EFFICIENT ESTIMATION OF A SHIFT PARAMETER FROM
GROUPED DATA!

By P. K. BHATTACHARYA
Unaversity of Arizona

1. Summary. Universally efficient procedures for testing and estimation prob-
lems have been briefly explored by Héjek [3] and Stein [7]. In this paper we con-
sider two populations having frequency functions f(z) and f(x — 6) where the
common form f and the shift parameter 6 are unknown. A method of estimating
6 when one sample is reduced to a frequency distribution over a given set of class-
intervals is suggested by the likelihood principle and the asymptotic efficiency
of this estimator relative to the appropriate maximum likelihood estimator
based on the complete data is found to be the ratio of the Fisher-information
in a grouped observation to the Fisher-information in an ungrouped observa-
tion.

2. Introduction. X, , - - - , X,, are independent random variables with common
distribution function ¥ and Y;, - --, Y, are independent random variables with
common distribution function G. There exists a 8 such that G(z) = F(x — 6)
for all z, the function F and the location parameter § being unknown. Consider
another probability model for X;, -+, X,,, Y1, ---, Y, which is equivalent to
the one mentioned above; there exists a distribution function H and constants
6, and 6, such that F(x) = H(x — 61), G(x) = H(z — 6;). The parameter 0 in
the former model is the same as 6, — 6, in the latter.

Suppose the distribution function H in the second model is everywhere dif-
ferentiable and let A(x) = H'(x). If h were known, the maximum likelihood
estimate Ty of 6, — 6, based on Xy, -+, X, Y1, -+, Vo is Tan — Tin
where T3, and T5, are such that

Sralog (X — Tiw) = Yoralogh(X; —t) forallt
and
Sralogh(Y; — Taw) = Dotalogh(Y; —t) for all .

It is known (Wald [8]) that under very general conditions T, converges in
probability to 8, — 6, . It is also known (Cramér [2]) that under certain
regularity conditions on h, the likelihood equations

(1) 2 raldlogh(Xi— 6:)/06:) =0 and > 71[9logh(Y; — 62)/86:] = 0

have sequences of roots {7} a{ld {T2.} respectively which have the property
that both m*( Ty, — 61) and n}( T, — 6,) are asymptotically normal with mean
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0 and variance 1/ as m and n tend to infinity where I is the Fisher-information
for the problem, viz.

(2) I= [Z (K (@)} /hx) do = [2a{f(2))"/f(x) do

where f(z) = W(z — 6,) = F'(z).Let m +n = N, m/N = Ay and suppose m
and n tend to infinity in such a manner that My tends to some N in the open interval
(0, 1). Then N*{(Ts, — Tim) — (6. — 6;)} is asymptotically normal with mean
0 and variance 1/A(1 — N)I.

The maximum likelihood estimate Tmin = T — Tim of 8 = 6, — 6; can also
be visualized in a different way. Let g(z) = h(z — ) = G'(z). Now

Srilog h(Xi — Thim) = Do log (X — Ton 4 Trmin)
= Z:'n=l log gn(Xi I me)

where g,(z|t) = h(z — T + t) can be considered an estimate of g(z + t) =
h(x — 6, + t) which is the density function of the random variables Y; — ¢,
-+, Y, — t. Thus in the computation of the maximum likelihood estimate of
6, the role of Y-sample is to estimate the function g,( |¢) in the above manner
for different values of ¢ and role of the X-sample is to find out that value of ¢
for which Y7 log gn(X ;| t) is & maximum. This way of looking at the maximum
likelihood estimate 7', suggests that even when the form of the density func-
tion A is unknown it may be possible to estimate the density function of the
random variables Y; — ¢, -+, Y, — ¢ by some other function §,( |¢) which
makes no use of the form of A and can be constructed only from ¥, — ¢, -- -,
Y. — t. With such an estimate ¢,( |¢) we can then proceed formally as in the
method of maximum likelihood by choosing that value of ¢ as the estimate of 6
at which D1 log §.(X:|t) is & maximum.

We shall now proceed with an approximation to the procedure outlined above.

In what follows, we shall avoid unnecessary complications by writing m = N\
andn = N(1 — \) instead of m = NAyand n = N(1 — Ay) and carry out the
analysis as if N\ is an integer. It can be easily verified that since Ay >N asN — o,
this simplification will not affect our analysis in any way. ,

Choose k real numbersa; < -+- < azandlet x1, - - - , xx+1 denote the indicato
functions of the intervals C; = (—, &), C; = (@ja, ajl,5 = 2, -+, k, and
Cry1 = (ag, «) respectively. Let
viv = 2iixi(Xa), piv = vie/NN, () = 23507 x(Yi = O)/N(1 = N),

j=1 -, k+ 1.

For any given ¢, when we have reduced the data X1, -+, Xm, Y1, -+,

Yvan to xi(X1), -+, xi(Xm), xi( Y1 — 8), -+, xi(Ywvan — 8),5 =1, -+,

k + 1, the analog of the frequency function g( |¢) of ¥; — ¢ becomes the mul-
tinomial probability distribution

q:(t)=P[Y%_t£CJ]: ]=1;’k+17
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and the log likelihood of x;(X;), 7 = 1, , NN =1, , k 4+ 1, assuming
that they have come from a multlnomlal populatlon Wlth probablhtles qi(1),
] = Lk 41, is D lvy log g;(t). In this log likelihood, if each ¢;(¢) is

replaced by its estimate g;v(%), we get
Zy(t) = 2 5avin log gin(t) = NN 255 piv log gin(2)

as the discrete analog of ¥ 12 log In(X:|t).

This approximation forces us to make another approximation. Since Zy(t)
is a step-function for any given sample, the usual technique for deriving the
asymptotic distribution of the value of ¢ at which Zy is maximized, fails. For
this reason, we choose and fix & > 0 and a real number ¢ and fix our attention to
the set ©® = {t, + r8/N:r = 0, £1, £2, ---} in search of an estimate of 6.

We now define a maximum empirical likelihood estimate of 6 as a point
ty 4+ 78/N* such that

(3) Zn(to + r8/N*) > max {Zx(to + (r — 1)8/N*), Zu(to + (r + 1)5/NH)}.

In what follows, we shall refer to (3) as the empirical likelihood inequality. As
there may be more than one solution for the likelihood equations (1), the
empirical likelihood inequality may be satisfied for more than one point in ©.
It will be shown however (Theorem 1) that for arbitrary K, the probability
that the empirical likelihood 1nequahty is satisfied for more than one point in @
lying in the interval (§ — K/N* 6 + K /N*), tends to zero as N — ». We also
note that for any given sample size N there may be sample points for which the
empirical likelihood inequality has no solution. In such a case let us make the
convention of treating ¢, as “a solution of the empirical likelihood inequality.”
With this convention we can now talk about a sequence of solutions of the
empirical likelihood inequality. It will be shown (Theorem 2) that the empirical
likelihood inequality has a sequence of solutions {7y} for which

limy.e Po{Ty < to + 78/N*] = limy.. PN} Ty — 6) £ ¢ + s0]
= &({c + (s + DI = ML)
where & is the standard normal distribution funection,
L = Ii(ay, -+, &) = {f(a)}*/F(ar)
(4) + 25 {f(ay) — fla; )Y/ {F(a;) — Fla;)}
+ {fa)}*/{1 — Flaw)},
¢ = Nt — 0) + 78, s = r — 79, 7o being such that t, + (ro — 1)8/N? <
9 < to + ro8/N* (obviously 0 £ ¢ < 8). In other words, the empirical likelihood

inequality has a sequence of solutions {7x} which has the property that
N*( Tx — 6) is asymptotically roughly normal with mean 0 and variance

/N1 = NI,,.
A comparison of I}, given by (4) with I given by (2) shows that though I, < I,

Al
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In—>Task— ©,00— —»,0,— «anda; — a;,— 0,7 =2, ---, k, under
mild conditions (see Section 4 (ii)). Thus for all f, the maximum empirical
likelihood estimate of 6 behaves asymptotically more and more like the maximum
likelihood estimate of 8 corresponding to f as the class-intervals are made finer
and finer.

3. Asymptotic properties of solutions of the empirical likelihood inequality.
We shall assume throughout our analysis that F has positive probabilities over

each of the intervals Cy, - -, Cyy and is continuously twice differentiable at
A, -, Qp+1 .
The following notation will be used:
aj = PX1eCy] = [2ox:(x) dF (x), . j=1,-,k+1,
Bi(t) = Po[Yyr —teCl = [Zaxi(@w — t + 0)dF(z), j =1, -+, k + 1,
o = Flam), of = F'(aj) - F/(af—l), J=2,-,k al/c+1 = —Fl(ak),
o =F'(a), 0 = F"(a;) — F'(aj1), j =2,k aipn=—F(a).

The (k + 1) -dimensional column vectors whose jth coordinates are x;( X,),
xi(Ys — 1), piv, ¢in(t), 05, Bi(1), &, o, log (Bs(t)/a;) — 1, a;/B;(t) and 1
will be denoted by £:, 7:(¢), px, an(t), &, B(t), v1, 72, #(t), ¥(¢) and e respectively.
The corresponding row vectors will be denoted by the same symbols with primes.
Obviously, py = 2% £/N\ and qN(t) = > X0V 0(0)/N(1 = N).

For every integer s, (¢ + s8)/N* will be denoted by on(s).

4, B(t),Gyand Gaare (X + 1) X (k + 1) diagonal matrices whose jth diagonal
elements are o; , 8;(t), o; and a;” respectively. For integers 8; < 8, D, is the
k X k diagonal matrix whose jth diagonal element is F(a; + 6x(s:))
— F(a; + 6n(s1)). Ey and E, are kb X k diagonal matrices whose jth diagonal
elements are F'(a;) and F” (a;) respectively. J,s, , fsm , Hy, Hy, Hy and H, are
(k + 1) X (k 4+ 1) matrices defined as follows.

0] 0 \1 - 0 10\1
N () o R o r D 1S
1 k k 1
G a-()
H1= El k’ Hl El 0 k’
1 k k1
(ofo); S CIUAY
H2= 0 E2 k’ H2= Eg 0 k-
1 k E 1

= It can be easily verified that the following relations hold among the vectors and
matrices defined above.



1774 P. K. BHATTACHARYA

Lemma 1

(a) €a =1, 4e = a, (A — aa’)e = 0 (null vector).
(b) evi = €v2 = 0.

(¢) Gie = v1,Gee = 75

(d) WA A — ad YAy = WA = L.

(e) (Hy — Hy)e = (Hy, — H,)e = 0 (null vector).
() €(H — Hi) = v

Let
Uin(s) = ¢(8 + 8x(9)) ¢, i=1,---,Nn
Vin(s) = ¥(6 + 6x(8)) ni(8 + 8x(s)), i=1,---,N({1 =2\,

Un(s) = 2321 Uan(s)/N = No(0 + 0x(3)) px ,
Va(s) = 2057 Van(9)/(1 = N) = Ny(6 + dn(s)) aw(8 + 8x(5)),
Win(s) = {Un(s) — Un(s — 1)} + {Va(s) — Va(s — 1)},
and Wan(s) = {Un(s) —Unx(s + 1)} + {Va(s) — Va(s 4+ 1)}.
We shall first compute
limysw PaWin(s) £ 0, Won(s) = 0] and limy.e Po[Win(s) > 0, Wax(s) > 0]

for a fixed integer s and will then show that the inequalities Wix(s) > 0 and
Wan(s) > 0 together are asymptotically equivalent to the empirical likelihood
inequality.

Let 9i,2=1,---, N(1 —\), be a 3(k + 1)-dimensional random variable

defined as
7:(0 + (s — 1))
e = | 7:(0 4 dx(s)) ’
7:(0 + ox(s + 1))
and B, a 3(k + 1)-dimensional vector defined as
B(6 + (s — 1))
Bs = | B(6 + dx(s)) .
(6 4 dn(s + 1))

In what follows, all probabilities (P), expectations (E), variances (Var) and
covariances (Cov) are computed when 6 obtains.

LEMMA 2. &, -+, &m,Ms, **° , Tva—n),s are independent random variables with

(a) E(‘El) = a, Cov (‘E%) =4 - aa,)i = ]-y e )m’

(b) E(nis) = :33’

Es—l,s—l 23—1,3 2ua—l,za*i-l
Cov(ﬂis) = 2s,s—l 2'ss Zs,s+l ) 1= 1, e ,N(l - )\),

zs‘l-l,s—l Zs-l—l .8 zs+l,s+1
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where  Zg., = B(0 + 0x(s1)) — B(0 + 6x(51))B(0 + dn(s1)) - i s =8
= B(6 + dx(s1)) — B(8 + ou(s1))
B0 4 0n(82)) — Jopsy + Turey i 81 < 8
for large N, and Zopey = Ztyey. )

Proor. (a) and the expectation part of (b) can be easily verified and we shall
omit this part of the proof.

Elx;j(Y: — 6 — on(s))xi"(Ys — 0 — u(s))]
=PlY:—0—0y(s)eC;,Y; — 06 — dx(s) e Cy]
= Bi(0 + on(s)) if j =7,
=0 if 7= 4.
Hence 2, = B(6 + dx(s)) — B(0 + 6x(s))B(6 + dx(s))".
Let 1 < s
Elxi(Yi — 0 — 0n(81)) xi(Yi — 0 — 8x(s2))]
=PlY;—0—ox(s51)eC;, Y, — 0 — dn(s2) € Cj]

= P[Y; — 0 — dx(s1) € Cj] for j=1
= P[Y; — 6 — ox(s1) € Cj] — Plaj_1 + 8 + 6x(s1)
<Y:iZ ai1+ 04 6n(s:)] for 7=2,---,k+1,
= Bi(6 + dn(s1)) for j=1
= Bi(0 + on(s1)) — {F(aj1 + n(s2))
— F(aj—1 + on(s1))} for j=2,---,k+1.
Now suppose N is so large that
(5) min; ;... x (@5 — @1) > (82 — 1)8/N? = x(s:) — dw(s1).
Forj # §,

Elxi(Yi — 0 — dn(s1)) - x5(Yi — 0 — dn(s2))]
=P(Y:—0—08x(s1) eC;,Y;— 0 — 8x(s2) € Cy]
=0 for j #j—1
=Plo;+ 0+ on(s1) < Yi< a;+ 0+ 6x(s2)] for 77 =5—1
because (5) implies that

a;—1 + 0 + ox(se) < a; + 6 + dn(s1), j=2 -,k
Thus,

Gov [xi(Yi — 0 — dw(s1)), xi( Y — 0 — n(s2))]
= Bi(0 + ow(s1)) — Bi(6 + on(s1))Bi(0 + dn(s2)) for j =1
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= Bi(6 + on(s1)) — Bi(0 + n(s1))Bi(6 + dn(s2))
— {F(aj1 + 0w(82)) — Faj1 + dn(s1))} for y=2,.--,k + 1

These can be recognized as the dia_gonal elements of
(6)  B(0 4 dn(s1)) — B(0 + x(51))B(0 + 5(82))" — Josop + ooy
as soonas we note that the first diagonal element of J,,, and all the diagonal
elements of J,,,, are zeros while forj = 2, --- , k + 1, the jth diagonal element
of Jys, 18 F(aj—1 + 0x(s2)) — F(aj1 + dx(s1)).

Again, forj =2, --- |k + 1,
Cov [xi(Yi — 0 — dw(s1)), xi(Ys — 0 — dn(s2))]

= —Bi(0 + 8x(51))Bia(0 + on(s2)) + {F(a; + ox(s2)) — F(a; + dn(s1))}.

These can be recognized as the immediate sub-diagonal elements of the matrix
given in (6) as soon as we note that all the off-diagonal elements of B(¢) and
Jos, are zeros while the immediate sub-diagonal elements of J,,, are

F(a; + ov(s2)) — F(a; + 0x(s81)),5 = 1,---, k.
Finally, for all other (j, 7)
Cov [xi(Yi — 0 — dn(s1)), xi'(Yi — 6 — dn(s2))]
= —Bi(0 + dx(51))Bi(0 + dn(s2)),

which can be recognized as the (7, ;' )th elements of the matrix given in (6) other
than those on the diagonal or immediately below the diagonal because all such
elements of B(t), J,,s, and J,,,, are zeros. This completes the proof.

The asymptotic behavior of Wix(s) and Wan(s) depends on the values of ¢
and ¢ at 4+ ox(7),r = s — 1, s and s + 1 and the expectations and covariances
of the random vectors £; and 5, given in Lemma 2. For this reason, we shall need
the asymptotic expansions of the values of 8, B, p and ¢ at 6 + on(7),r = s — 1, s
and s 4+ 1 and of J,,,, and J,,s, for s < s, taking values s — 1, sand s + 1 in
powers of N a8 N — . These asymptotic expansions are given in the following

lemma.
LemmaA 3. For any fived s, as N — o,

(8) B(6 + dn(s)) = &+ ou(s)11 + Jow'(s)72 + o(N ),

(b) B(8 + 8x(s)) = A + dx(5)G1 + 38x°(5)Gs + o(N ),

(¢) ¢(8+ dx(s)) = —e+ du(s)A v1 4 30x'(s) (A 7y — A7°Grn) + o(N )
(d) ¥(8 4 dn(s)) = € — du(s)A"'y1 — 38x"(5) (A7"v2 — 247 °Gimy) + o(N ),
(&) Jopy = (82 — 81)0N *Hy + (85 — s1)8{c + 3(s1 + )N 'Hy + o(N 1)

for s1 < sy,
(£) Ty = (82 — 8)0N T H, + (82 — 81)8{c + 3(s1 + )} N 'Hy + o(N )

for 1 < so.
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Proor. B;(0 + ox(s)) = B;(0) + dx(s)B;'(0) —|— 16y (s)BJ (8;), where 6; hes
between 6 and 6 + 6x(s). Since 8;(6) = o, 8; "0) = o, /31”(01) = F'(a ),
Bi (6;) = F”(a;,) - F”(a.’l—l) J=2, » k, Bk+1(0k+l) —F’ (ak ) Where aJ
lies between a; and a; + 8x(s), it fqllows from the continuity of F” at ay , O
that as N — « (i.e., as dx(s) —0),

) B;i(0 + 8n(s)) = a; + dw(s)ay’ + 3ox"(s)e;” + o(N ).
(a), (b), (¢), and (d) follows from (7). Again,
F(aj + dv(s)) — F(a; + dx(s1))
= {8n(s2) — ow(s1)} F'(a;) + %0x"(s2)F" (a;') — 305" () F" (a;")

where a; lies between a; and a; + 8x(s;) and a;” lies between a; and a; + 8x(s1).
It now follows from the continuity of F” at a;, - - - , az that as N — oo,

F(a; + 8x(se)) — Fla; + dx(s1)
(8) = {ow(s2) — dn(sD}F'(a;) + 3{6x(se) — &n" (s)}F"(a;) + o(N )
= (85 — s)dN*F'(a;) + (82 — s)8{c + %(s1 + &)8}N'F"(a;) + o(N 7).

(e) and (f) follows from ( 8).

Win(s) is obtained from sums of independent random variables Ugx(s)
—Uin(s—1),2=1,--+ N\, Vin(s) = Vix(s—1),7=1,--- ,N(1 —\),and
Wan(s) is obtained from sums of independent random variables Ugx(s)
—Un(s+1),e=1,--- ,N\, Vin(s) = Vix(s +1),2=1,--+ /N(1 —N).
Since we are now going to study the asymptotic properties of Wix(s) and
Win(s) + Wan(s), we shall need some moments of the random variables men-
tioned above.

LeMMA 4. For fized s, as N — o«

(a) min(s) = ElUw(s) — Uw(s + 1)] = 8{c + (s + $)8}I./N + o(N ),
pin(s) = E[Vm(s) — Vin(s + 1)] = 0;
(b) o?n(s) = Var [Uin(s) — Ui(s + 1)] = & [i/N + o(N )
ain(s) = Var [Vin(s) — Vin(s + 1)] = #L/N + o(N");
(¢) 7n(s) = Cov[Ui(s) — Uw(s — 1), Uin(s) — Uin(s + 1)]
—&8'I;/N + o(N ),
Cov [Vin(s) — Vin(s — 1), Vin(s) — Vin(s + 1)]
—8Ii/N + o(N);
(d) pin(s) = B|Ui(s) — Un(s + 1) — pa(s)]* S K/N,
| pin(s) = B|Vin(s) — Van(s + D[' = K'(s)/N¥;
‘thereK = 28%(y/A7 ) and K'(s) = 2(Js| + 1)6*(vi’A7*v1) .

Tin(s)
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Proor. (a)
pan(s) = {&(0 4 8x(5)) — &(0 + dn(s + 1))} e,
and
win(s) = W(0 + 8w(s))'B(0 + dx(s))
— 90+ dx(s +1))B(0 + ow(s + 1)) =0

since for all t, $(¢)'8(t) = D s a; = 1. To complete the proof of this part, we
expand ¢(0 + dx(s)) and ¢(0 + dx(s + 1)) as in Lemma 3 and simplify by
using Lemma 1.

(b) and (e).
oin(s) = {$(8 + 8x(s)) — (6 + dw(s + 1))}(4 — aa)
{0 + on(s)) — &(0 + on(s + 1))}
and
Tav(s) = {6(0 + dn(s)) — (6 + dx(s — 1))} (4 — ad)
(0 + dn(s)) — &(8 + du(s + 1))},

and each of these is brought to its desired form by an application of Lemma 3
followed by simplification with the use of Lemma 1. To prove the other parts, we

write
ain(s) = Y(0 + 6x(8)) Zt(8 + Sn(s)) + ¥(8 + du(s + 1))’
Zepe¥(8 + 3x(s + 1) — 20(8 4 3x(8)) S0, (8 + (s + 1))
Tin(8) = W(0 4 3x(8)) Zaab(0 + 5(5)) — Y(0 + 8n(5)) Z,429/(6 + w(s + 1))
— (0 + dx(s — 1)) Zea, (0 + 8x(s)) + ¥(6 + 8x(s — 1))
Zea,s¥(0 + dx(s + 1)).

Substituting the expressions for the Z-matrices given in Lemma 2, using the ex-
pansions of Lemma 3 and simplifying by repeated use of Lemma 1, we get

¢(0 + 6N(81)),28132¢<0 + 8N<s2)) = 6N(81)8N(32)I’0 + O(N—l)'
oi%(s) and 7in(s) are now easily brought to their desired forms.
(d) pin(s) £ E[|[Uin(s) — Uin(s + 1)| + |uan(s)[I.

Now Uin(s) — Uin(s + 1) = {¢(0 + 6x(s)) — ¢(8 + dx(s + 1)}'&:, and since
¢ is a (k 4+ 1)-dimensional random vector whose one coordinate is 1 and the

other k coordinates are zeros,

|Uin(s) — Uin(s + 1)]
£ [{9(6 + dw(s)) — @0 + sn(s + 1))} {90 + dw(s) — #(0 + ox(s + 1)}’
= 3(v'A7/N) 4+ o(N7H)
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with probability 1. The desired inequality for pin(s) now follows from the fact
that uiv(s) = O(N 1). Again, n,(t) is bounded for all ¢, we have from Lemma 3,

Vin(s) — Vin(s + 1) = &{ni0 + dn(s)) — 140 + dx(s + 1))}
(9) + ox(s 4+ 1)/ A7:(0 + ox(s + 1))
— bx(s)y/ A0 + 8x(s)) + o(N7H).

For each t, the vector n:(¢) has 1 for one coordinate and 0 for the other coordi-
nates. Hence ¢'7:(¢) = 1 for all ¢. Thus the first term on the right-hand side of (9)
is 0. One can also verify that for each ¢,

(10) Iy A7(t)] £ (v’ A7n)?

with probability 1. From (9) and (10) and because 0 =< ¢ < §, the desired in-
equality for p,'-fv(s) follows.
The results of this lemma will now be used to study the convergence of Wix(s)

in law and the convergence of Win(s) + Wax(s) in probability.
Lemma 5. For fized s, Win(s) is asymptotically normally distributed with mean

—6{c + (s — %)0}1i and variance 8’ L/N(1 —N).
ProoF. Wix(s) is the sum of independent random variables

N YUi(s) — Uw(s — 1)}, =1, oo, N,
and (1 =N {Vi(s) — Vin(s = 1)}, i=1,---,N(1L —N).

From Lemma 4, the sum of the expectations of these random variables is

(11) pn(s) = —ofc + (s — 3)8} e + o(1),
the sum of the variances of these random variables is
(12) ox(s) = &L/N1 —\) + o(1),

and the sum of the third absolute moments of these random variables is
p'(s) < NIK/N + K'(s — 1)/(1 = N)’].

To show that the central limit theorem applies to Win(s), we shall now verify
Liapounoff’s condition (see Cramér [2]). This verification is immediate as soon

as we note that
onl(8)/ox’(s) < 2N H[(1 — NK + NK'(s — DI/SLINL = N)!
for sufficiently large N. Moreover, it follows from (11) and (12) that
B((w — un(s))/on(s)) = (w4 d{c + (s — )8}L) /8- (T/NL = N))') + o(1)

as N — =, and that completes the proof.
s Lemma 6. For fized s, Win(s) + Wan(s) converges in probability to 8'I; as
N — «,

Proor. We have from Lemma 4,
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EWin(s) + Wan(s)] = —é{c + (s — )8} + 8{c + (s + 3)3}Lx + o(1)
8T, + o(1),
Var [Win(s)] = 8 L/AN1 — \) + o(1),

Var [Wax(s)] = 81/A(L = A) + o(1),

I

Il

and

Cov [Win(s), Wan(s)) = —8"L,/N1 — N) + o(1),

as N — . It now follows from the Tchebychev-inequality that
Win(s) + Wan(s) — E[Win(s) + Wan(s)]

converges in probability to 0 as N — . But E[Wyx(s) + Wan(s)] converges to
8'I, as N — o, and that completes the proof.

Lemmas 5 and 6 suggest that for the purpose of computing the limiting prob-
abilities for the events {Wix(s) > a1, Wan(s) > as} and {Wi(s) £ a1,
Wan(s) = as}, we may replace Won(s) by 8'T, — Wix(s) and then obtain the
above limiting probabilities from the asymptotic distribution of Wix(s). The
following lemma tells us that this procedure is in order.

Lemma 7. {X,} and {Y,} are sequences of random variables such that the dis-
tribution function of X, converges to a distribution function F at all points of con-
tinuity of F and X, + Y, converges in probability to a constant p. If a + b < p
and if a and p — b are points of continuity of F, then

limp,o P[X, £ 0, Y, =0 =0
and
limp.e P[X, > a, Y, > b = F(up — b) — F(a).
Proor. Choose arbitrary ¢ > 0. Since
limype P Xn + Yo — 4l > € =0,
it follows that
limn.o P[X, £ a, Yo S b] S limpsu PIXn £ 0, X, 2 p—b — €.

The right-hand side of the above inequality becomes 0 if we choose e < u — a — b.
To prove the second part we notice that

limp.w Pla < Xn < — b — ¢ £ limy,oe P[Xn > a, Yu > 1)
< limp.oPla < X, < u—b+ ¢

for arbitrary choice of ¢ > 0 and as e — 0, both the extremes of the above in-
equality tend to F(u — b) — F(a).

From Lemmas 5, 6, and 7 we now conclude,

LemMA 8. For fixed s and for ay + ax < 621k,

limy. o P[Win(s) < a1, Wen(s) < a] = 0
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and
limy.o P[Win(s) > a1, Wen(s) > as
= o[ —.a + d{c + (s — $)OLI/8-(L/NL — N)H)
— &l + dfc + (s — B)LI/S- (/ML — N)H).
We shall now find the stochastic orders of
)‘—I{ZN(O + ow(s)) — Zx(0 + dn(s — 1))} — Win(s)

and
N Zn(0 + dx(s)) — Zn(0 4 dw(s + 1))} — Wan(s)

as N — oo . For definitions of stochastic order relations o, and O, and for general
theorems concerning the algebra of o, and O, , the reader is referred to Mann
and Wald [5] and Pratt [6].

Lemma 9.

N HZy(0+ 6x(s)) — Zn(0 + dx(s — 1))} = Win(s) + 05(1)
and
N HZy(0 4 dx(s)) — Zn(0 4 dx(s 4+ 1))} = Wan(s) + 05(1),

as N — o,
Proor.

N YZn(0 + 0n(8)) — Zn(0 + dx(s — 1))}
= N X5 pavilog gin(8 + 8x(s)) — log pin}
— N X pinflog qin(8 + dx(s — 1)) — log piw}.
Since the second partial derivatives of the function
Flur, oo i, 01, oo, vepr) = Dgei us(log v; — log u;)

are continuous at (oq, * -+, axy1, Bi(t), <+ -, Bewa(t)) and since N':‘(p,-N — o)
= 0,(1), N*(gin(t) — Bi(t)) = 05(1),j =1, -+, k + 1, we have the following
stochastic Taylor expansion of Nf(pw, -+, Petn, @w(t), -+, QG,n(t))
about (al’ tty Ol ﬁl(t)’ ttty Bk+1(t)):

N Y i pin(log gin(t) — log pin)
= No()'pw + No(0)'aw(t) — 3HN'(py — VAT (N'(px — @)}
— HN¥(gn(t) — B()}YAB(t)*{Ni(gn(t) — B(1))}
+ Ni(py — a)}'B(){Ni(gn(t) — B(1))} + o0x(1).
Thus,
"NHZu(0 + Sw(s)) — Zn(6 + du(s — 1))}
= Win(s) — 3Bun(s) + Ran(s) + 05(1),
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where
Run(s) = {N*(qu(0 + dx(s)) — B(0 + 6x(5)))}AB(0 + 3x(s)) ™"
AN (gn(0 + 8w(s)) — B(8 + bx(s)))}
— (N} (qw(0 + 8x(s — 1)) — B(8 + dx(s — 1))}’
“AB(0 + dx(s — 1)) {N*(gn(0 + dn(s — 1)) — B(6 + dx(s — 1)))}
and
Ron(s) = {N*(py — a)}'B(6 + ox(s)) " {N*(qw(8 + 6x(s)) — B(6 + dx(s)))}
— {N(py — @)}'B(6 + dx(s — 1))
AN gw(8 + dn(s — 1)) — B0 + bu(s — 1))}.
We now note from Lemma 3 that for any fixed s,
B(6 + ox(s))” = A7 + o(1) and AB(6 + 8x(s))” = A" 4+ o(1).

We also note from Lemmas 2 and 3 that for any fixed s, the covariance matrix of
Nan(0 + 8n(5)) — qw(8 + 8w(s — 1))}, ie,, Zoe — Zoos — Zotis + Soctions
is o(1). Thus,

Rin(s) = {N¥(gn(6 + 8n(s)) — B(8 + oxn(s)))}'4™
AN (gw(0 + dx(s)) — B0 + bx(s)))}
— {N¥(gw(8 + du(s — 1)) — B(6 + ox(s — 1))}’
AN (gu(0 + ow(s — 1)) — B(6 + dx(s — 1))}
+ 0,(1)-0(1)-0,(1)
= (N} (gn(8 + dx(s)) — B(O + 6x(5))) + N'an(6 + ou(s — 1))
—B(0 + dn(s — D)YAT{N (gu(0 + 8x(s)) — B(8 + 5x(s)))
— N¥(gn(0 + dx(s — 1)) — B(6 + dx(s — 1)))} + 0p(1)
= 0,(1)-0(1)-0,(1) + 0,(1) = o0,(1),
and
Run(s) = {N¥(py — a)}’4™
AN (qn(0 + dx(s)) — B(6 + 6x(5))) — N*(gw(0 + x(s — 1))
— B(0 + 8w(s — 1))} + 0,(1)-0(1)-0,(1)
= 0,(1)-0(1)-05(1) + 05(1) = 0,(1).

This completes the proof of the first part of the lemma. The proof of the other
part follows exactly in the same way.
. 'We shall now prove the main theorems.
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Tueorem 1. For arbitrary K, the probability that the empirical likelihood
inequality has more than one solution in the interval (0 — K/N' 6 + K/N Y
tends to zero as N — oo,

Proor. There exists a finite number of points of © in the interval (6 — K/N?,
9 4+ K/N%). In order that there exist two points &, 4 718/N* and t, + 7:8/N tat
whieh inequality (3) is satisfied, there must exist some r between 7, ann r;

for which
Zn(to + r8/N¥) £ Zn(to + (r — 1)8/N*)

and Z(to + 18/N*) = Zn(to + (r 4 1)8/NY),

i.e., there exists an integer s between — (K 4+ 1)& and K such that
Zn(0 4 on(s)) — Zn(0 + ow(s — 1)) £0

and Zn(6 + 0n(s)) — Zn(6 + dx(s + 1)) = 0.

Let Riv(s) = N7{Zn(0 4 on(s)) — Zn(6 + dx(s — 1)} — Wix(s) and
Riv(s) = N"HZy(0 + 8x(s)) — Zn(8 + dn(s + 1))} — Wan(s). Then

P[Zx(6 + dx(s)) — Zx(6 + dx(s — 1)) £ 0,
Zn(0 4 8n(8)) — Zn(8 + on(s + 1)) = 0]

= P[W(s) + Rix(s) = 0, Wan(s) + Rin(s) < 0]

< P[Wun(s) < &, Wan(s) < e + PRin(s) < —a] + PRiv(s) < —e]
for arbitrary e > 0 and e, > 0. Since

limyow P|Riv(s)| > @] = limy.o P[|R3v(s)| > e] = 0
by Lemma 9,
limy.o P[Zy(6 + 6n(s)) — Zx(6 + ox(s — 1)) =0,
Zx(0 4 8x(s)) — Zn(0 + x(s + 1)) < 0]
< limyaw P[Win(s) £ &, Wan(s) < el

Choosing ¢ and e, such that ¢, + e < 8, , the right-hand side of the above in-
equality is found to be zero by the first part of Lemma 8. Since this holds for
each s between —(K + 1)& and K39, the desired result follows.

TuroreM 2. The empirical likelihood inequality has a sequence of solutions
{Tw} for which ‘

limyaw PIN(Ty — 8) < ¢ + s8] = ®({c + (s + N1 — MI)H.

Proor. For each sample of size N, we define a solution T'x of the empirical

likelihood inequality as follows:
If (3) has no solution, then Ty = t = 8 + dx(—70) by convention.
If (3) has at least one solution, then

Ty = 6 + 85(0) if (3) is satisfied at 8 4+ 65(0) and for positive integers s,
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Ty = 0 + on(s) if (3) is satisfied at 6 + x(s) but not satisfied at any of the
points 6§ + 6x(s’),s = —s, -+-, s — 1,

Ty = 0 4+ 8x(—s) if (3) is satisfied at 6 + dx(—s) but not satisfied at any of
the points 0 + ox(s'), s = —s + 1, ---, s — 1.

We shall prove the theorem for the sequence { Ty} defined above.

Let Ax(s) be the set of all samples of size N for which inequality (3) is satisfied
at 6 4+ 6x(s) and By(s) the set of all samples of size N for which Ty = 6 + 6x(s).
Then

PINX(Ty — 6) < ¢ + s8] = P[U,<, Bx(1)],

and we want to prove that this probability tends to ®{lc + (s + %)8}-
(M1 — MI)?) in the limit as N — o,

We first note the following facts about {Ax(s)} and {Bx(s)}:

(a) For any given s; # sy, limy., P[Ax(s1) n Ax(s:)] =

(b) For any given s,

limy.. P[An(s)] = ®({c + (s + 1AL — NI)H
— ®({c + (s — DG — M.

() limyaew PIU _wcocw Ax(8)] = 1 or liMyoep PlN_w<ocw Ax(s)'] = 0 where
Ax(s)" denotes the complement of Ay(s) in the sample space of size N.

(d) For any s; # s», By(s1) and By(s,) are disjoint.

(e) For each N, U_.c.<. Bx(s) is the entire sample space of size N.

(a) is merely a restatement of Theorem 1 while (d) and (e) follow from the
fact that Ty is well-defined over the entire sample space of size N and the only
values that Tx can take are 8 4 dx(s), s integer. To prove (b), we note that for
any given s, by the arguments used in proving Theorem 1, limy., P[Ax(s)]
lies between limy.,o P[Win(s) > e, Won(s) > €] and limy.., P[Win(s) > —e,
Wan(s) > —e] for arbitrary ¢, > 0 and ez > 0. Choosing ¢; and e such that
e + & < &8I, applying the second part of Lemma 8 and allowing ¢ and e
to tend to zero, both of these tend to the expression in the right-hand side of
(b). To prove (¢), for arbitrary ¢ > 0 choose s; and s, such that

®(fc + (s — P — N I)h) < ¢/2

and B({c+ (s + HFNA — ML) > 1 — ¢/2.
Then
1iMysc0 PLU —rcocoo An(8)] 2 limyowo P[U,, <020 An(s)]

= Dt limyaw PlAn(s)]

= &({c + (2 + $HNA — MY — &({c + (a1 — AL — ML)
>1—¢€ ‘
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by (a) and (b). Since the above holds for arbitrary ¢ > 0, (¢) follows.
We shall now express the sets By(s) in terms of the sets Ax(s).
By(0) = Ax(0) if 1o # 0
= An(0) U [N_wpercew Ax(r)] if 7o = 0.
Fors =1,2, .-,
By(8) = An(8) 0 {N_scrgoa An(r)'} if s = —1o
= [An(s) n {n_scrgo AN(T),}] U [Nowcr<e AN(T)’] if s = —r,
and
By(—s) = Ay(—s) n {n_3+1§,§s_1AN(r)'} if s # 7o
= [Ax(—8) N {N_gp1r<e An(r) U [Newcrcw Ax(r)] if s = 7.

It now follows from (a) and (e¢) that

(f) For any given 8, limy., P[By(s)] = limy.. P[Ax(s)].
We now conclude from (b) and (f) that

(g) For any given s,

limy-o PBy(s)] = ®({c + (s + 1AL — M)
— ®({e 4+ (s = HHNL = NI)H).
By (d) we have for any given s,
PIN Ty — 0) < ¢ + 8] = PlU_wcr<e Bu(r)] = 2. P[Bu(r)].

For arbitrary ¢ > 0, let us choose s; and s, again as we did for proving (e).
We consider € so small that s; < s < s;. Then

iy 2 smo PBa(7)] Z limyo 3 5msy PIBu(r)]
= @({c + (s + DI = M) — @({c + (s — HFA(L — NI
> &({c + (s + HHINL — NI} — e
by (g). Again,
liMyow 2 eew P[By(r)]
= limyosw Dr2w P[By(r)] — 212 limy .o P[By(7)]
= limyaw P[U_wcr <oy Bu(r)] — ®({c + (82 + 1N — ML)
+ @({c + (s + $) N1 — NI
= 1—2({c+ (8 + DINL = MIH) + 2({e + (s + DL — NI
< @(fc+ (s + HHAA = NI + e

Since € > 01is arbitrary in the above two inequalities, the theorem is proved.
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4. Miscellaneous remarks.

(i) Choice of t,. Any consistent estimate of § with asymptotic variance of
the order of N7, e.g., the median of X; — Yo, 4 =1, -+ ,m,¢ =1, -+, n,
or median of X’s — median of Y’s (which is easier to compute) will be a reason-
able choice for £ . Such a choice of #, has the advantage that in case of more than
one solution of the empirical likelihood inequality, the one lying close to
can be picked out as the estimate with the property proved in Theorem 2.

(ii) Convergence of Iy to I. Suppose f(z) — 0 as * — =+, log f(x) is con-
tinuously differentiable everywhere and the Fisher-information I given by (2)
exists. Then I(a1, - - -, ax) converges to I ask — o, a; — — o, a; — a;1 — 0,

j=2,+++,k and @, — . To prove this, let
f,(a:) =f(x)/ai) KESC,',
=0 elsewhere, * j=1,---,k + 1,

and let E; and Var; denote respectively the expectation and the variance with
respect to the probability density function f;. Then

Elf (X)/f(X)] = af/a; and E{f (X)/F(X)V] = o [o; {f (2)}/f() de,
j=1,---,k 4+ 1, since f(z) — 0 as  — . Hence
I —Iar, -+, ) = 25 [o {f @) /f(2) do — 255 0"/

= > % o Var; [f'(X) /f(X)]
anBl{f (X) /f(X)V] + ewnaBaal(f(X) /(X))
+ D52y Var; [f/(X)/f(X)]

= [auown F (@)Y/f(z) dz + 2% a; Var, [f (X)/f(X)].
Choose and fix ¢ > 0. Since I exists, we can find ¢ < b such that

J2alf @V /f(2) do + [5{F (2)}/f(z) de < %e.

Since f'(z)/f(x) is continuous everywhere, it is uniformly continuous on [a, b].
Hence, we can find 8§ > 0 such that

(13) If (@) /f(2) — f' (@) /f(2)| < (3e)}

whenever ; , 2, € [a, b] and |v, — 25| < 6. Nowletk > 1 + (b — a)/s, ;. = q,
a=bandaj=a+ (F—1)b—0a)/(k—1),j=2,---,k — 1. For such

a, -, a,
fclUck+l {fl(x)}2/f(x) dr < %6’
and since P[M; £ Y £ M,] = 1 implies Var (Y) < (M — M,)? (13) implies

Var; [f'(X)/f(X)] < 3¢,j = 2, ---, k. Hence
I—TIa, o) <}et3edina e

To complete the proof we note that the preceding arguments imply that if

I —1Iay, -+ ,a) <eandifa’ < - < a, aresuch that {ar, -+, &} isa

subset of {a), -+, an’} then I — In(ay, -+ ,an’) < e

IA
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(iii) Chotce of class-intervals. It should be our aim to choose the class-intervals
in such a manner that I;/T is sufficiently close to 1 irrespective of the form of f.
In the next paragraph we shall give a general method of constructing consistent
estimates I, of I; for a given choice of class-intervals. As a rough and ready
method for choosing class-intervals we make them finer and finer till the relative
increase in estimated I is sufficiently small. However, in order to make our
estimate of  robust in the sense of high asymptotic efficiency for all f, we need
a consistent estimate I of I. Then we can make the class-intervals sufficiently
fine so that I,/ attains a desired value. Bhattacharya [1] has given a method of
obtaining consistent estimates of I under certain conditions which assumes a
knowledge about the rate at which the tails of f approach 0.

(iv) Consistent estimation of I, . If f(a;) and F(a;),j = 1, - - - , k, are replaced
by any consistent estimators of these quantities in the expression of I given in
(4), we will get a consistent estimator of I} .

(v) Large sample tests for hypotheses about 8. Suppose we want to test the null
hypothesis Hy : 6 = 6, against alternatives on both sides. We know (Theorems
1 and 2) that under H,, for arbitrary K, with probability tending to 1 as N — oo,
there is a unique solution Ty of the empirical likelihood inequality in the interval
(8o — K/N*, 6, + K/N*) and that N*(Ty — 6,) is asymptotically roughly normal
with mean 0 and variance 1/A(1 — \)I;. Using a consistent estimate I, of I
as indicated in the above paragraph, we now define the statistic

= (NAM1 = NI Ty — 60)

which is asymptotically roughly standard normal under H,. Thus when 6§ > 0
is chosen sufficiently small, 75 can be used as a test criterion for testing H, and
the critical region |ry] = & '(1 — %) will have an approximate level of sig-
nificance o when N is large. It can be easily seen that for any f, the asymptotic
efficiency of this test relative to the corresponding maximum likelihood test (in
the sense of Pitman) is I;/I. The test criterion 75 can also be used for testing
the null hypothesis Hy: 0 < 6, (or 8 = 6,) against alternatives Hy : 6 > 6, (or

0 < 6).
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