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OPTIMAL STOPPING IN A MARKOV PROCESS!
By Howarp M. TAYLOR

Cornell University

1. Introduction and summary. Let X = (X, , F:, P®):20 be a Markov process
where (X; ;¢ = 0) is the trajectory or sample path, F, is the definitive s-algebra
of events generated by (X, ;0 < s =< t), and P” is the probability distribution on
sample paths corresponding to an initial state z. The state space is taken as the
semi-compact (E, C) where E is a locally compact separable metric space with
family of open sets C. A non-negative extended real valued random variable T'
such that for each ¢ = 0, {T < ¢} ¢ F, is called a Markov time or stopping time.
This paper studies the problem of choosing a stopping time 7' which, for a fixed
A = 0, maximizes one of the following criteria:

(1) Oz(z) = E¢"g(Xr);

(2) Ar(z) = B¢ Mg(Xr) — [1€ c(X,) ds], where E°T < o ; or

(3) @r(z) = E7lg(Xr) — [Te(X,) dsl/ET, where 0 < E°T <
where g and ¢ are non-negative continuous functions defined on the state space
of the process.

Dynkin [9] studied criterion (1) where A = 0 under the general assumption that
X is a standard process with a possibly random lifetime and under very weak
continuity assumptions concerning the return function g. He showed that cri-
terion (2) can often be transformed into criterion (1), and thus his approach is
applicable in this case as well.

This paper studies optimal stopping in a Markov process having a Feller
transition function, a special case in Dynkin’s development. We further specialize
to exponentially distributed lifetimes which causes the appearance of a discount
factor ¢ ™, with the natural interpretation that a dollar transaction ¢ time units
hence has a present value of ¢ . Criterion (3) often has the meaning of a long-
run time average return and a means of transforming this criterion into criterion
(2) is given. Finally, some techniques for implementing Dynkin’s approach in a
variety of commonly occurring situations are given along with examples of their
use.

2. Notation and basic assumptions. Throughout we assume that X is a Hunt
process. In particular we assume that X is strong Markov with trajectories which
are right continuous and have left limits and that X is quasi-left continuous, e.g.,
for any sequence of stopping times (T (n);n = 1,2,.--, ®), if T(n) T
T(®) < o asn — » then Xrm) — X almost surely P for every z.
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1334 HOWARD M. TAYLOR

Let B be the o-algebra of topological Borel sets in (E, C). Where not otherwise
stated, a function will mean an extended real valued function defined on E and
and universally measurable; that is, measurable with respect to the completion
of every finite measure on B. With or without affixex, f, g, and % will denote func-
tions. Let C(E) be the class of bounded continuous functions.

Forz ¢ E and T e Blet Py(z, T) = P*(X,eT), and let Pi(z, T) = ¢ “Py(x,
T') for A = 0. For any flet Pif(z) = fEf(y)PZ‘(x, dy) and similarly define Pf(x),
provided, of course, these integrals exist.

In this paper we consider only transition functions P; having the property
that for every fe C(E) and t = 0, P,fe C(E). This property defines a Feller
transition function [10], and is used in this paper to ensure that the excessive
majorant to a continuous function is lower semi-continuous.

Let E” be the expectation operator corresponding to, P°. The phrase “almost
surely,” abbreviated a.s., will be understood to mean almost surely with respect
to P° for every .

With or without affixes, S and T denote Markov times. For any non-negative
f, the convention Ef(Xr7) = [r<of(Xr) dP* is adopted. We call T* optimal ot «
if B¢ ™ g(Xm) = supr B¢ g(X ). If T* isoptimal at z for every z ¢ E, we
call T* optimal.

For any (nearly) Borel set A C E, T(A) = inf {{: ¢ = 0 and X, e A} is a
Markov time, called the entry time of A. (It is understood that whenever the set
in braces is empty, then T(4) = o.) Similarly, T(A-+) = inf {f: ¢ > 0 and
X e A} is a Markov time, called the hitting téime of A (with again T(4+) = «
when the set in braces is empty). The exit t¢me of a Borel set A is defined as the
entry time of E\A.

3. Excessive functions and excessive majorants. A non-negative function A
is said to be \-excessive (with respect to P;) if P < hforallt = 0and lim, 5o
Ph(z) = h(z) for all x. We omit the \ and say h is excessive when A = 0. From
Hunt [15] we have the important property:

For any \-excessive h and Markov times T and S, T = S and h(z)
(38.1) < « imply E°¢"h(Xr) < E°¢h(Xs). In particular, for § = 0,
h(z) = E°¢h(Xr) for all z.

Theorem 12.4 of Dynkin [10] yields the following condition, useful for verifying
that a continuous function is excessive:

If & is non-negative and continuous and E%¢"h(Xr) < h(z) when-
(3.2) ever T is the exit time from U where U is an arbitrary open set with
compact closure, then h is \-excessive.

Let g be a non-negative function. A function f is called a A-excessive magjorant
of g if (a) fis N-excessive, (b) f = ¢, and (¢) if h is A-excessive and h = ¢ then
h, = f. In [9], Dynkin has shown that for every non-negative g which is nearly
Borel measurable and intrinsically continuous from below there exists a A-



OPTIMAL STOPPING IN A MARKOV PROCESS 1335

excessive majorant f. Property (¢) above implies the uniqueness of f. If g is
bounded, then f is bounded, sinceif ¢ = sup. g(z) then ¢ = g, ¢ is A-excessive and
by (¢) ¢ = f. Under our assumptions that g is continuous and that P, is a Feller
transition function, the \-excessive majorant f may be found by a simple itera-
tion which often supplies additional information. The construction was first used
by McKean [17] for a Brownian motion process and the proof in the general case
was given by Grigelionis and Shiryaev in [14]. The construction is given here in

TarorEM 1. (Grigelionis and Shiryaev). Suppose g is non-negative and con-
tinuous and P, is a Feller transition function. Let hy = g and define h, = supzo
Phu forn =1,2,---.Then hy = hny andlim, h, is the \-excessive magjorant
to g and is lower semi-continuous.

Proor. (See [14] ).

4. Maximizing 0,(z) = E%¢ "g(Xr). In this section ¢ is a non-negative
continuous function defined on E and f is the A-excessive majorant to g, which
exists and is lower semi-continuous by Theorem 1. We let T = {z: f(z) < g(=)
+ ¢} for e = 0 and let T'(e) be the hitting time for I'c. By the continuity of ¢
and the semicontinuity of f each T is closed and T | Toase | O.

Lemma 1. T(e) T T(0) as € | 0 almost surely.

Proor. As € | 0, clearly T'(¢) increases, and hence has a limit, denoted by T'.
Clearly T < T(0).If T = o, then T(0) = o, and T = T(0). Thus we need
only consider sample paths for which 7 < o, where, since the process is quasi-
left continuous, X r¢ — Xr . From the right continuity of the process and that
each T is closed, Xz € T for € = 0 and thus f(X @) = ¢(Xre) + e Letting
¢ | 0 and using the lower semi-continuity of f and the continuity of g, f(Xr)
< Timinf, o f(Xr0) S liminf., ofg(Xrw) + ¢ = g(Xx), or XreTy. Thus,
T(0) £ T and consequently T = lim., T (e) = 7'(0).[]

One considers E%¢"g(Xr) as the expected discounted “reward” associated
with a Markov time T. By convention, E%¢"g(X,) = [ r<wt "g(X ) dP® s0
that a reward of zero is associated with never stopping.

Lemmas 2 and 3 and Theorem 2 which follow are a slight modification of a
theorem by Dynkin in [9].

LemMa 2. Let g be a non-negative continuous function and let f* be any \-excessive
function such that ¥ = g. Then 1* is an upper bound on expected incomes, i.e.,
f*(z) z supr B¢ g(Xr).

Proor. f* = g implies ¢ f*(Xr) = ¢ 7g(Xr) for any T and E%"f*(Xr)
= E°¢ g(Xr). But by property (3.1) f*(z) = Ee N (Xy). 0

Lemma 2 yields a simple condition for verifying that a given stopping time T'
is optimal. If * = ¢, f* is \-excessive and 7' is such that f*(z) = E°¢""g(X)
then clearly T is optimal.

Lemma 3. (Dynkin) Let ¢ > 0 be given and suppose g s bounded on E\T, .
If f() = E°¢""f(Xn@) then f. = f.

Proor. (See [9].)
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TrrEorEM 2. (Dynkin) Let g be a mon-negative continuous function with \-
excessive magjorant f. Then

(i) f(x) = supr B¢ "g(X 1), and

(ii) f g is bounded on E\T, then for any ¢ > 0,

f() — ¢ £ E¢"9(Xr0) = f(z).

Proor. (See [9]).

CorOLLARY 1. If g ¢ C(E) and either X > 0 or T(0) < oo almost surely, then
T(0) s optimal.

Proor. By Lemma 1, T(e) T T(0) as e | 0on {T(0) < o} a.s. P°, and
since X is quasi-left continuous, Xz — X1y as € | 0. Thus

f(@) — e < B¢ 99(Xrw)
= [r0<0 € " 9(X200) AP + [10)m0,ri0<0 € "X 2e0) dP”.

Since ¢ is bounded and continuous, by the bounded convergence theorem the
first term on the right converges to E%¢ " "¢(X @) as ¢ | 0 while if either
A > 0or T(0) < « the second term converges to zero. Thus f(z) < E¢ "
g(Xr@) and T(0) is optimal. []

CoRoOLLARY 2. If X s a continuous process and g is continuous and bounded on
the closure of E\Ty and if either X > 0 or T(0) < o almost surely, then T™, the
entry tvme for Ty us optimal.

Proor. Both ¢(Xre) and ¢(Xre) are bounded for processes starting at
x 2 Ty. Thus, as in Corollary 1,

f(x) = Time, o[f(z) — € < lime, o B¢ " g(X o)
= Eze—)\T(O)g(XT(o)) = E’”e_”*g(XT*), fOI‘ X g Fo .

Forz e Ty, f(z) = E¢"g(Xp) so that T is optimal. []
CoROLLARY 3. Let D be the closed sets in E and for A ¢ D T(A) be the hitting
time for A. Then

f(z) = supep B¢ " Vg(Xrw)-

Proor. We need only note in Theorem 2, that each 7'(¢) is the hitting time to
the closed set T'.. When ¢ is unbounded we truncate, consider g, = g A » and
let n — . []

Corollary 3 implies that if a closed set A™ exists whose hitting time 7% = T'(4¥)
is optimal in the class of all hitting times to closed sets, then 7™ is optimal in the
wider class of all stopping times. One might hope for a converse, but one can
easily construct examples in which every hitting time has a finite expected re-
ward but there exist stopping times with infinite expected reward. That this is
the only type of exception is indicated by the following theorem.

TurorEM 3. If there exists an optimal stopping time T™ then T(0) is optimal at
all initial points x for which f(x) < .

+ Proor. By (3.1), f(z) = E°¢ ""*f(X ) for all z. Since f = g and T™ is optimal,
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Ee (X)) = B¢ g(X ) = f(z) for all z. Thus f(z) = E% " f(Xm).
Next we claim f(Xr) = g(Xm) a.s. on {TF < «}. We have f(Xp) = g(Xr)
and suppose the contrary, that f(X ) > g(X ) on asetin {T* < o} of positive
P® probability. Then E%e " f(Xm) > E¢"g(Xr) = f(z), a contradiction.
Hence f(X+) = ¢(Xm) a.s. on {T" < o} or Xme Ty a.s. on {T* < «} which
implies T(0) < T™ a.s. by the definition of 7(0). But, again using (3.1), T(0)
< T* implies B¢ " %¢(X10) = E¢"O%f(Xre) = E¢f(Xm) = f()
when f(z) < «. Hence 7(0) is optimal for initial points x with f(z) < . []

The fact that T is optimal in the hypothesis of Theorem 3 plays an important
role. Tt is mot true that for every stopping time 7" there exists a hitting time 7'
for which E%¢g(Xr) = E% " 'g(Xr) for all z. For example, suppose that
X: = Xo+ tfor Xo > 1, and g(z) = 1 — 1/z. Then no hitting time can replace
T' = 1 without loss at some initial points X, . N

Note that when X = 0, a problem where g takes on negative values but is
bounded below may be formulated as above by adding an appropriate constant.

ExamrLi 1. Let (X, ;¢ = 0) be a Brownian motion process with drift u < 0
and variance coefficient ¢ = 1. Let g(z) = " = max(z, 0), and consider the
criterion function O,(x) = E%g(Xy) for x > 0.

Ifa=—(— G+ 20" and v(z) = a exp(z/a — 1) then

f(z) == for = > a,
=o(x) for z = q,

will be shown to be the A-excessive majorant to g. Note that: (i) v(z)= f(x)
> g(2); (i) f(z) = g(x) = x for z = a; and (iii) Pl(z) = v(z) for all z. Let
ho = g and define k, = sup:so Ph,_1 so that by Theorem 1, h, T h where & is the
A-excessive majorant to g. But since v is A-excessive and exceeds g, v = h so that
h(a) = v(a) = g(a).

Note that each h, is increasing, convex, hence continuous, with slope less than
or equal to one, so that h also inherits these properties. Then h(a) = a, h(z)
= z, and dh/dx = 1 imply that h(z) = z forx = a.

Let T be the hitting time of T = [a, ). Then by (3.1)

h(z) = E°¢MW(X,) = aE%¢" for z £ a.
=2z for = > a.

By direct caleulation using well known results on first passage times in a Brown-
ian motion process (Cox and Miller [5], p. 211) a E% " = v(z) for z < a.
Thus b = f and f is the \-excessive majorant to g. Since f(z) = E%¢ "g(Xz), T
is optimal according to the remark following Lemma 2. The same result holds
for A = 0 provided u < 0.
This example is motivated by the work of McKean [17] who studied a similar
, model but where Y; = log X is a Brownian motion process. A heuristic proof of
the optimality of T is in [23].
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Exampre 2. Let (X; ;¢ = 0) be a Uhlenbeck process whose transition density

pi(®, y) = Pz, dy)/dy

satisfies
8°p/ox" — xdp/dx = op/at.

We note that X is a Gaussian Markov process with continuous sample paths and
consider the problem of maximizing E‘¢ "X, at x = 0. We first show that for
some b ¢ (0, 1), the entry T of the X process into [b, « ) maximizes over all
stopping times T, E% "g(Xr) where g(x) = max {z, 0}. Then since ¢(z) = z,
Ee"™g(Xrey) = E°¢ "Xy for all stopping times 7. Breiman [4] gives an ap-
proximation which shows P°(T, < «) = 1, and since b > 0, ¢(Xre)) = Xre
so that T, maximizes the possibly negative return E°¢ "X, as well.

Let f be the 1-excessive majorant to g, and let v,(z) = exp [(z* — a”)/2] and
ha(z) = @ 'va(z) — 1] + a. The derivatives are given by ks () = a v.(z)
and b, (z) = (1 + 27)a w(z). For a = 1, min, ho(z) = o [exp (—a’/2) — 1]
+a=a—1/a =0, h(a) =a = g(a), ha(a) = 1, and h,"(x) = 0 which
implies h.(z) = g(x) for all z, again remembering that ¢ = 1.

If yo(z) = ho(z) — a + 1/aand L = 9°/02° — x9/9x, the differential operator
corresponding to the X process, then Ly, — y, = 0. From Theorem 13.16, p. 51
of [10], we have y.(z) = E%€ y.(Xr) for T an exit time from an arbitrary
bounded open interval. Consequently ho(z) = E‘¢ "ho(Xrz) + (a — l/a)-
E°(1 — € ") = E° "ho(Xr). By (3.2) then, h, is 1-excessive. Thus h, = f = ¢,
and since hq(a) = g(a), provided @ = 1, we have [1, ) C Ty where I's = {z: f()
= g(z)}. We've shown that g is bounded off Ty and from Corollary 2 to Theorem
2 we have T™, the entry time to T , is optimal for all z.

We shall consider entry times T(b) of [b, ) and show that f(x) > 0 where
fo(z) = B¢ "™Pg(Xrpy) and thus f = f, > 0, or (— 0, 0] n Ty = ¢. Hence, for
processes starting at X, = 0, a stopping time of the form 7'(b) with0 < b < 1
is optimal. Since P[T(b) < =] = 1 we have

fo(z) = bE¢ ™, x <b.

The solution is given in [6] as

fo(@) = b "Dy (—x) /D (—D), x < b,
where D,(z) is the parabolic eylinder function ([11], p. 116),
D,(2) = €T (=) [C e, y < 0.

Since (d/db)fs(x) = fo(x)[b™" — D_s(—b)/D_1(—Db)], equating to zero yields
D_;j(—b) = bD_s(—b) which may be reduced to (1 — b )®(b) —bp(b) =
0, with ® and ¢ the standard normal distribution and density functions, respec-
tively. Since the left hand side in the above equation is positive for b = 0 and
negative for b = 1 we know the optimal b = b* £ (0, 1). A numerical solution
Yields b = 0.839+.
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Now let (Y (s);s = 0) be Brownian motion with ¥'(0) = 0 and consider find-
ing a stopping time S* which maximizes over all stopping times S the expected
averaged return E*[Y(8S)/(1 4+ 8)] for y = 0. Following Doob [7] make the time
scale transformation s = ¢ — 1 and let X, = ¢ 'Y (¢ — 1). Then X, has the
statistics of the previously considered Uhlenbeck process, and ¢ ‘X, transforms
back into ¥ (s)/(1 + s). Thus §* = inf {s: ¥(s) = b(1 + )} with b = 0.839+
is the optimal stopping time for the averaged Brownian motion. This problem
was suggested for study in [8].2

6. Maximizing Ar(x) = E[e¢*(Xr) — [i € ¥c(X.) ds). Let ¢* and ¢
be non-negative continuous functions defined on E. Suppose that stopping at
time T one receives the discounted reward ¢"g*(X,) and incurs the costs
[§ e™e(X,) ds.

If Re(x) = [TeMPe(x)dt < w for all z, then

E [§e™Me(Xy) dt = E° [7e™Me(X,) dt — B° [76Me(X,) dt
= R'(z) — B¢ ME™ [ e™e(X,) dt
= R'¢(z) — E°¢R'e(X1r).
Thus
Ar(z) = E[eMg"(Xz) + ¢ MRc(X1)] — Re(z).

This representation, which when R'c is finite and continuous, translates a
problem with an observation cost into a problem with no observation cost, was
suggested by Dynkin [9] for use in optimal stopping problems. Now let g(z) =
g (z) + R'e(z) and apply the techniques given in Section 4. Note that when
A = 0,if g* and R'c are bounded below rather than non-negative, the problem can
be expressed in the earlier form by adding an appropriate constant in the defi-
nition of g.

ExampLe 3. Let (X, ;¢ = 0) be a Poisson process with mean parameter p.
Suppose ¢*(z) = zand ¢(z) = ¢ > 0forz = 1,2, --- . Then R'c¢(z) = ¢/A > 0
and g(z) = ¢*(z) + R'e(x) = & + ¢/, for any fixed A > 0.

Let & = log, (1 4+ \/p), assume k' = ¢/A and let @ = k™ — ¢/A = 0. For
convenience suppose a to be an integer. Let v(z) = &k exp (—kla — z]) and
define

fl(z) =z 4+ ¢/N for 2> a
= p(x) for z = a.

Again f is the \-excessive majorant to g. First apply the inequality ¢’ = 1 — 6
where 6 = 1 — k(z + ¢/)N), to get e " *@HM) > k(g 4 ¢/\) and K¢ =

2 L. A. Shepp has independently obtained this same result plus many further results in
the context of similar problems. His extensive work will soon appear in a forthcoming

paper.
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v(z) = & + ¢/x = g(x). Thus (i) »(z) = g(=) for all z; (ii) by definition f(z) =
v(z) = g(z) for z = a; and finally,
(i) Plo(a) = K¢ X5 € () e/ j!
= k7% = o(x).
Let oy = ¢ and define b, = sup:so PM,_y sothat by Theorem 1, h, T h whereh
is the A-excessive majorant to g. Since v is A-excessive and v = g we have v =
h = g so that h(a) = v(a) = g(a) = a + ¢/\. Each h, is increasing in z and
ho(z 4+ 1) — h(z) £ 1. Combining this with h(a) = g(a) shows that h(z) =
g(z) = z + ¢/\ for z = a. Let T be the hitting time of T' = {a,a + 1, --+}. By
(3.1)
h(z) = B¢ "h(Xr) ]
= (a + ¢/\NEe for z<a
=2z 4 ¢/\ for = > a.

Since T has a gamma distribution, E%¢ " = (1 + M) = kn(x). Thus
h = f, and f is the A-excessive majorant to g. Since f(z) = E% Mg(Xp), T is
optimal according to the remark following Lemma 2.

Exavprr 4. Let (X;;t = 0) bea Browman motion process. Let ¢*(z) = v
be a positive constant and ¢(s, t) = [ [¢ [¢*(X.) — v] du. To minimize E°¢(0, T)
over stopping times 7, let T, be the moment of first exit from (—n, n) and set
gn(z) = E°¢(0, T,). Then

= —gu(2) + E°gu(Xzaz,)-

Tirst we shall maximize E°g,(Xrar.) and then take limits as n T . Green’s
function for the process on (—n, n) is given by the density

nn—z)(n+y)dy for —n<y=z<n
n(n—y)(n+2)dy for —n<z=y<n

g-(z, y) dy

From this one may caleulate g,(z) = —yn® + n'/6 + 'yx — 2'/6. Forx ¢ (—n,
n) andn = (6v)* we see that g.(z) = 0. Let v(z) = vzt — 2*/6, so that g,(z) =
—v(n) + v(z). By elementary calculus, gn((3'y) ) = max,g.(z) = —o(n)
+ 3¢y*/2. Thus —o(n) + 3v*/2 = gu.(x) = 0 for all z&(—n,n) and since
—v(n) + 34*/2 is a constant, it must exceed the excessive majorant to g» .

As usual let ko = gn and hpmy = SUDPsz0 Pihm S0 that hm T h, the excessive
majorant to g, . Let

falz) = —v(n) + 3"/2 for |a| < (37)}
= g.(x) for (3y)! = |z| < . ,
On (—mn, n), f. is concave so that E*fu(Xiaz,) = fa(E*Xiar,) = f.(x). Hence
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fn is excessive, f, = g, and thus f, = k. Hence for (3v)! < |z| < n,f, = ga = h.
Let T = {z:|z| = (3y)!), and let Tt be the entry time for T. Then h(z) =
E°h(X rrar,) = fa(z) so that f, is the excessive majorant to g, . Applying Corol-
lary 2 to Theorem 2 shows that forn = (6y)* we have

E°$(0, Tr A T,) = E°¢(0, T A T,)
for any stopping time T. Clearly lim,.o E°¢(0, Tr A T,) = E°$(0, Tr). If
E°T < o« then
lim,.o E°¢(0, T A T,)
= limyoe B [3A7c*(X,) — vlds
= limpaw B° [§47 [¢*(X,) — v]*ds — limyow B [{A™[c*(X,) — +] 7 ds
= B [§le"(X.) — 91" ds — B° [Tl*(X,) — 21 ds,
by the monotone convergence theorem. Since 0 £ [¢*(X,) — 7]~ =< v, we have
E [ [c"(X,) — v ds S vE°T < », and
limy,e E°¢(0, T A T,) = E°¢(0, T).
Thus T'r minimizes E°¢(0, T') over all stopping times 7' for which E°T < .

6. Maximizing ®,(z) = E[g(Xr) — [o ¢(X,) ds]/E*T. In this section let
g and ¢ be continuous functions and vy a constant. Let

®r(z) = Elg(Xr) — [o ¢(X,)ds)/ET,  and
Or(y, 2) = Elg(Xr) — [§ (v + ¢(X.)) ds]

where we consider only 7"s and 2’s for which 0 < E°T < . ®(x) represents
the long-run time average return or negative cost if a sequence of statistically
independent stopping games are played, each starting at x (see [16]). Simple
algebra yields

Or(y, ) = (®r(z) — v)ET, and

®r(z) = v + Or(v, 2)/E°T,
which leads to the

TaEOREM 4. Let x ¢ E be fized and let T = {T:0 < E°T < «}. If for some v,
T* ¢ T maximizes Or(y, ) over T, and Op(y, ) = 0 then T maximizes ®r(z)
over T and conversely.

ProOF. Om(y, ) = 0 implies @m(x) = 7. But Om(y, 2) = 0 = Ox(y, )
implies ®7(z) = v + Ox(y, )/E°T = «v. For the converse, set v = ®m(2).
Then Om(y, z) = 0 while Or(v,z) = (®r(z) — V)E'T = (@r(x) — Pr())E"T
=0.[

Exampre 5. Let (X, ;¢ = 0) be a Brownian motion process, ¢(z) = 2°, and
g(z) = K > 0for all z, and consider maximizing ®(z) = (—K — E* [§ X’ ds)/
E°T. By Theorem 4, if a T optimal among the class 0 < E°T < o« exists, then
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it may be found by finding a v and a 7" such that 0 = On(y, 2) =
—K + E [{" (v — X.}) ds, and Om(y, ) = O(y, ) for all T. This is the
problem considered in Section 5. From Example 4 for any v > 0 the optimal 7™
for ®z(v, x) is given as the entry time for I' = {z: |#| = (3y)% and for initial
state 2 = 0 2 T, Om(v, 0) = —K + 3y*/2. Thus for On(y, 0) = 0 one needs
v = (2K/3)% and thus the optimal 7™ for ®,(x) is given as the entry time to
{x: [¢] > A}, where A = (6K)*.

This example is drawn from Bather [1] who treated the more difficult case
where the X process is observable only with error.

ExampLE 6. Let (X, ;¢ = 0) be a diffusion process on £ = (0, ») with drift
coefficient u(z) = z*/(1 + z) + (1 + ) and diffusion coefficient ¢°(z) = al.
Let ¢(x) = z/(1 4+ z) and consider finding a stopping time 7 which maximizes

Ouy,2) = —K — E* [{ly + c(X,)]ds

where 0 < —v < 1. Such a problem arises in quality control where X} is a func-
tion of the posterior probability that a manufacturing process is out of control,
given the history of previous production. (See [20], [22]. But note that [22]
treats costs while we treat returns. Thus v in [22] becomes —v here.)

Let T, be the first exit time from (0, n]. As before we shall first maximize
Orar, (v, ) over T and then let n — «. One can show (Dynkin [10] or Shiryaev
[20]) that g.(2) = E® [3™ (¢(X,) + ) ds is a solution to

3 o(z) d'/de’ + w() d- /delga(z) = —l&/(1 + &) + 7],

for z £ (0, n) and g.(n) = 0. Let ¢(z) = 2"exp (—2/2), ¥(2) = [i¢(y) dy,
A(z) =y (2)/#(2) and C(2) = [;A(y)/(1 + y)* dy. Then

dga(z)/dz = (1 + A@)A+2)" — 14+v)1+2)" + A +2)7

for z& (0, n) and g.(z) = — [+ ga (y) dy = u(x) — u(n) where u(z) =
(L +v)C(2) — (1 + v) log. (1 4+ 2) + 2/(1 + 2). These computations in-
cluding discussions of boundary conditions may be found in [2], [20], [22]. As

before
Orar,(1,2) = —K — [u(z) — u(n)] + E[u(Xrar,) — u(n)],

so that the current problem is to maximize E°gn(Xrar,)-

For n sufficiently large g,(x) = 0 for all z ¢ (0, n) and g.(z) has a maximum
at the unique solution 2 = \*to 2 — A(x) = —v/(1 + v). Since 4(z) > 0,
onehasy + ¢(z) = /(1 + ) +v > 0forz = \* > 0. Let

f(z) = go(N*) for z < \*
= ga(z) for \* =2 = n

Note that g.(\*) is a constant, exceeds g.(x) for all z £ (0, n) and thus exceeds
h, the excessive majorant to g, . Let I' = \*, n] and let T(T') be the hitting time
of T. Then for z £ (0, \*] one has h(z) = E°g.(Xra) = g.(\*) = f(z). Thus
flz) = h(z) = g.(\¥) for z € (0, \*], provided, of course that < o,
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Again one can show that f is excessive. Let Gy = (0, \*) and G = (\* — ¢, n].
Since f is constant in Gy, f is excessive in Gy . For ¢ < 0 such that z/(1 + z) +
v > 0 for z & Gy one has g,(z) = E° [§[c(X,) + 7] ds is excessive. To show this
fix z € G, and let U be an open neighborhood of z contained in G, with exit time
T(U). Then

E'gu(Xrwy) = E°E*™® [§"[e(X,) + vl ds

< E [ [e(X,) + vlds = gu(z).

Thus each g, is excessive on (N*, n] so that f = g, on (\*, n] is excessive in this
reg1on It remains only to consider a nelghborhood about )\ Let z & G, and

= (1, 1) bea nelghborhood of z with \* — ¢ < 1y < \*. Let T(U) be the
ex1t time from U and T* be the hitting time for {\*}. Then

Ef(Xrw) < Ef(Xrearw) = Egn(Xrearan) = f(2).

Thus f is excessive here also and hence f is excessive on (0, n], and f is the ex-
cessive majorant to ¢, and T(T'), the hitting time of T' = \*, n], is optimal for
the problem of maximizing over T' the expression Orar, (7, z). For initial points
z < \¥, the solution is independent of n and thus T/(T) is optimal for @ (y, =)
at such initial points. According to Theorem 4, one should find a v such that
Oz (v, ) = 0. In practice it’s easier to list the optimal T'(T') or A\ asy is
varied, and then also list the K such that ®rr)(y, ) = 0. This is the approach
that produced the charts in [22].

7. Remarks. While our theory applies to space-time processes, such as prob-
lems with a fixed finite time horizon and problems in which the reward function
includes time as in the criterion E°[g(Xr)/T], it is often difficult to compute
explicit solutions. We hope to consider such problems in the future.

Professor Harry Kesten very kindly and conscientiously read an earlier version
of this paper and made many helpful suggestions. Full credit for errors, omissions,
and lack of clearness, however, belongs to the author.
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