ON A STOPPING RULE AND THE CENTRAL LIMIT THEOREM'
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Let S, = D paar, n = 1, where 2, & = 1, are independent, orthonormal
(i.0.) random variables, i.e., Bz, = 0, Ex;* = 1,k = 1. For ¢ > 0, let ¢, be the
smallest pos1t1ve integer n such that |S,| > cné( = o if no such n exists). Our
principal aim is to prove the following: .

TueoreMm 1. If : Sy

(1) limp.o P(Sa/nt < 2) = &(2),

where ®(x) s the standard normal distribution, then ('=“
(2) El)< o if 0=5c<1;

®3) E(t)=» if cz1

Special cases of this theorem have appeared previously. Blackwell and Freed-
man [1] have treated the “coin-tossing’” case in which x;, k¥ = 1, are symmetric
and assume the values =1. Chow, Robbins, and Teicher [3] have proved that
(2) holds for i.o. sequences that are uniformly bounded and that (3) holds for
arbitrary i.0. sequences. When the variables are identically distributed and
E Iacll3 < «, one may conclude that (2) holds, at least for ¢ sufficiently small, rby
using estlmates of tail probabilities, due to Breiman [2].

Our computations rely on the well-known Lindeberg-Feller theorem:

Condition (1) is equivalent to

(4) limn—no 'n_l ZI:;I f(xk3>en) ka dP = O

for every € > 0. '

Since Chow et al. have shown that (3) holds for every sequence of i.0. variables,
it suffices to show that E(,) < « for0 < ¢ < 1. We now fix cand so may dlspense
with it as a subscript in the sequel. In what follows, we deal with the sequence of
stopping rules r = 7(n) = min (¢, n), n = 1. Then by a variant of Wald’s
lemma ES,” = Er,n = 1, so that

Et = lim. Er = lim,,.,.,o ES’ <

(See Section 2 of [3].) The following lemma says, in effect, that instead of con-
sidering the expectation of the square of the entire random sum, it is suﬂiclent
for our purposes to consider only Ez,’, the expectation of the square of the final

term.
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LEmMA. If z , k = 1, is a sequence of i.0. variables, then
0< (1—¢)Er £ Ex’ < En, n=1,2 .

Proor. By the variant of Wald’s lemma mentioned above and the definition
of t, we have forn = 1,2, -+

Er = ES; = ES:_; + 2E(8,_1z.) + Ex]
< FPEr + 2¢(Er)}(Ex?)! + Ex’.

Putting 7* = Ex.’/Er, wehave 0 £ (¢ — 1) + 2¢r + r*. An examination of this
expression as a quadratic form in r leads to the inequality (1 — ¢)* < Ez.’/Er,
n = 1, which together with Bz, < E(> i a’) = Er,n = 1, gives the desired
conclusion.

ProoF oF THE THEOREM. Suppose that lim,.. Er = Ef = «; we contradict
the conclusion of the lemma by showing that this implies Ex,” = o( Er).

Let I{-} denote the indicator function of the set in braces.

For any ¢ > 0,

(5) Ezx! = [I{x] < erja’dP + [I{z" > er}x,’dP

< eBr + E (ia iz’ > ekjn’).
By taking conditional expectations under the summation, we find that

(6) E(Xializd > kizd) = E(Qia [ Had > ekjxi’ dP).
To estimate (6), note that for all n sufficiently large, the Lindeberg condition
(4) implies
Zk=1 f I .’Dk > ek iL‘k dP Z][,en] 1 —I— Zl:'ﬂ[gn]+lf1{xk2 > €2n}xk2 dP §2en.
Therefore,
(7) E(Q e [ I{z > e}z’ dP) < Const + 2¢Er.
Since ¢ > 0 is arbitrary, we may combine (5), (6), and (7) to obtain E(z}) £
3eEr + Const = o(Er) as Er — . This, however, contradicts the conclusion
of the lemma so that the theorem is proved.

ReMmARKs. Slight modifications of the above proof show that if t(m) = first
n = msuch that |S,| > en},m = 1,2, - -+, then (4) implies that Et.(m) < o,
allm = 1, ¢ < 1, and it is easy to construct counter examples to show that some
condition such as (4) is necessary in order to obtain this conclusion. We do not
know if (4) is itself necessary in the sense that if for some ¢ > 0 (4) does not
hold then for somem = 1,2, -+ ,0 < ¢ < 1, Et.(m) =

Combining the above methods of proof with a truncation argument, we can
obtain similar results in the case of infinite variances. Suppose that 2y, 2, - -
are independent random variables. For each a > 0,n = 1,2, - - -, define

(8) Yn = yn(a) = xnI{lxnl < an%}’ T, = " 4+ -+ Yn
= (ET,)}, B, = Var (T,).
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THEOREM 2. Let 0 < ¢ < o and suppose that for some a > 2¢

(9) limysn "B, = .
If either

(10) lim sup (8./Ba) < 1
or

(11) lim inf (8a/Ba) > 1,
then Et. < .

Condition (10) is satisfied if the z; are symmetrically distributed; condition
(11) is satisfied if, for example, the z; are identically distributed with distribution
function F where F(—z) = o(1 — F(z)), 2 — «, and 1 — F(z) ~ z “L(z),
1 < a < 2, L slowly varying. )

Theorems 1 and 2 may be combined to show that if the variables z; are iden-
tically distributed and symmetrie, then Ei¢, is finite or infinite according as
¢ < lorec = 1if and only if Ex,” = 1.
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