DOMAINS OF OPTIMALITY OF TESTS IN SIMPLE RANDOM SAMPLING

By David K. Hildebrand¹

University of Pennsylvania

0. Summary. This paper deals with the structure of sets Ω of distributions for which a particular test is the most powerful for testing a simple hypothesis $H: f = f_0$ vs. $K: f \in \Omega$, that is, with the domain of optimality of a test. The context is restricted to these Ω consisting of probabilities having continuous positive densities, and to one-sample tests.

The important concept is that of a family of tests, one for each significance level. This concept allows us to use the full power of the Neyman-Pearson Lemma.

The main results are:

- (1) The domain of optimality of a test family Φ is essentially a multiplicatively-convex (convex in the logarithms) cone; hence there are distributions both "near to" and "far from" the null distribution for which Φ is optimal. (Theorems 1, 2, and 3).
- (2) If Φ is uniformly most powerful for testing $H: f = f_0$ vs. $K: f \in \Omega$ with $n \ge 2$ then the class of distributions has a monotone likelihood ratio. (Theorem 4).
- 1. Test families. In the usual nomenclature, a statistical "test" (e.g., t-test, Mann Whitney test) is, in fact, a family of tests, indexed by the size or significance level α . The idea of families of tests leads, it will be seen, to a number of useful converses to known theorems. The relationship among tests in a family is that the critical region expands with increasing size α of test.

We will require test function $\varphi_{\alpha}(x_1, \dots, x_n)$ giving the probability of rejecting H when $X_1 = x_1, \dots, X_n = x_n$, with $P[\text{Rej. } H \mid H] = \int_{\mathbb{R}_n} \varphi_{\alpha}(x_1, \dots, x_n) \cdot f_0(x_1) \cdots f_0(x_n) dx_1 \cdots dx_n \leq \alpha$. Then a test family should be defined by (1) $\Phi = \{\varphi_{\alpha} \mid 0 \leq \alpha \leq 1, \varphi_{\alpha} \leq \varphi_{\alpha}' \text{ if } \alpha < \alpha'\}$. This guarantees the "expanding critical region".

We will speak of most powerful (MP) families, UMP families, etc., if each $\varphi_{\alpha} \varepsilon \Phi$ has the designated property.

2. Optimal families. To avoid all measure-theoretic problems, we restrict ourselves to test situations in which the (simple) null hypothesis and the alternative consist of probability measures from the Scheffé class Ω_3^* [3] of measures possessing continuous, strictly positive densities (with respect to a fixed measure μ , Lebesgue or otherwise) on the open interval (a, b) $(-\infty \le a < b \le \infty)$, and null outside (a, b).

For this class, it is clear that there is no test having power 1 and size < 1. Hence the full Neyman-Pearson lemma ([1], p. 65) applies. φ_{α} is a most powerful

308

Received 16 November 1967.

¹ Supported by National Science Foundation grant No. IG-67-17.

size α test of $H: f = f_0$ vs. $K: f = f_1$ if and only if φ_{α} is of exact size α and there exists a number $c_{1\alpha}$ such that (a.e. μ)

(2)
$$\varphi_{\alpha}(x_{1}, \dots, x_{n}) = 1 \quad \text{if} \quad \prod f_{1}(x_{i}) / \prod f_{0}(x_{i}) > c_{1\alpha}$$
$$= 0 \quad \text{if} \quad \prod f_{1}(x_{i}) / \prod f_{0}(x_{i}) < c_{1\alpha}.$$

(The definition of φ_{α} on the set—possibly of positive measure—having likelihood ratio = $c_{1\alpha}$ is arbitrary, within the restriction that φ_{α} have exact size α .) We may suppose that (2) is satisfied for all (not just almost all) (x_1, \dots, x_n) satisfying either inequality.

Hence we have the result: Φ is a most powerful family if and only if each φ_{α} is a likelihood ratio (LR) test function (2). Such a family obviously satisfies the defining condition (1).

Furthermore, we have the following Fundamental Lemma. Φ is most powerful for testing $H:f=f_0$ vs. $K:f=f_1$ and for testing $H:f=f_0$ vs. $K:f=f_2$ if and only if $\prod_{i=1}^n [f_2(x_i)/f_0(x_i)] \equiv h(\prod_{i=1}^n [f_1(x_i)/f_0(x_i)])$ where h is a strictly increasing, continuous function on $(\min L_1, \max L_1)$ where $L_1 = \prod [f_1(x_i)/f_0(x_i)]$.

PROOF. Suppose such an h exists. Then for any α it is clear that the LR test is the same for either testing problem.

Conversely, if Φ is MP for f_1 vs. f_0 and f_2 vs. f_0 , then φ_{α} is a LR test for any α , $0 < \alpha < 1$. It follows that $\prod_{1}^{n} [f_1(x_i)/f_0(x_i)] > \prod_{1}^{n} [f_1(y_i)/f_0(y_i)]$ if and only if $\prod_{1}^{n} [f_2(x_i)/f_0(x_i)] > \prod_{1}^{n} [f_2(y_i)/f_0(y_i)]$. For if $\prod_{1}^{n} [f_1(x_i)/f_0(x_i)] > \prod_{1}^{n} [f_1(y_i)/f_0(y_i)]$ while $\prod_{1}^{n} [f_2(x_i)/f_0(x_i)] \leq \prod_{1}^{n} [f_2(y_i)/f_0(y_i)]$ there clearly exists an α such that the LR test $\varphi_{\alpha}(x_1, \dots, x_n) = 1$ for $K: f = f_1$ while $\varphi_{\alpha}(y_1, \dots, y_n) = 0$, but φ_{α} is the LR test for f_2 . This is a contradiction unless $\prod_{1}^{n} [f_2(x_i)/f_0(x_i)] = \prod_{1}^{n} [f_2(y_i)/f_0(y_i)] = c_{1\alpha}$. In this case we can change $c_{1\alpha}$, thereby changing α , by a small amount, and have a contradiction.

This result will be summarized by saying that φ is MP for f_1 vs. f_0 and f_2 vs. f_0 if and only if f_1 and f_2 have the same likelihood ratio order (LRO).

Now, suppose f_1 and f_2 have the same LRO. Then, if for some x_1, \dots, x_n , $L_1(x_1, \dots, x_n) = \prod_1^n [f_1(x_i)/f_0(x_i)] = x$, define $h(x) = L_2(x_1, \dots, x_n) = \prod_1^n [f_2(x_i)/f_0(x_i)]$. This defines h on (m, M) where $m = \min L_1$, $M = \max L_1$. h is clearly unambiguously defined (by the LRO property), increasing and continuous on (m, M), q.e.d.

We will have use for the following:

COROLLARY. If Φ is MP for testing $H: f = f_0$ vs. $K: f = f_1$ and $H: f = f_0$ vs. $K: f = f_2$, then $f_1(x)/f_0(x) > f_1(y)/f_0(y)$ if and only if $f_2(x)/f_0(x) > f_2(y)/f_0(y)$, hence if and only if $f_2(x)/f_0(x) = h_1(f_1(x)/f_0(x))$ where h_1 is a strictly increasing, continuous function on $(\min[f_1(x)/f_0(x)], \max[f_1(x)/f_0(x)])$.

PROOF. Suppose $f_1(x)/f_0(x) > f_1(y)/f_0(y)$ while $f_2(x)/f_0(x) \leq f_2(y)/f_0(y)$. Then $L_1(x, \dots, x) > L_1(y, \dots, y)$ while $L_2(x, \dots, x) \leq L_2(y, \dots, y)$ which contradicts the fundamental lemma. The construction of h_1 is the same as that of h.

3. Multiplicative convexity of domains of optimality. By definition, f_1 is in

the domain of optimality of Φ if and only if Φ is optimal for testing $H: f = f_0$ vs. $K: f = f_1$. We will say that the domain of optimality of Φ , $D(\Phi)$, is *m*-convex (multiplicatively convex) if $D(\Phi)$ contains the density $C_{\theta}f_1^{\theta}(x)f_2^{1-\theta}(x)$ ($0 \le \theta \le 1$) whenever it contains f_1 and f_2 . Note that, by Hölder's inequality ([2], p. 156), $f_1^{\theta}f_2^{1-\theta}$ is integrable if f_1 and f_2 are integrable.

As an immediate consequence of the fundamental lemma we have

THEOREM 1. For any Φ , $D(\Phi)$ is m-convex.

PROOF. If $D(\Phi)$ is empty or contains only one point, there is nothing to prove. Suppose $D(\Phi)$ contains f_1 and f_2 . Then, by the fundamental lemma, $L_2(x_1, \dots, x_n) \equiv h(L_1(x_1, \dots, x_n))$, where h is continuous and strictly increasing. Take $h_{\theta}(x) = C_{\theta}^{n} x^{\theta} (h(x))^{1-\theta}$, $0 \leq \theta \leq 1$ where $C_{\theta}^{-1} = \int_{-\infty}^{\infty} f_1^{\theta}(x) \cdot f_2^{1-\theta}(x) d\mu < \infty$. Then $h_{\theta}(x)$ is clearly increasing and continuous and

$$\prod_{1}^{n} \left[C_{\theta} f_{1}^{\theta}(x_{i}) f_{2}^{1-\theta}(x_{i}) / f_{0}(x_{i}) \right] \equiv h_{\theta}(\prod_{1}^{n} f_{1}(x_{i}) / \prod_{1}^{n} f_{0}(x_{i})).$$

Hence $C_{\theta}f_1^{\theta}(x)f_2^{1-\theta}(x)$ is in $D(\Phi)$ whenever f_1 , f_2 are, by the fundamental lemma.

Intuitively it is more plausible that if Φ is MP for f_1 vs. f_0 and for f_2 vs. f_0 , it is MP for any mixture $\theta f_1 + (1 - \theta) f_2$ vs. f_0 . That this is false can easily be seen from the following discrete counterexample, which could easily be "continuized":

Take n=2; $f_0(x)=\frac{1}{4}$ on x=1,2,3,4; $f_1(1)=19C_1$, $f_1(2)=20C_1$, $f_1(3)=12C_1$, $f_1(4)=30C_1$, $f_2(1)=5C_2$, $f_2(2)=10C_2$, $f_2(3)=2C_2$, $f_2(4)=22C_2$, where C_1 and C_2 are appropriate normalizing constants. Then it is easily shown that $L_1(1,2)>L_1(3,4)$ and $L_2(1,2)>L_2(3,4)$ but, with $L(x,y)=\frac{1}{2}[f_1(x)+f_2(x))\frac{1}{2}(f_1(y)+f_2(y)]/f_0(x)f_0(y)$, L(1,2)< L(3,4), so that the LRO of $\frac{1}{2}f_1+\frac{1}{2}f_2$ differs from that of f_1 and f_2 . (It is routine to verify that the LRO's of f_1 and f_2 are identical.) Hence by the fundamental lemma, the f_1 , f_2 optimal Φ is not optimal for $\frac{1}{2}f_1+\frac{1}{2}f_2$.

 $D(\Phi)$ is not only *m*-convex, it is essentially a convex cone; the meaning of this is defined in the following theorems.

THEOREM 2. If Φ is MP for testing f_1 vs. f_0 , it is MP for testing $H: f = f_0$ vs. $K: f = f_\theta = C_\theta f_1^\theta f_0^{1-\theta}, \ 0 < \theta \le 1$.

PROOF. Take $h(x) = C_{\theta}^{n} x^{\theta}$. h is continuous and increasing and h ($L_{1}(x_{1}, \dots, x_{n})$) $\equiv L_{\theta}(x_{1}, \dots, x_{n})$, with the obvious definitions of the likelihoods L_{1} and L_{θ} . Hence the fundamental lemma applies.

If $\Phi = \{\varphi_{\alpha}\}$, define $\Phi^{c} = \{\varphi_{\alpha}^{c}\}$ where $\varphi_{\alpha}^{c} = 1 - \varphi_{1-\alpha}$.

THEOREM 3. If there exists a $\theta < 0$ for which $f_{\theta} = C_{\theta} f_1^{\theta} f_0^{1-\theta}$ is a density, and Φ is MP for testing $H: f = f_0$ vs. $K: f = f_1$, then Φ^c is MP for testing $H: f = f_0$ vs. $K: f = f_{\theta}$.

PROOF. The LRO of f_{θ} is the opposite of the LRO of f_1 . Hence Φ^c is the LR test family.

These two results demonstrate that the most powerful nature of a test is a question of "direction" not "distance"; there is no test which is most powerful only for those distributions "far from" or "moderately far from" the null dis-

tribution. (If the densities in Ω are bounded, it follows that every MP test is locally most powerful, in that, if Φ is MP for $H:f=f_0$ vs. $K:f=f_1$, for each $\epsilon > 0$ there is a density f_{θ} such that Φ is MP for $H:f=f_0$ vs. $K:f=f_{\theta}$ with $\sup_x |f_0(x) - f_{\theta}(x)| < \epsilon$. We need only take θ sufficiently near 0.)

4. Montone likelihood ratios and UMP tests. In the case n=1, the corollary to the fundamental lemma summarizes the nature of MP tests fairly completely. (In this case, the domains of optimality are also (additively) convex; take $h_{\theta}(x) = \theta x + (1 - \theta)h(x)$). When $n \geq 2$, however, the independence assumption leads to sharp restrictions on the possibility of uniformly most powerful (UMP) tests; indeed, such test families can occur only in already known cases.

Recall that a family $\{f_{\theta}\}$ of densities indexed by a real parameter θ has a monotone likelihood ratio (MLR) if there exists a function $T(x_1, \dots, x_n)$ such that if $\theta_1 < \theta_2 \prod f_{\theta_2}(x_i) / \prod f_{\theta_1}(x_i)$ is an increasing function of $T(x_1, \dots, x_n)$. ([1], p. 68). If $\{f_{\theta}\}$ has a MLR there exists a UMP test family for $H: \theta \leq \theta_0$ vs. $K: \theta > \theta_0$, namely:

$$\varphi_{\alpha}(x_1, \dots, x_n) = 1$$
 if $T(x_1, \dots, x_n) > C_{1\alpha}$

$$= C_{2\alpha}$$
 if $T(x_1, \dots, x_n) = C_{1\alpha}$

$$= 0$$
 if $T(x_1, \dots, x_n) > C_{1\alpha}$.

We now are in a position to prove the converse.

THEOREM 4. If Φ is UMP for testing $H: f = f_0$ vs. K: f in Ω , where $\Omega \cup \{f_0\} \subset \Omega_3^*$, and the sample size $n \geq 2$, then the class of densities $\Omega \cup \{f_0\}$ has a MLR, with respect to an appropriate parameterization.

PROOF. If $\Omega = \{f_1\}$, then, with $T(x_1, \dots, x_n) = \prod [f_1(x_i)/f_0(x_i)]$, the theorem follows trivially. Suppose f_1 and f_2 are in Ω . Then by the fundamental lemma, $\prod [f_2(x_i)/f_0(x_i)] \equiv h(\prod [f_1(x_i)/f_0(x_i)])$, with h continuous and strictly increasing. Also, by the corollary, $f_2(x)/f_0(x) \equiv h_1(f_1(x)/f_0(x))$, h_1 continuous and strictly increasing. We first prove that for $n \geq 2$, this requires that $h(x) = Cx^{\theta}$ for appropriate C and θ . We use the notation $L_a^{-1}(x) = f_a(x)/f_0(x)$ with an appropriate index a.

Fix f_1 ; there exist x_L , x_U such that $L_1^1(x_L) < 1$, $L_1^1(x_U) > 1$, else $f_1(x) \ge f_0(x)$ for all x or $f_1(x) \le f_0(x)$ for all x, either of which is a contradiction. Hence, by the continuity of L_1^1 and the intermediate value theorem there exists an x_0 (between x_L and x_U) such that $L_1^1(x_0) = 1$. Then, if $y = L_1^1(x)$

$$h(y) = h(L_1^{1}(x)L_1^{1}(x_0) \cdots L_1^{1}(x_0))$$

$$= L_2^{1}(x)(L_2^{1}(x_0))^{n-1}$$

$$= h_1(L_1^{1}(x))K^{n-1}$$

$$= h_1(y)K^{n-1}.$$

Hence, $h_1(y) = C'h(y)$, $C' = K^{1-n}$. (Of course, $K \neq 0$).

Furthermore, if
$$y_1 = L_1^{-1}(x_1)$$
, $y_2 = L_1^{-1}(x_2)$

$$h(y_1y_2) = h(L_1^{-1}(x_1)L_1^{-1}(x_2)L_1^{-1}(x_0) \cdots L_1^{-1}(x_0))$$

$$= h_1(L_1^{-1}(x_1))h_1(L_1^{-1}(x_2))K^{n-2}$$

$$= C'h(y_1)C'h(y_2)K^{n-2}$$

$$= (K^{-n})h(y_1)h(y_2).$$

Let $z = \ln y$, $g(z) = \ln h(\exp z)$; then

$$g(z_1 + z_2) = \ln h(\exp (z_1 + z_2))$$

$$= -n \ln K + \ln h(y_1) + \ln h(y_2)$$

$$= (-n \ln K) + g(z_1) + g(z_2)$$

for all z_1 , z_2 in an interval containing 0. This well-known functional equation has as its only continuous solution g(z) = az + b; here $b = n \ln K$. It follows that the only continuous solution for h is (3) $h(y) = Cy^{\theta}$, $C = e^{b}$, $\theta = a$. Since h is increasing, $\theta > 0$. (Thus $D(\Phi)$ is the "line" through f_0 and f_1 .)

Now for fixed f_1 and arbitrary f in Ω , we have $L(x_1, \dots, x_n) = h(L_1(x_1, \dots, x_n)) = C(\theta)(L_1(x_1, \dots, x_n))^{\theta}$, since C is clearly determined by θ .

Hence, associated with each distribution f in Ω is a real parameter θ . We assign $\theta = 0$ to f_0 , $\theta = 1$ to f_1 , so equation (3) holds for these densities as well.

If we take
$$T(x_1, \dots, x_n) = L_1(x_1, \dots, x_n)$$
, then for $\theta_1 < \theta_2$

$$\Pi [f_{\theta_2}(x_i)/f_{\theta_1}(x_i)] = L_{\theta_2}(x_1, \dots, x_n)/L_{\theta_1}(x_1, \dots, x_n)
= C(\theta_2)(T(x_1, \dots, x_n))^{\theta_2}/C(\theta_1)(T(x_1, \dots, x_n))^{\theta_1}
= [C(\theta_2)/C(\theta_1)]T^{(\theta_2-\theta_1)}.$$

an increasing function of T. This completes the proof.

REFERENCES

- [1] LEHMANN, E. L. (1959). Testing Statistical Hypotheses. Wiley, New York.
- [2] Loève, Michel (1963). Probability Theory. Van Nostrand, Princeton.
- [3] Scheffé, H. (1952). On a measure problem arising in the theory of nonparametric tests, Ann. Math. Statist. 14 227-233.