Note: since
H is trivial, K = G = K* = @*.) Then in addition, ¢ must satisfy pha = oz for
all & in H, hence ¢, must be constant. If ¢y = m, then the equivariant estimator is
the mth order statistic. A result of this nature was obtained by Loynes in [15].
It is essentially shown there that merely requiring (¢*) g X and ¢X to have the
same distribution requires ¢X to be almost surely an order statistic.

We note that all such estimators are measurable. This simply reflects the fact
that the selection of an order statistic (¢o) is measurable and that thereare a
finite number of orbits.

2. Let ® be a location and scale family generated by the continuous
CDF Flt]: ® = {F[(t — u)/o]: —0 < u < o,¢ > 0}. 9 maps P ¢ @ into the cor-
responding value of (u,o);hence ® C R®. Let G be the group of location and scale
transformations: ¢ = (a, b) sends  — a + bz (coordinatewise); —» < a < «,
b > 0. G is isomorphic to G and ¢, being one-one automatically commutes with G.
G™* is thus © acting on itself: (@, b)*(g, o) = (a + by, be). Upon eliminating the
@®-null set of points having all coordinates equal, the group H of n X n orthogonal
matrices that fix 1 = (1, .-+, 1) ¢ R" satisfies conditions (i)-(iii): (i) is easily
checked; to verify (ii), note that every h ¢ H preserves the lengths of projections
along and orthogonal to 1. In order that g ¢ G do likewise, we must have b = 1
and a = 0. To verify (iii), note that starting with an arbitrary «, its component
orthogonal to 1 may be modified in an arbitrary manner by a combination of a
rotation in H and a scale change;the resulting component along 1 may then be
changed arbitrarily by shifting,.

The isotropy subgroups of G are all trivial. We choose z, to be of unit length
and orthogonal to 1. If x = ghxo with ¢ = (a, b), then x = al + bhx, where ha, is
orthogonal to 1. Thus @ = Z is the length of the component of x along 1, hx, is
the direction of the complementary component and b = s(z) is its length
(£ = (2 z;)/mand s(z) = (2 (z; — &)*)%.) It is convenient here to choose the
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range of 25 to be Hx, . Thus at ¥ = ghay, t¢(x) = g = (&, s(x)) and ix(x) =
hry = ((21 — &) /s(x), -+, (2, — £)/s(x)). Since Gy is trivial, @, = ® < R’ and
(3.2) shows that equivariant estimators are of the form oz = (&, s(x)) *eo(ix(z)),
where ¢o assumes values in 6. Denoting its components by ¢, and ¢, , we see that
o(x) = [ + s(x)pu(ia(x)), s(x)es(ia(x))], where ¢, and ¢, are essentially
arbitrary mappings of the unit sphere in R"™" into R and (0, =) respectively.
Pitman’s equivariant estimators of location and scale are, with a bit of rearrang-
ing, seen to be of this form [17].

Introducing measurability requirements simply constrains ¢, and ¢, to be
measurable. This is easly seen directly, but it also follows upon verifying that
conditions (a) and (b) of Theorem 4.1 hold. We note that with the present choice
of ranges for 7¢ and %z, Q¢ is the Borel subsets of G and @x , those of the unit
sphere in R" ™. Also, as G, is trivial, condition (b) is fulfilled since the map send-
ing ((a, b), (u,0)) to (a + by, be) is jointly measurable. "

3. We continue example 2 by supposing that F is the unit normal CDF. Then
X is a vector of IID normal variables and H also leaves @ invariant (pointwise).
& commutes with K = G, K* = G* and we may require (K, G*)-equivariance.
The added requirement, that phx = ¢z for all A in H reduces ¢, and ¢, to con-
stants. In fact, we may augment K by including the transformation X — — X
which leaves @ invariant; then ¢, = 0. Thus px = (&, cs(x)), where ¢ = ¢, is a
positive constant. Hence one obtains estimators that are (natural) funetions of
the sufficient statistic, although no sufficiency considerations were explicitly intro-
duced. This becomes less surprising in the light of [1] where Basu shows that
certain sufficient statistics are maximal invariants.

We discuss now an example where a direct appeal to the construction of
Section 2 seems necessary.

4, Let ® be the family of all distributions on the real line. For P ¢ @, let
d(P) = Fp , the associated CDF. O is the set of CDF’s on R. The groups G and H
of example 1 leave ® invariant and as ¢ is one-one, it automatically commutes
with K = G:if k = gh, k* = ¢* sends F ¢ © into ¢*F = Fg™". Thus we may re-
quire an estimator of the CDF to be (K, G*)-equivariant. We cannot, as in
example 1, remove a ®-null set to make K transitive. Nor does there seem to be a
further H-group which would produce transitivity. As there are but a finite
number of K-orbits, we may use construction of Section 2 and not worry about
measurability. The different K-orbits correspond to the possible patterns of
repetitions of coordinates. Thus (1, 2,---, n), (1, 1, 2,.---, n — 1) and
(1,1,2,2,3, - -+ ,n — 2) are in different K-orbits. We may choose as a reference
point in each orbit a generic point such as (1,-++,2, -+, -+ ,7) = %, where the
multiplicities of the indices {1, 2, --- ,j} characterize the orbit. The nature of
0, follows from that of Gu:g & G, if gre = . ;ie., if g fixes {1, --- ,j}. If F £ O,
then for all ¢ in G,, Fg~' = F. This cannot happen if F increases on
R — {1, .-, j}; hence @, contains precisely those CDF’s that increase only on
{1, .-+, j}. Upon choosing F, ¢ @, for each «, one sees that at x = ghw,,
ot = Fog . Since gz, = (x), Fog ™" increases on the coordinates of (z). Thus an
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equivariant estimate of the CDF is one that increases only on the order statistics.
Note that the size of the jumps can (indeed, must) depend on the orbit of z, i.e.,
the number of different coordinates « has. This result is essentially obtained in
[14], pp. 246247 by ad hoc methods. Note that G may be considerably diminished
without altering the restricted nature of equivariant estimators of the CDF.

It is tempting to try to make K transitive in this example by defining @ to con-
tain only continuous distributions. Then, as in example 1, all but one K-orbit is
®-null. However, ® must then be properly taken to be the continuous CDF’s
(i.e., the range of ¢, only there can G* be defined) and @, would be empty. That
is, there are no equivariant estimates of continuous CDF’s that are themselves of
this nature.

This phenomenon is exhibited in another natural estimation situation in which
no equivariant estimator exists. *

5. Let @ be the set of all absolutely continuous distributions on B and let
& P) = dP/d\ = fr , where N denotes Lebesgue measure. Thus ® C L;(\). Let
@ be the group of all diffeomorphisms of B, the one-one monotone functions with
non-vanishing derivative. (G acts coordinatewise). ¢, being one-one, commutes
with Gandif g € G, ¢*f = (fg™*)|dg~"/d\|. As in examples 1 and 4, H may be taken
to be the permutations. We choose o = (1, - -+, n) and consider 0, . Gy is again
the subgroup fixing {1, - - - , n} pointwise and if every g* & (Go)™ fixes f ¢ ©, they
fix the corresponding CDF in that Fg~' = F. Again, this means that F can only
increase on {1, - - - , n} and hence is not absolutely continuous. Thus @,isempty
and equivariant estimation of the density is not possible. (One may, in a sense,
beg the issue by adopting a more general view of “density”, allowing Schwarz-
distributions as derivatives of discrete CDF’s. This does not seem compelling
from a statistical point of view.)

6. Discussion. The group structure presented in Section 3 has desirable conse-
quences in various statistical applications. We mention first the problem of con-
structing a function on & that is maximally G-invariant. In principle, such always
exist, since X can always be mapped into the set of G-orbits or any cross-section
of them. Under conditions (i)—-(iii), a natural cross-section is an H-orbit, HZ, say.
Thus 4xz(2) (taking its range to be Hz,) provides a specific maximal G-invariant.
See, for example, the representation of 4z in example 2 above. As ia(x) = hHz, at

= ghxo, ia(h'z) = h'is(x); ie., a (maximal) G-invariant commutes with H
and vice versa. This property is used inherently in the considerations of Section 3.

This last fact sometimes underlies a phenomenon observed in situations in-
volving a sufficiency reduction where invariance considerations are present: often
the structure (X, @, Gx) can be reduced to (T(X), ®r, Gr), where T(X) is
sufficient for ®, ®r is the induced set of distributions for T and Gr is a group of
transformations induced on T. See examples 1 and 3 above, as well as [14],
Chapter 6, (examples 5 and 6, e.g.). Given the sufficiency of 7(X), the part of
the reduction that is not automatic is the passage from Gx to Gr . When possible,
it often is explained by the fact that there are sugbroups G and H satisfying
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(i)—(iii) with Gx € G and T(X) = 4¢(X), the maximal H-invariant. T then
commutes with ¢ and therefore with any subgroup. There is an extensive discus-
sion based on this phenomenon in [9]. In [7], Fraser considers a special group struc-
ture which provides a natural fiducial distribution for the parameter #; more
specifically, a natural pivotal quantity. Fraser requires that ®, ® and G be iso-
morphic (i.e., that G be isomorphic to @ and transitive on @ and that & be one-
one). His fiducial argument generally involves conditioning on an ancillary
statistic which, Fraser points out, in this situation may be thought of as the
G-orbit of X. Under the structure of Section 3, one requires explicitly the con-
ditional distribution of 7¢(X) given ¢x(X). Stone [19] also requires a representa-
tion of the form X = (a(X), b(X)), where the range of a is isomorphic to G and
b(X) is ancillary. 7¢ and 4z provide such a pair of functions when the isotropy
subgroups of G are trivial.

Finally, a word about randomized estimators. One may adopt the view that a
randomized estimator merely depends on augmented data (X, U), where U is an
extraneous random variable distributed independently of X on a sample space at.
We may extend @ to & X U by defining g(x, u) = (gz, u) for all g, x and u. The
equivariance requirement is then o(gz, u) = ¢g*¢(2, u); hence for fixed U, ¢ 18
equivariant in  and the preceding applies. One may then piece together equi-
variant ¢( -, u), one for each u in AU. Of course it is desirable that the resulting
¢(-, -) be jointly measurable. Under conditions (a) and (b) of Section 4, this
may be accomplished by choosing ¢o: Hzy X U — O, to be jointly measurable and
defining o(x, u) = g*eo(hHzo , u) at & = ghx, . Thus one first randomizes over
O, (with ¢o) and then proceeds equivariantly.

7. Acknowledgment. The author is indebted to R. A. Wijsman for many
constructive comments on this work. In particular, he suggested the measur-
ability characterizations presented in Sections 2 and 4.
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