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ROBUSTNESS OF THE WILCOXON ESTIMATE OF LOCATION
AGAINST A CERTAIN DEPENDENCE!

By ArnwioT H@yLAND
The Norwegian Institute of Technology, Trondheim

0. Introduction and summary. Let Z,, Z;, ---, Zy be N random variables
with common distribution P(Z; £ u) = F(u — 6) where F & F.; which through-
out this paper means the class of all continuous distributions symmetric about
zero. The distributions considered will furthermore satisfy the regularity con-
ditions of Lemma, 3a in [3]. 6 is an unknown constant to be estimated.

In the case where Z, , - - - , Zy are independent, the following estimate of 6 has
been recently investigated by J. L. Hodges Jr. and E. L. Lehmann [4].
(0.1) 0" = med,<; {(Z, + Zs)/2},

.e. the median of the N + (3) averages (Z, + Z,)/2. The asymptotic efficiency
of 6™ relative to the classical estimate

(0.2) b=2VaZyN

in the sense of reciprocal ratio of asymptotic variances has been determined in
{4] and shown to be 12az2[f f2(2) dz]* where f is the density corresponding to F
and o,” denotes the variance of the Z’s.

It follows directly from Theorem 2.2 of [6] that 6%, in case of independent but
not necessarily symmetrically distributed observations Z;, is a consistent esti-
mate of the pseudomedian of F ([6], p. 178), which in general may be different
from the median 6.

In this paper we shall consider a situation where only few (c) observations can
be collected per day and where the experiments have to be conducted over
several (n) days to yield the necessary number of observations. During this period
the experimental conditions may easily change, whereby the standard assumption
of “independent and identically distributed’” observations is violated. The data
oceur naturally grouped in n blocks, ¢ observations per block, and the possible
change of conditions is introduced as a (nuisance) random block effect.

We shall study the behavior of the two estimates 6* and § under such conditions
to find out how robust they are against this kind of dependence. In particular we
shall study their asymptotic behavior as n — « with ¢ fixed, and shall derive a
general expression for the asymptotic efficiency of 6 relative to 6. The efficiency
is finally computed for normal and gross error models.

1. Notation and model. Let the random variables after grouping in blocks be
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dehoted Xij(@=1,---,n;5=1,---, ¢; nc = N). Consider the following
model:
(1.1) Xi=U:4+Vy (¢=1,---,mn; j=1,---,¢),
where Uy, --+, Un, Vi, -++, Va are assumed independent with distributions
(1.2) P(U; 2 u) = Glu — 0),

P(Viy; = v) = K(v), (Z=1--,n; j=1,-",¢),

and G € o0 , K € Foo have densities g and k and variances r° and o respectively.
0%, and 0, shall denote the estimates (0.1) and (0.2) based on nc observations.
In this setup 6, is easily seen to be symmetrically distributed about  with
variance (o> + ¢r’)/nc. Furthermore, as n — o, (nc)}(d.. — 6) has a limiting
normal distribution with zero mean and variance o* + cr°.

2. Properties of 6*. In the model (1.1), (1.2) 6* is defined by
(2.1) 0% = medunzan { (X + Xu)/2},

i.e. the median of the (y) + nc averages (X,;; + Xwu)/2. Here (2) < (kl)
means either ¢ < kor,if ¢ = k,j < l. Similarly (%) = (kl) means ¢ = k,j = 1.
6™ is easily seen to be symmetrically distributed about 6.
TuroREM 1. Assume the model (1.1), (1.2) and let 0, be defined by (2.1). Then
for every fixed 6

(2.2) liMne Pof (nc)}(6%. — 6) < u} = ¢(Bu/A)

where

(23) A" =4-[& 4+ (c— (WG, K) = D], B = 2-[[ fi(z) daf’,

and
(2.4) M(G, K) = Po{(Xu + Xau) > 0, (X2 + Xa) > 0},

Py (as throughout this paper) indicating that the probability is computed for median
value = 6, and ¢ denoting the cumulative distribution function of the standard normal
distribution.

Since Theorem 4 of [4] is checked to be true in this situation, Theorem 1 will
immediately follow if one can establish that

(25) limn»noP—a/(nc)i{(nc)é(Wnc - % - 1/(nc - 1) é U,} = ‘Qb( (u + aB)/A>

where A% and B are given by (2.3).
According to the model (1.1) (1.2) the vectors X; = (Xa, X, -+, Xi);
1 =1,2, ---,n,areindependent. Let ¥o(X;, X;) be defined by

,

(2.6) Wo(Xi, X)) = D Usirje with Uspje=1 if X + X;o > 0

= 0 otherwise.
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Then

(2.7) Wae = (%) 20 %(Xi, X)).
Consider

(2.8) Wa= (3)" 2ici W(Xi, Xj).

W. is, however, a generalized U-statistic [5]. It can be shown that Lehmann’s
extension of Hoeffding’s theorem on generalized U-statistics [7] is applicable, and
finally by Slutsky’s theorem ([1], page 254) that (n¢)*(W,. — 3 — 1/(nc — 1))
has the same limiting distribution as ¢ 'n*(W, — 1) whenn — « (and 8, — 0).
(2.5) follows, and Theorem 2.1 is proved.

3. The asymptotic efficiency of 6* relative to 6. In the model (1.1), (1.2),
6 is defined by

<31) é = Z,‘,]‘ X,-j/nc.

By Theorem 1 and well-known properties of 4 the following result is immediate.

THEOREM 2. Assume model (1.1), (1.2) and let 6™ and 6 be defined by (2.1) and
(8.1). Then the asymptotic efficiency of 6™ relative to 6 in the sense of reciprocal ratio
of asymptotic variances s

(3.2) ARE (6%,8) = 12(¢" + ) [[ f*(z) da*{1 + 12(c — 1)[M(G, K) — 3} 7,
or equivalently
(3.3) ARE (6%, 8)

= 12(1 + (¢ — Dp)[f £’(2) da{1 + 12(c — DD(G, K) — 317,
where p = /(7 + o°), fo(x) is the standardized density, i.e. f(x) = o5 fo(2/02),
and N(G, K) s defined by (2.4).

Note that changes in G and K may affect the ARE (6™, 6) through the numer-
ators of (3.2), (3.3) as well as the denominators.

4. Applications.
4.1. Normal distributions.
TaEOREM 3. Assume (1.1), (1.2) with G and K representing normal distributions.

Let 6™ and 6 be defined by (2.1) and (3.1). Then
(4.1) (i) ARE (6%, 8)
= 3r " {[1 + 2(c — 1)-p/2)[1 4 6 '(c — 1) Arcsine (p/2)]7'},
where p = 7°/(a° 4 1) is the correlation of (X1 + Xu) and (X2 + Xa).
(4.2) (ii) 3/ £ ARE (6%, 64) < 1.

Proor. (i) By a well-known result due to Sheppard (see for example [2]),
Mo(G, K) can be evaluated and shown to be equal to (47) '[r + 2 Aresine (p/2)].
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Furthermore [ | f:2(z) dz]’in this case is equal to (47) . These results introduced
into (3.3), prove (i).

(ii) First we notice that for p = 0, ARE (8%, 6) = 3/x. For 0 < p < 1,
0 < p/2 < Arcsine (p/2), and hence

(4.3) ARE (6%, 6) < 3z "{[1 + 2(¢c — 1)-p/2][1 + 627(c — 1)-0/2]7"}.

As an increasing function of p the right hand side of (4.3) is less than or equal to
its value for p = 1. This proves the right hand side of (4.2). By elementary com-
putations it is easily shown that

[1 4 2(c — 1)-p/2][1 + 67 "(¢ — 1) Arcsine (p/2)]' =1 for 0 < p £ 1.

Hence (4.2) follows. Since lim,.., ARE (6%, ) = (p/2)/Arcsine (p/2) may be
arbitrarily close to 1 for p sufficiently small, it follows that the right hand side
inequality of (4.2) cannot be sharpened in general.

As a numerical illustration, the asymptotic efficiency of 6* relative to § has
been computed for different values of p and c.

TABLE 1
ARE (6%, 8) as a function of p and c¢. Normal distributions

ARE (6%, 8)

72/02 P
c=2 c=3 c=4 c=35 c=06 ¢ =10 ¢ =20
0 0 .955 .955 .955 .955 .955 .955 .955
i i .962 .967 971 .974 .976 .982 .989
1 1 .963 .969 973 .976 .978 .984 .990
3 1 .965 971 .975 .978 .980 .985 .990
1 1 .966 972 .975 .978 979 .983 .986
2 2 .965 .970 972 .974 975 977 977
3 P .964 .967 .969 .970 971 .973 974
4 4 .962 .965 .967 .968 .969 .970 971
0 1 .955 .955 .955 .955 .955 .955 .955

4.2. Gross error models. A more interesting case is the one where G and K
represent gross error models:

(44:) G(u) = (1 - 61)‘13(’11/(71) - 61@(1;0/(11(71),
(4.5) K@) = (1 — )®(0/0y) —+ e®(v/aw0:).

Evaluation of f f*(2) dz essentially involves computation of integrals of the form
f¢(y/a)¢>(y/b) dy, easily shown ([6], (4. 10)) to be equal to ab/2x(a’ + b°),
while evaluation of \(G, K) = f L’(w)g(u) du essentially involves integrals of
the form fd)(u/b)@(u/c)a_lqs(u/a) du, easily shown ([6], (4.9)) to be equal to
47 (1 — 227" Arcsine [a’/((a® + b*) (a® + ).

The general expression for the ARE (6%, §) obtained through this approach,
is however rather lengthy and will not be given here.

The ARE (6%, 6) has however been determined numerically for a; = a,= 3
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and values of the parameters ¢ , e , 01°/07", and ¢ selected so as to cover a variety
of situations of practical interest. The ARE (6%, §) turns out to belarger thanone
in almost all cases and considerably larger than one in many. The results indicate
that 6™ in general should be preferred to 4 in this gross error model.

TABLE 2
ARE (6%, 8). Gross error model o= a =3
c=2 c=35
€ 33 a1i*/a2? 0i?/o?
H 3 1 2 4 3 3 1 2 4

.01 | 1.0050| 1.0069{ 1.0095| 1.0109 1.0107| 1.0129| 1.0186] 1.0222| 1.0216| 1.0184
.01 .02 | 1.0366] 1.0292| 1.0227| 1.0173| 1.0134| 1.0341| 1.0314| 1.0288| 1.0247| 1.0196
.05 | 1.1227| 1.0903| 1.0593| 1.0354| 1.0208| 1.0932| 1.0674 1.0476| 1.0333| 1.0233

.01 | 1.0135 1.0240| 1.0367| 1.0470| 1.0533| 1.0279| 1.0437| 1.0568| 1.0633| 1.0643
.02 .02 | 1.0444| 1.0454| 1.0491] 1.0529| 1.0555 1.0483| 1.0558| 1.0629| 1.0659| 1.0654
.05 | 1.1284| 1.1042| 1.0834| 1.0692| 1.0617| 1.1050| 1.0897| 1.0801, 1.0734| 1.0683

.01 | 1.0366| 1.0695| 1.1089| 1.1433| 1.1667| 1.0669| 1.1088| 1.1472| 1.1729| 1.1862
.05 .02 | 1.0652| 1.0886| 1.1192| 1.1475| 1.1678| 1.0850| 1.1190| 1.1518| 1.1745 1.1865
.05 | 1.1433| 1.1408| 1.1476 1.1591| 1.1707| 1.1353| 1.1472| 1.1647 1.1788| 1.1874

4.3. General bounds for ARE (6%, 6). Numerical evaluation of No(@, K) may be
complicated for specific distributions, G and K. We shall therefore determine
bounds for A(G, K) and thereby obtain general bounds for ARE (6%, 6).

Lemma 1. Let Ty, Ty, Wi and W have continuous distributions. (i) If T1 and
T, are independently and identically distributed, then for any pair of real numbers

(a, b),
(4.6) P{(Ty > a)n (T: > b)} < P{(T1 > a)n (Th > b)}.

(ii) If, for given Wy = wy , Wy = wy , Ty and T are independently and identically
distributed for all (wy , we), then

(4.7)  P{(Ty > W1) n (T: > Wy)}

Part (i) is obvious, and part (ii) is immediate by conditioning wrt W, and W
and using (i).
LemMa 2. Assume model (.1.1), (1.2). Then

(4.8) 1 < Po{(Xu+ Xa>0)n (X + Xa > 0)} £ 3,

= P{(Tl > Wl) n (T1 > Wz)}.

Py indicating that the probability is computed for 6 = 0.
Proor.

)\o(G, K) = Po{(Vu > ""Ul ""Uz ""Vﬂ) n (V21 > ""U1 ‘-Us —Vsl)}
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is by Lemma 1 and the symmetry properties
S Pof{(Vu > =Uy —Us =Va)n (Vu > —Ur —U; —Va)}
= Pof(Xu > Xa) n (Xu > Xa)} = L.
On the other hand
MG K) =P{(Vu+Us+ V> —=U)n (Vig + Us + Vg > — U1}

(4.9) = Po{(Vu 4+ Us + Va < U1)n (Ve + Us + Vyu < Uh)}
= [ L(un)g(n) dua,
where Py(Vy + Uz + Vo = u) = L(u).

By Schwarz’ inequality
[ L(u)g(w) duy = [ Llw)g(u) dua]* = [Po{ (X + Xa) > O} = 1. qe.d.

The following result is immediate by combining Theorem 2 and Lemma 2.

THEOREM 4. Assume model (1.1), (1.2) and let 6™ and 6 be defined by (2.1) and
(3.1). Then the asymptotic efficiency of 8™ relative to  in the sense of reciprocal ratio
of asymptotic variances, ARE (6%, 0) satisfies the following inequalities:

(4.10) 12¢7'(" + er)[[ fi(z) da]’ £ ARE (8% 8) < 12(6” + ) [[ f(z) da]’
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