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0. Summary. In this paper we consider the discrete time finite state Markov
decision problem with Veinott’s criterion of maximizing the Cesaro mean of the
vector of expected returns received in a finite horizon as the horizon tends to
infinity. A necessary and sufficient condition for optimality is obtained, and at
the same time we verify Veinott’s conjecture that there are optimal stationary
policies.

1. Introduction. This paper verifies a conjecture of Veinott [8] concern-
ing the discrete-time Markov decision model. To introduce the model, con-
sider a system that is observed sequentially at epochs labeled 1, 2, - -- . At each
epoch, the system is observed to be in one of N states numbered 1, 2, --- , N.
If state 7 is observed at epoch 7, a decision k in a finite set M ; is selected. This
yields an immediate expected return r(7, k) and a probability p(j:¢, k) that the
observed state at epoch n + 1 will be state j, with >_j— p(j:%, k) = 1. The data
r(z, k) and p(j:7, k) are known to the decision-maker and depend only on the
current state ¢ and decision k, not on prior states or decisions.

A stationary non-randomized policy & for this system is a rule that for each
state 7 selects a decision §;1in M ;. The set Z of all such decision rules is called the
policy space and is given by Z = Xi.M,. With §¢Z, we have
6= (6,--+,8:, -, 8y), with §; being the decision (in M ;) that is made at
any epoch at which state ¢ is observed. Policy & has associated with it a vector
7(8) of immediate returns and a transition matrix P(8) with »(8); = r(4, 8;) and
P(6);; = p(j:4, 8;). A non-randomized transition counting (Markov) policy A
is an element of Z° = X7 Z, with A = (', ¢°, ---) and 8" being the decision
(in &") if state 7 is observed at epoch n. Let P," be the N by N matrix whose
77th element is the probability that state j is observed at epoch n 4 1, given state
¢ at epoch 1 and given policy A. Then, P,' = P(§') and P,"*"' = P,"P(5™™).
Similarly, let V(n, A) be the vector of expected total returns for epochs 1
through n using policy A in Z%. Then, V(n, A) = D7y Pa"7r(5°).

The average rate of gain for the first n epochs using policy A is n 'V (n, A). A
standard criterion for the undiscounted problem is to select a policy A that
maximizes n'V(n, A) as n — «. However, this criterion is rather unselective in
that the average depends only on the tail of the income stream and not on the
income in the first millennium. Examining V (n, A) rather than 27"V (n, A) one
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would say that I is at least as good as A if V(n,II) = V(n, A) for all n sufficiently
large or, alternatively and more conservatively, if lim inf,., [V(n, I) —
V(n, A)] = 0. Unfortunately, both of these methods of comparison are overly
selective; they sometimes preclude the existence of an optimal policy, as the
following example attests. There are three states, 1, 2, and 3, actions a and b for
state 1 and one action, ¢, for the others. One has p(3:2,¢) = p(2:3,¢) = 1,
r(2,¢) = 0,7(3,¢) = 2,r(1,a) = 1and p(2:1,a) = 1, 7(1, ) = 0 and
p(3:1, b) = 1. Choosing a for state 1 yields the cumulative income stream
(1,1, 3,3,5, ---), while b yields (0, 2, 2, 4, 4, - - -); action a is better for n odd
and worse for n even. In the example and in general, the essential difficulty is that
two policies A and II may have {V(n, II) — V(n, A)} oscillating around zero
with amplitude that remains finite as n — . Veinott [8] uses (C, 1) summation
to damp down such oscillations. That is, he writes IT = A if

(1) lim inf,. 7™ 227 {V(4, ) — V(5,4)} = 0.

We shall call a policy I Veinoti-optimal if I = A for every policy A in Z”. One is
tempted to call such a policy II “optimal.” However, we prefer to reserve this
term for Blackwell’s [1] meaning—namely, for a policy that is optimal for all dis-
count factors near enough to 1. A policy may then be Veinott-optimal but not
optimal, as in example 1 of [1].

This paper shows that a Veinott-optimal policy exists and provides a
characterization of the Veinott-optimal policies. Rather than selecting an appro-
priate criterion for the undiscounted problem as Veinott did, one could demand
optimal or near-optimal behavior of the system for discount factors near 1, as
Blackwell [1] did. We feel that both approaches have merit. Veinott’s approach
seems related to the turnpike theorems in economies.

Toward reviewing Blackwell’s approach [1] and associating it with Veinott’s,
first note that since P(8) is a stochastic matrix, the sequence {n™" >_74[P(8)]%}
converges to a stochastic matrix P;* such that P;* = P;*P(3) = P(5)P;* =
P;*P;*. With discount factor ¢ < 1 per epoch, the N-vector .’ of expected total
discounted return using policy & is given by v’ = = [P(8)]"r(8) =
[I — ¢P(8)]7*r(8), since the series converges geometrically. Blackwell examined
the limiting behavior of v, as ¢ approaches 1 and obtained the asymptotic ex-
pression

(2) ol =¢'/(1 —c) + v + o(1)
where ¢* = P;*r(s) and where w’ is the unique solution of the equations
(3) r(8) + P()w' = v’ +¢°, P’ = 0.

For any stationary policy 6 in Z, let 6° = (4, 8, - - - ). As one might suspect from
Abelian analogies, V(n, 8°) is readily associated with ¢* and w’. Using the fact
that Psg” = ¢°, one can readily verify inductively the observation of Veinott [8]
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(see also Denardo [3]) that
(4) V(n, 8°) = ng' + v’ — [P(3)]",
(5) 2V, 8%) = B+ g’ +w' — e
with e, = n™' 2074 [P(8)]'w’ — 0,
the last since P;*w’ = 0. Let ¢* and w™ be the N-vectors defined by
g = max {g:8¢ 7}, w* = max {w':se Z, gl = g},

Policy X in Z is called g-optimal if ¢" = g% and (g, w)-optimal if, in addition,
w* = w*. Existence of a (g, w)-optimal policy is a non-trivial question, since N
maxima must be attained simultaneously. For a proof, see Blackwell [1] or
Veinott [8].

Veinott ([8], Theorem 7) showed that every (g, w)-optimal policy N has
N\° = §° for every 8in Z;i.e., that for stationary policies (g, w)-optimality implies
Veinott-optimality. He further conjectured that A = TI for every I1in Z”, which
we shall verify.

With A = (8", 6", ---) in Z*, define the operator H," on Euclidean N-space by

HA"(’U,) — Z?::)l PAlr(ai-H) + PAnu

for each N-vector u. Then H,"(u) is the vector of total expected rewards for
epochs 1 through 7 using policy A and having terminating reward vector u. The
main result of this paper is summarized in

TuEOREM 1. A necessary and sufficient condition for policy I in Z” to be Veinott-
optimal vs that 11 satisfy the equations

Hp"(w™) = w* 4+ ng™ for every mn,
liMpaw {7 2 im1 Pn'w™} = 0.

Every (g, w)-optimal policy \ in Z is Veinott-optimal.

Of course, the conditions for Veinott-optimality in Theorem 1, coupled with
equations (4) and (5), imply that every stationary Veinott-optimal policy is
(g, w)-optimal.

Theorem 1 is proved in the next section. It is a simple matter to adapt the
proof to the case in which Z is replaced by the (larger) set of randomized transi-
tion-counting policies. This, coupled with a result of Derman and Strauch [6],
yields the generalization of Theorem 1 in which Z* is replaced by the (still larger)
set of all history-remembering randomized decision rules.

We observe that if “lim inf” were replaced in equation (1) by the less de-
manding “lim sup”’, the optimality of a stationary policy would be readily
verified by an Abelian argument that also works for the more general Markov
renewal programming model. We close this section by pointing out that De-
nardo [3] has recently shown how to obtain’ (g, w)-optimal policies by solving at
most three simpler Markovian decision problems, each of which can be solved by
linear programming or policy iteration.
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2. The proof. This section is devoted to the proof of Theorem 1. Always,
A is the policy (8", &, - - -) using the corresponding small Greek letters. If policy
A is Veinott-optimal, then A = \*, where X is any (g, w)-optimal policy. Then,
from equations (1) and (5), we see that a prerequisite for A to be Veinott-
optimal is that

(6) lim infoaw {0 Dopa V(I A) — 3(n + 1)g* — w*} 2 0.

Our line of attack is to fix state ¢z and policy II, assume that the pair (¢, II)
satisfy

(7) 1im SUPpae {7 Dot V(I M) — 3(n + 1)g* — w*} 2 0,

and investigate the consequences. We start with three observations about equa-
tion (7). First, it is satisfied by at least one policy; in fact, equation (5) assures
that for every (g, w)-optimal policy 7 in Z the policy II = =~ satisfies equation
(7). Second, we shall eventually conclude that strict inequality in equation (7)
is impossible; were it possible, no (g, w)-optimal policy would be Veinott-optimal,
invalidating Theorem 1. Third, were “lim sup”’ replaced in equation (7) by
“lim inf,” the finding that equality holds in equation (7) would not let us con-
clude that a (g, w)-optimal policy is Veinott-optimal. This explains why ‘‘lim sup”’
is used here.

For every N-vector u, let ||u|| = max;<i<w» |wi and let 1 be the N-vector of 1’s.
Lemma 1 summarizes results, some well known, about the model that are ger-
mane to our argument.

LemMA 1. (a) P(8)g™ £ g™ for every 8 in Z. Also, Pa"g™ < g™ for every n and
every A in Z°.

(b) There existsan N-vector u™ such that r(8) + P(8)u™ < u* + g* for every
dinZ.

(¢) Ha"(u*) £ u™ + ng™ for every n and A in Z°.

(d) n7'V(n, A) < ¢* 4+ n7'2 |u*|| 1 for every n and A.

(e) If P(8)g" = g%, then r(8) + P(8) w* < w* + g%,

Proor. The first statement in (a), and (e), are prerequisites for Howard’s {7]
policy iteration routine to terminate at g*; for proofs see, e.g., [7], [1], [8], or [4].
The second half of (a) is a trivial consequence of the first and the monotonicity
of P(#) since, for instance, Pa’(g*) = P(8")P(8%)g™ £ P(s")g* < ¢* (b) is
Lemma, 7 of Denardo and Fox [4] and, in slightly different form, Lemma 4.1 in
Brown [2]. (¢) follows routinely from (a) and (b) by induction; for instance,
HAQ(u*) = Hi'[r(8") + P(8Hu'] £ Hi'(u* + ¢%) = Ha'(u") + Pa'(g") =
u®* + 2¢*. For (d), note that V(n, A) = Ha"(u*) — Pa"(u™) £ H"(u™) +
¥ 1 = ng* + 2 [u*| 1 by (). [

LeEmMA 2. Suppose policy II and state 1 satisfy equation (7). Then (Pr"¢™)i = g*
for every n.

Proor. (a) of Lemma 1 establishes Pr" g < ¢*. Suppose Lemma 2 is false
Then there exists an integer m and a number @ > 0 such that (Py"g*); = ¢;* — a.
Coupling the fact that V(j, A) = Ha'(u) — Pa’(u) for every j, u and A with
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(¢) of Lemma 1 produces, for n > m,
V(n, ) = Ho"(u*) — Pp"(u*) < Ho"(u*) + [ju®|| 1
(8) < Ho"w* + (n — m)g*] + |[u™|| 1
= Hy"(u*) + Po"[(n — m)g*] + |[u™] 1
< (n — m)(g* — aes) + Ho"(u*) + [u™|| 1

where e; is the N-vector with 1 in position 7 and zeros elsewhere. Then, for some
scalar K, V(n, II) = n(g* — ae;) + K1 for every n, contradicting equation

(M. 0
Let

B(j) = {deM;: 2ip(l:j, d)gi* = g;*
and 7(j, d) + 2 p(l, dw* = w;* + g;*);
Coi=1 it «f2E()
=0 otherwise;
88 = i 23w (P ™) Cl, 8i = limnw 87
H(3,u) = r(8) + P(d)u.

Levmma 3. Suppose policy 11 and state % satisfy equation (7). Then S; < « and
there exists a number b < 0 such that for every n

(9) V(n, M); £ ngs* + w™ + Po"(—w*); + 8.
Proor. We first obtain the intermediate result that
(10) Ho"(w*)s = ng* + w* + 2o (Po 7 H(x, ") — ¢ — 0™
Since (Prf¢™): = ¢:* for every k by Lemma 2,
ng* + w® + 2ia (Pr T H (7", %) — g% — w™l}
= w + 2 {Po" 7 r(a") + P(ah)w* — w'l}s

=H n"('w*),- .
Note that [P(7*)¢*]; = g¢;* whenever (Pg* ™) > 0, since otherwise
[Pr*¢™): < g¢* which would contradict Lemma 2. Then, by (e) of Lemma 1,
H(", w*); — w — ¢g;* = 0 whenever (Pg*™")s;; > 0. Furthermore, if

H(x", w*); — w;* — g;* is negative it must be bounded away from zero, since Z
is finite; let b < O be this bound. Since V(n, II) = Hy"(w™) 4+ Pr"(—w™),
substitution in equation (10) yields equation (9). If 8; = «, then equation (9)
contradicts equation (7). []

For Lemma 4 we make a simple preliminary observation. Suppose 7 in Z satis-
fies g* = ¢*. Then 0 = P, (w" — w"*); hence 0 = P."(w" — w*), implying
0= P.*w — w*) = P,*(—w"). Let £ = X}— E(j) and consider
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LemMA 4. Suppose policy A = (8", 8, - -+ ) and the integer M satisfy 8" ¢ E for
allm > M. Then

(11) Hm SUPnae {1 D ts Pal(—w™)} £ 0

Proor. Recall that the average of a series depends only on its tail. Then, with
policy T = (7%, 7°, - - -) defined by 7" = 8" for each n,

lim SUppaw {17 Dotes Pal (—w™)} £ Pa™{lim supnow 7" D Prl(—w™)}.
Since Pr™ has non-negative elements, it suffices for Lemma 4 to show that
(12) im SUpnsw (0" D ime Prl(—w™)} <

Note that n™* D72 P,'(—w™) can be interpreted as the average rate of gain
for epochs 1 through » — 1 using policy T of the following discrete time Markov
decision process: the states are 1 through N as before, the decision set for state 2
is E(7), the immediate return for being in state ¢ is —w.* (independent of the
decision) and the transition probabilities are unchanged. This ‘“new’’ problem is
. precisely the one introduced by Veinott [8] and further studied by Denardo [3].
We noted above that P,*(—w*) < 0 for every r in E. Of course, every (g, w)-
optimal policy \ for the original problem satisfies A ¢ E and P,*(—w*) = 0.
Hence, \ is g-optimal for the new problem and the maximum gain rate for the
new problem is zero. Applying (d) of Lemma 1 to the new problem (for which
* = 0) immediately yields equation (12). []
LemMa 5. Suppose policy 11 and state i satisfy equation (7). Then, S; = 0,
expression (7) is satisfied as an equality, and

(13) lim SUppaw [0 D ims Pr'(—w™)]i = 0

Proor. We shall truncate policy II and use Lemma 4. Let N\ be a (g, w)-
optimal policy. Deferring momentarily the selection of the truncation integer
M, define policy A = (&', &, ---) by

8" =N ifr,"2E(j) and n > M
= ;" otherwise.

Lemma 3 assures S; < « and thus allows us to pick M big enough that, given
e >0,

(14) [(Pu")i; — (Pa™) il < e  forallm and .

As defined, A satisfies the hypothes1s of Lemma 4. It follows from equations
(14) and (11) that

lim SUPnow [0 Dt P’ (—w™)]i £ € [[w*|N,
where, we recall, N is the number of states. Since e is arbitrary, this implies

(15) lim SUPpaw [0 21y Pr'(—w™®)]: £ 0
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Finally, combining equations (7) and (9),
< lim SUppoee {0 20t [V (I, Wi — Igi* — wi*]}
< lim SUPnaw {0 21 [P’ (—w™) s + Sib]}
= lim SUPmow {0 Dt Pr'(—w™)} + 8d £ 0

the last since both terms are non-positive. Thus, equality must hold throughout,
verifying that S; = 0, proving that equation (7) is satisfied as an equality and
establishing equation (13). []

Note that since (Pr"g*): = g:* and S; = 0, the definition of S; yields Hn"(w*):
= ng;" + w;* for each n. This leads us directly to the

Proor or TuEoreEM 1. Consider the conditions on a policy IT:

(16) Hyp"(w*) = w* + ng* for each n, limn.on " D im Pr'(—w*) =

With \ as any (g, w)-optimal policy and TI = \*, policy II satisfies (16). We
shall show that (16) is a necessary and sufficient condition for a policy to be
Veinott-optimal.

First, suppose policy A satisfies (16). Then, since V (I, A) = H Aw®) +
Pal(—w™), A satisfies (6). For any IT in Z* the inequality of (7) goes the other
way by Lemma 5. Hence A > I for every Il in Z*;i.e., A is Veinott-optimal.

Next, suppose policy II is Veinott-optimal. Then II satisfies equation (6) and
hence equation (7) for every 4, allowing us to apply Lemmas 2 through 5 to
II. By Lemma 5, S; = 0 for each <. Hence, equation (10) implies Hn (w ) =
ng*l + iu* By equation (6) and the fact that V(I, M) = Hyp'(w*) +
P I (—w ):

lim infn—>oo {n—lzln=l Pﬂl(_U)*)i g 0

which, when combined with equation (13), shows that Ot Prt(—w*) — 0
and completes the proof. []

We close the discussion by sketching a line of argument quite different from
the above that obtains equation (15) immediately from Lemma 2. Let {P};
denote the 7th row of the matrix P. This argument exploits a result of Derman
[5], namely that every limit point of { D Pn ; is attained by an initial
randomizatlon over statlonary non-randomlzed policies, i.e., is equal to
> sz E{Ps*}: where ¢ > 0 and ducd = 1. One argues that a prerequisite for
equation (7) is that g1 gz whenever ¢¢ > 0 Then one uses the fact given
after Lemma 3 that P;*(—w™*) < 0 whenever ¢° = ¢g* to obtain equation (15).
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