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DOMAINS OF OPTIMALITY OF TESTS IN SIMPLE RANDOM SAMPLING

By Davip K. HILDEBRAND!

University of Pennsylvania

0. Summary. This paper deals with the structure of sets Q of distributions for
which a particular test is the most powerful for testing a simple hypothesis
H:f = fyvs. K:f €Q, that is, with the domain of optimality of a test. The con-
text is restricted to these Q consisting of probabilities having continuous positive
densities, and to one-sample tests.

The important concept is that of a family of tests, one for each significance
level. This concept allows us to use the full power of the Neyman-Pearson
Lemma.

The main results are:

(1) The domain of optimality of a test family ® is essentially a multiplicatively-
convex (convex in the logarithms) cone; hence there are distributions both
“near to’’ and ““far from’’ the null distribution for which & is optimal. (Theorems
1, 2, and 3).

(2) If ®is uniformly most powerful for testing H:f = fo vs. K:fe @ withn = 2
then the class of distributions has a monotone likelihood ratio. (Theorem 4).

1. Test families. In the usual nomenclature, a statistical “test” (e.g., t-test,
Mann Whitney test) is, in fact, a family of tests, indexed by the size or signif-
icance level a. The idea of families of tests leads, it will be seen, to a number of
useful converses to known theorems. The relationship among tests in a family
is that the critical region expands with increasing size o of test.

We will require test function ¢u(2;, -+, ,) giving the probability of reject-
ing HwhenX; =2y, -+ , X, = @, ,with P [Rej. H | Hl = [5, 0a(1, ++ ,2a)"
fo(xy) +-- fo(zn) doy +- - dzn = a. Then a test family should be defined by (1)
®={p.|0=a=1¢. = ¢a1f < o'}. Thisguarantees the “expanding critical
region”.

We will speak of most powerful (MP) families, UMP families, etc., if each
¢« € P has the designated property.

2. Optimal families. To avoid all measure-theoretic problems, we restrict
ourselves to test situations in which the (simple) null hypothesis and the alterna-
tive consist of probability measures from the Scheffé class 25* [3] of measures
possessing continuous, strictly positive densities (with respect to a fixed measure
i, Lebesgue or otherwise) on the open interval (a, b) (—» = a < b = «),
and null outside (a, b).

For this class, it is clear that there is no test having power 1 and size < 1.
Hence the full Neyman-Pearson lemma ([1], p. 65) applies. ¢, is a most powerful
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size a test of H:f = fovs. K:f = f;if and only if ¢, is of exact size @ and there
exists a number ¢, such that (a.e. u)

(2) Cal@i, oy @) =1 it JIA@)/I]fo(x:) > e
=0 if Hfl(x,)/nfo(x,) < Ca -

(The definition of ¢, on the set—possibly of positive measure—having likelihood
ratio = ¢, is arbitrary, within the restriction that ¢, have exact size a.) We
may suppose that (2) is satisfied for all (not just almost all) (2, ---,x,)
satisfying either inequality.

Hence we have the result: ® is a most powerful family if and only if each ¢, is
a likelihood ratio (LR) test function (2). Such a family obviously satisfies the
defining condition (1).

Furthermore, we have the following Fundamental Lemma. ® is most powerful
for testing H:f = fy vs. K:f = f; and for testing H:f = fy vs. K:f = f,if and
only if [T [fa(:)/fo(x:)] = h(] 1= [fi(2:) /fo(x:)]) where h is a strictly in-
creasing, continuous function on (min I , max L;) where Iy = [] [fi(:)/fo(x:)].

Proor. Suppose such an h exists. Then for any « it is clear that the LR test
is the same for either testing problem.

Conversely, if ® is MP for f, vs. fo and f; vs. fy, then ¢, is a LR test for any
a, 0 < a < 1. It follows that [[i" [fi(x:)/fo(x:)] > TIh" Ualy:)/fo(y:)] if and
only if [Ii" [fa(m:)/fo(z:)] > L fa(ws) fo(ys)). For it TLh" [fu(ws) /fo(mi)] >
11" h(:) /fo(y:)] while TIh" [fa(z:) /fo(z:)] < TTa" [fe(y:)/fo(y:)] there clearly
exists an a such that the LR test go(@1, - ,2.) = 1 for K:f = f
while ¢o(y1, **+ ,¥s) = 0, but ¢, is the LR test for f; . This is a contradiction
unless 1" [fa(z:) /fo(x:)] = 1" [fe(w:)/fo(yi)] = cie. In this case we can
change ¢+, thereby changing «, by a small amount, and have a contradiction.

This result will be summarized by saying that ¢ is MP for f; vs. fo and fa vs. f,
if and only if f; and f, have the same likelihood ratio order (LRO).

Now, suppose fi and f; have the same LRO. Then, if for some 21, -+, 2, ,
Li(zy, -+- , ) = Hl" [fi(zi)/fo(x:)] = =z, define h(x) = La(m, -+-, %) =
11" [f2(2:) /fo(=:)]. This defines & on (m, M) wherem = min L; , M = max L, .
h is clearly unambiguously defined (by the LRO property), increasing and
continuous on (m, M), q.e.d.

We will have use for the following:

CoROLLARY. If ® is MP for testing H:f = fy vs. K:f = fi and H:f = f, vs.
K:f = fu, then fi(z) /fo(z) > fi(y)/fo(y) if and only if fo(x)/fo(x) > fo(y)/fo(y),
hence if and only if fo(x) /fo(x) = h(fi(x)/fo(x)) where hy is a strictly increasing,
continuous function on (min [fi(x)/fo(x)], max [fi(z)/fo(x)]).

Proor. Suppose f1(z)/fo(z) > fi(y)/fo(y) while fo(z)/fo(z) = fx(y)/fo(y)-

Then Ll(xy e ’x) > Ll(y: e ’y) while LZ(I’ e ’x) = L2(y’ e ’y)
which contradicts the fundamental lemma. The construction of h; is the same as
that of A.

3. Multiplicative convexity of domains of optimality. By definition, f; is in
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the domain of optimality of ® if and only if ® is optimal for testing H:f = f,
vs. K:f = fi . We will say that the domain of optimality of ®, D(®), is m-convex
(multiplicatively convex) if D(®) contains the density Cofi’(x)fs' ()
(0 = 0 = 1) whenever it contains f; and f, . Note that, by Holder’s inequaltiy
(121, p. 156), fi’fs" " is integrable if f; and f» are integrable.

As an immediate consequence of the fundamental lemma we have

TaEOREM 1. For any ®, D(®) is m-convex.

Proor. If D(®) is empty or contains only one point, there is nothing to prove.
Suppose D(®) contains f; and fs. Then, by the fundamental lemma,
Lo(zy, -+ ,2,) = h(Ly(xy, -+, 2,)), where h is continuous and strictly in-
creasing. Take ho(z) = Cy"z’(h(z))*™%, 0 < 6 < 1 where C;" = [2afi(z)-
f2 () du < . Then hy(z) is clearly increasing and continuous and

I [Cof’ (2)f' (%) /fo(=)] = he(TT1" i)/ T1L" foli) ).

Hence Cyff (z)f2 (z) is in D(®) whenever fi, f» are, by the fundamental
lemma.

Intuitively it is more plausible that if ® is MP for f; vs. fo and for f vs. fo,

it is MP for any mixture 6f; + (1 — 6)f2 vs. fo . That this is false can easily be
seen from the following discrete counterexample, which could easily be “con-
tinuized”’:
Taken = 2,fo(x) = 31; onxr = ]., 2, 3, 4,f1(1) = 1901 ,f1(2) = 2001,f1(3) =
12Cy, fi(4) = 30Cy, fo(1) = 5C,, f2(2) = 10Cy, fo(3) = 2Cq, fo(4) = 22C,,
where C; and C: are appropriate normalizing constants. Then it is easily shown
that Ly(1, 2) > Li(3, 4) and Lq(1, 2) > Ly(3, 4) but, with L(z, y) =
(@) + fu(2)3(h(y) + fe(@)l/fo(x)fo(y), L(1, 2) < L(3, 4), so that the
LRO of f; + if. differs from that of f; and f; . (It is routine to verify that the
LRO’s of fi and f» are identical.) Hence by the fundamental lemma, the fi, f2
optimal ® is not optimal for %fi + 1f2.

D(®) is not only m-convex, it is essentially a convex cone; the meaning of
this is defined in the following theorems.

THEOREM 2. If ® is MP for testing f vs. fo, @t s MP for testing H:f = fy vs.
Kif=fo=Cfifi’,0<0=1.

Proor. Take h(z) =Cs"z’. h is continuous and increasing and h (Ly(2, « -+ ,
2,)) = Le(x1, -+, ,), with the obvious definitions of the likelihoods L, and
Ly . Hence the fundamental lemma applies.

If ® = {¢a}, define & = {,’} where 0.’ = 1 — @10 .

THEOREM 3. If there exists a 0 < O for which fo = Cofi’fo " is a density, and
& is MP for testing H:f = fo vs. K:f = fi, then ® is MP for testing H:f = fo
vs. K :f = fo .

Proor. The LRO of f, is the opposite of the LRO of f; . Hence $° is the LR
test family.

These two results demonstrate that the most powerful nature of a test is a
question of “direction” not “distance”; there is no test which is most powerful
only for those distributions “far from” or “moderately far from” the null dis-
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tribution. (If the densities in © are bounded, it follows that every MP test is
locally most powerful, in that, if ® is MP for H:f = f, vs. K:f = f1, for each
e > 0 there is a density fs such that ® is MP for H:f = f, vs. K:f = f, with
sup; |fo(z) — fo(z)| < e We need only take 6 sufficiently near 0.)

4. Montone likelihood ratios and UMP tests. In the case n = 1, the corol-
lary to the fundamental lemma summarizes the nature of MP tests fairly com-
pletely. (In this case, the domains of optimality are also (additively) convex;
take ho(z) = 6z + (1 — 0)h(z)). When n = 2, however, the independence
assumption leads to sharp restrictions on the possibility of uniformly most
powerful (UMP) tests; indeed, such test families can occur only in already
known cases.

Recall that a family {fs} of densities indexed by a real parameter § has a mono-
tone likelihood ratio (MLR) if there exists a function T (&, - - - , x,) such that
if 6 < 6] fo,(x:)/I1 fo,(x:) is an increasing function of T (z, -+, Zn).
([1], p- 68). If {fs} has a MLR there exists a UMP test family for H:6 < 6,
vs. K:60 > 6, , namely:

Pa(Tr, -, 2,) =1 if T(xy, -+, ) > Cia
= Cza lf T(xl, ,x,,) = C]a
=0 ifT(xl,--~,x,,)>Cm.

We now are in a position to prove the converse.

TaEOREM 4. If ® is UMP for testing H:f = fo vs. K:f in Q, where Q u {fo} C
Q:*, and the sample size n = 2, then the class of densities @ u {fo} has a MLR,
with respect to an appropriate parameterization.

Proor. If @ = {fi}, then, with T(zy, -+, 2) = [ [fi(x:)/fo(x:)], the
theorem follows trivially. Suppose fi and f; are in Q. Then by the fundamental
lemma, [] [fa(x:)/fo(x:)] = h(I] [fi(2:) /fo(2:)]), with h continuous and strictly
increasing. Also, by the corollary, fa(z)/fo(z) = h(fi(z)/fo(x)), M continuous
and strictly increasing. We first prove that for n = 2, this requires that h(z) =
C2’ for appropriate C and 6. We use the notation Ly (z) = fu(z)/fo(z) with an
appropriate index a.

Fix f; ; there exist x, , zy such that L,'(z;) < 1, Li'(zy) > 1, else fi(z) =
fo(z) for all z or fi(x) = fo(x) for all z, either of which is a contradiction. Hence,
by the continuity of L' and the intermediate value theorem there exists an o
(between x,, and xy) such that L,'(2) = 1. Then, if y = L*(x)

h(y) = h(Ly' (%) Ly’ (20) - - - La'(0))
= Ly (z) (L' (%)) "
= hl(Lll(x))K"_l
= h(y)K* .
Hence, hi(y) = C'h(y), C' = K*™. (Of course, K = 0).
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Furthermore, if y, = L'(z1), y2 = L' (22)
h(ywz) = h(Ly' (1) Lo (2) L' (20) -+ La'(20))
= k(L' (21) Yhu(Lo' (22) )K"
= C'h(5:)C'h(y2) K™

= (K")h(y)h(y2).
Let z = Iny, g(2) = In h(exp 2); then
9(z1 + z2) = Inh(exp (21 + 22))

—nlnK + In h(yl) + In h(yz)
(—nln K) + g(a) + g(z)

for all 21, 2; in an interval containing 0. This well-known functional equation
has as its only continuous solution g(z) = az + b; here b = nIn K. It follows
that the only continuous solution for & is (3) h(y) = Cy’, C = ¢°, § = a. Since
h is increasing, § > 0. (Thus D(®) is the “line” through f; and f; .)

Now for fixed fi and arbitrary f in @, we have L(xy,---,x,) =
R(Ly(y, -y %0)) = C(0)(La(2y, -, ,))°, since C'is clearly determined by 6.

Hence, associated with each distribution f in @ is a real parameter . We
assign 6§ = 0tofo, & = 1to fi, so equation (3) holds for these densities as well.

If we take T (21, - -+, ;) = Ly(2y, - -+ , ), then for 6 < 6,

H [foz(xi)/fol(xi)] = Loz(xl y " xn)/Lol(xl y "y xn)
= C(6) (T (21, -+, 2a))/C(0) (T (@1, +++ , 7a))"
= [C(B2)/C (01T,

an increasing function of 7. This completes the proof.
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