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0. Summary. The distribution of the statistic X which is the number of edges
in the intersection graph G, n Go(V, E: n E:) of Gi(V, E:) and Go(V, E,) is in-
vestigated through its moments. An expression is obtained for the rth central
moment and the moment ratios of X are, under a set of sufficient conditions,
shown to approximate to those of a normal variable with the standardised vari-
able.

Z = (X — «(X)}/(var (X))}
having an asymptotically unit normal distribution.

1. Introduction. David and Barton [1] (1965), gave a set of conditions under
which the number of edges in the random intersection of two graphs has an
asymptotic Poisson distribution. The stantistic, X say, which corresponds to the
number of such edges was first discussed by Knox [2] and [3] (1963) and (1964)
respectively for ‘epidemicity’ in the field of epidemiological statistics. It has been
recognised as providing, for the first time, a valid test, e.g. Doll [4].

So far, no conditions for asymptotic normality have been discovered (except in
so far as David and Barton’s Poisson limit may be used to provide a first stage in
a double limit using the central limit theorem for a Poisson variate). We show
here that X has an asymptotically normal distribution under fairly wide condi-
tions.

Two graphs Gi(V1, E1) and G2(V, E;) are supposed to consist of sets of ver-
tices V1 and V, and sets of edges E: and E; respectively and the vertices of one
are randomly mapped on to those of the other. Without loss of generality we may
consider them as consisting of the same set of vertices (that is ¥V, = V) but not
necessarily having the same set of edges (that is E: and E; are not necessarily
the same). A pair of vertices v; and v, which have an edge between them in say,
G, are said to be adjacent in G; . The graph G defined by

G(V,E) = G(V,E:n E,);

V = V, = V,is called the intersection graph and X is the number of edges in it.
We study the distribution of X where the vertices of G: are mapped at random on
to those of G». The asymptotic behaviour is as n, the number of vertices in G,
tends to infinity. Clearly we have to envisage a sequence of pairs of graphs G, and
G- and the conditions describe the asymptotic behaviour of each pair as n tends
to infinity.
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2. Notation. We require some shorthand notation for the subgraphs of both
graphs G and Gz . The expressions for the moments of X are in terms of the graph
symmetric functions of subgraphs with 1, 2, - -, r (for the rth moment) edges.
We require in particular notation for subgraphs with 1, 2, 3, or 4 edges and these
are set out in Figure 1. We also let p; denote the degree (sometimes called valency)
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at the 7th vertex and p,, p» the average degrees in G4 and G, respectively. Both
p1 and p: depend on the number of vertices in and the degree of connectedness of
G: and @G. respectively. »G(V, E) denotes the number of non-isomorphic ways of
labelling the vertices of G(V, E) withv,, -+, vp.

3. Moments of X. Let a;; = 1(0) if the vertices 7 and j are (are not) adjacent
in Gy. Bij is similarly defined for G». Then

X = DiciaiBij = DiciTij
where
Tij = aiifii, = (X)) = e(2icizii).
Let W denote the set of all pairs (7,7) ¢ < jin (1, n);let
Wi ;5 T = (1)2)’ (1, 3)7 R} (l)n), (2’3), ] (n - lyn)

denote the elements of W.

( EK:‘ xii)r = ( Zw xau')r = (Zw aw.ﬂw.‘)r

= Zw a:‘oil e awi,B:’il e zﬁlrl/nr‘ !

where D fwy7i = r, and the summation is over all values 1 < ¢ < r and w;’s in
W. Hence

(3.1) u o= e{ 2waly co- alf Bl - - BY/(rid - D)
= Dwelad, - aw,)e(B, - BL )/ (nl <o 1)
since by the null hyopthesis G, is independent of G .
Let vG(V, E) denote the number of non-isomorphic ways the labels v;, --- ,

vy may be given to the vertices of G(V, E) and suppose a subgraph G(V, E)
consists of = connected components, the 7th one occurring ; times. Then

vG(V, E) = ol [Tiet (G (vie0)) " /T L3 ()™

where D i1 vi = v; D D ik, = 1, Jomi = m; k is the number of edges in the
7th component, not counting multiplicities, and there are c different connected
subgraphs in Q(V, E). David and Barton [1] showed that the sums ), @u;, - -
z;, are graph symmetric functions which are fixed characteristics of G, and G .
These, when divided by the number of terms they contain, are equivalent to finite
population moments. That is

e(G(v, 1)) = plG(v, r)] = [G(v, r)I/NG(v, 7),
where NG (v, r), the number of terms in G(v, r), is given by
NG(v, r) = vG(v, r)nc, -

When the symmetric functions are augmented we use square brackets and then
NG(v, r) = vG(v, r)AG(v, r)nc, where AG(v, r) is the augmentation factor.

p = 2. NG(v, r)ulG(v, r)LlG(v, r)]./AG(v, 1)
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with summation over all subgraphs with r edges (including multiple ones).
e = 2o {Te,(—1)'ING(2, 1)ulG(2, D]nlG(2, 1)]/AG(2, 1))
- 2P NG(v, 7 — s)ulG(v, 1 — )lwlG(v, 1 — 5)L
- oG(v, r — 8)/AG(v, r — s}
(¢ being the multinomial coefficient !/ ] [r;!).
= 22" NG(v, )G (v, r)lwlG(v, 1)leG(v, 1)/AG(v, 1) + 2T N{kG(2, 1)
+ G(v, r — k)} {wlkG(2, 1) + G(v, r — k)lw[kG(2, 1)
+ G(v, r — B)Le{kG(2,1) + G(v, r — k)}/A{RG(2, 1) + G(v, r — k)}
+ (X")iare(~1)'(NG(2, DulG(2, DIwlG(2, DLAG(2, 1}
- DX NG, r — 8)u[G(v, 7 — 8) G (v, T — 8)leQv, 7 — 8)JAG(v, — 8)
+ 2 HNEG(2, e = 2) + kG(3, e = 2)}ulkG(2, e = 2)
+ kG(3, e = 2)lkG(2, e = 2) + kG(3, e = 2Lp{k1G(2, ¢ = 2)

+ kG(3, e = 2)} (A{G(2, e 2 2) + 7G(3, e 2 2)})°

where

> *is over all terms for which s = 0 and the corresponding subgraphs
have any number of connected components of which at least one
hasv = 3 and e; > 2 and none is of the form 715;

>-* contains terms (when s = 0) for which there is at least 1 (k = 1)
connected subgraph of the form 71j;

> is over all terms in u, for which s > 0 and

> * is over all terms whose corresponding subgraphs are either 51%
with 2 < s or 71°'j1%k, s,, so = 1.

4. The normal limit. The numerical values of the graph symmetric functions
evidently depend on the degree of connectedness of Gy and @; and these numerical
values, can largely be expressed in terms of the local and average degrees of these
graphs. ‘

TaeoreM 4.1. If n} < pps — o but {mpe/n}" — 0 for r > 2 asn — » the
standardised form of X, that is Z = {X — e(X)}/(var (X))}, has a unit normal
dustribution.

First we prove two Lemmas

LemMa 1. The contribution to p. from a term corresponding to a subgraph with
k connected components, increase with k.

Proor. Now 1 = k < 2r. When k = 2r, each of the connected components in
the subgraph has the form ¢1j and

[G(v, )] = GLT + kulalyT?[6151k] + kalslf][i1%] + - -
= {3(np)}" + ki(np/2)n/2) 5:® + ---
= (np/2)" + O(n"'p") k1, ke are finite constants.
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When & = 2r — 1 that is one of the subgraphs has the form 7171% while each
of the others have the from 715
[G(v, )] = BLT L1k + kaldlg]T[i1i1k] 4 kdilg]G151R7 + - - -
= (np/2)7"n 2 pi®/2 + (np/2)"n 2] 0¥ +
= (np/2)"" + O(np)™".

It can similarly be shown that as & decreases so does the contribution to
plG(v, r)], when G(v, r) has k connected components.

LemMMA 2. Sz = D ot C)(=1)'(n®)*(n* ) = 0(n™™).
Proor.
= (a®) 12 () (-1 (n — 26)!(n®)*
= ()T 20 (" (n®) (1) da
= (a®)nlf7 2" (2 — (2))2'6_“ dz
= (n®) ™ n1(2nnh) e q'n*f_,.* (u + O(n'*))z' exp [ 4+ O(n D] du
= n " [ w2 (1 4+ O(nd)) du as n—
=n""(2r —1)(2r — 3) --- 3.1
= O(n™™) forrfiniteas n — o.

Proor or THEOREM 4.1. We shall prove Theorem 4.1 by consudermg the sums
D34 > and DM separately in the limit as =%, in the expression
for psr and pory1 Writing per(2) = L D+ a4 er .

> *: The subgraph in this sum for uar , Written 2“2, , with the largest number
of connected components has r — 2, all except one of which have the form 7151%.
This remaining one may have the form 41%1k1l, 415111, 1%51kill, 51%1k13,
11j1k1lklm, 1521killilm, <151k1114, <151k1l17 or ¢1j1k1llm. The contribution
from this subgraph with the largest number of connected components to ug.(2)
is given by

(2r) (i3 ) ey By e (r — 2) e’ ()
where k is finite and ¢ is the number of vertices in the only connected component

of the subgraph which does not have the form 71j1%k. This sum is of the order of

P sy T /"™y () . There are a finite number of such subgraphs, so that

D= O((pr2)™ " /m"™ s’ (), 3=c=5;
and pe(z) = 2[1%L[1%/n® 4 4[i151k)[6151k)s/n®
+ 431, k1LY, kUl/n® + 4[1517615L"/ (n®)?
= 0(n's’p’/n® = O((p2)").
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It follows then that
(4.2) 2 < (pp)/m"
which converges to 0 by the condition of the theorem. By Lemma 1, contribu-

tions from other subgraphs also tend to zero.
sr + s : The leading term in this sum for us,(z) may be expressed as

St = 2 Tila () (=D BLKEGE (0) ™ (07) T (@)
= 2" (3151, [6251" Sartis " ()

o((16n")") by Lemma 2

and other subgraphs contribute terms less than this by Lemma, 1.

(4.3) N4 T8 = 0{(nmm)) — 0

since we have a finite number of such subgraphs

ng The graph symmetric functions in >_,2, havev = 2,¢ = 2o0rv = 3,
¢ = 2 (with multiplicities). The subgraph with the largest number of connected
components has j of the form ¢1% and r — j of the form 151k, 0 < j < r and the
contribution from this to us is given by

ot = 250 BiE L L T R gk we (),
ki = <p(jG(2, e = 2) + (r — )G, 2))/{»(§G(2, 2)
+ (r — )G(3,2))A%(JG(3, 2) + (r — ))G(3,2))(s%5)}
= 21277/ (r — )02,
= {(2r) Y2} Do 1o 2T 01 ) A [ K [ 1) e ()
(44) + 0(u'(z))
= (2r)1/27r1(2[1%11[1%]e/n P 4[811k L [5171K]e) "ue () n®
= (2n)Y27! + O(w ") (2)

which tends to (2r)!/27r! as n tends to «. For odd values of r consider u 1 :

(4"5) l‘2r+l = { (P 52)rﬂ/nr+1}
and
(4.6) u2r+1 + Zﬂ2r+l = p )rﬁ/nrﬂ}

can be proved as in corresponding sums in pg, . 2*4 consists of terms correspond-
ing to subgraphs of the form 717j and 71"j1"%k; r = 2r,, r, = 1. The leading term
which is the one having the largest number of connected subgraphs, have r,
all except one of which have the form 41% or 7151k, the one having the form
115 of 41"%17%k, r3 = 1. Its contribution to ue.: is given therefore to be of the
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order of uy'(z)/u’ (z) which tends to zero asn — «. That is

4.7) :24,“ = O(ps ).

From equations (4.2) to (4.4) we have

(4.8) limue por(z)/{ue(2)}” = (20)1/27-7!
while from equations (4.5) to (4.7) we have

(4.9) littincs piar41(2)/{1a(2)} = 0.

It follows from equations (4.8) and (4.9) using the Frechet-Shohat limit theorem
that Z = {X — e(X)}/(var (X))! has an asymptotic unit normal distribution.

6. Discussion. The conceptual model of a graph whose number of vertices
tends to infinity, needs to be evaluated in relation to the particular statistical
application. In epidemiological applications, the graphs G; and G have the same
set of vertices V corresponding to a set of patients suffering from a particular
disease; the coordinates of whose domicile and the time of onset of disease are
recorded; but their sets of edges E, and E, are not necessarily the same. If two
cases are ‘adjacent’ in space the corresponding vertices are joined in G, and if
they are ‘adjacent’ in time they are joined in G . Adjacency is defined as being
less than a distance d km apart in space or separated by an interval less than ¢
days in time. In the case of Knox’s X for patients with Leukaemia in Northum-
berland and Durham (1964) [2] if G, denotes the space graph, G, is then essen-
tially a population map of Northumberland and Durham with locations of the
different cases labelled 1, 2, 3, ---, » in the order in which they occurred. A
single edge is drawn between every adjacent pair in space if they are less than 1
km apart. Defining adjacency in time as being less than 60 days apart G, is then
the time graph and it is ‘linear.” The choice of the critical values d and ¢ (d = 1
and ¢ = 60 in Knox’s case) is arbitrary, though they have to behave so that the
limiting conditions in Theorem 4.1 hold. For example, if we consider n —
due to sampling being extended over an indefinite period of time, but the region
from which patients are taken remains fixed, d has to decrease to enable condi-
tions in Theorem 4.1 to hold; ¢ may remain fixed. Conversely, if n increases due
to inclusion of wider geographical area, but cases are all drawn from the same
period, then ¢ has to decrease with d held fixed.

For values of p1pe < n*, X has an asymptotic Poisson distribution (David and
Barton (1965)[1]) and since the variance does not increase with n, there is no
valid ground, under the conditions they gave, for the application of the central
limit theorem for a Poisson variable.

The choice of d and ¢, to give the most powerful test ought to have regard to
the nature of the disease (particularly the length of its incubation period and its
method of spreading) and the density of the population exposed to the disease;
this has been discussed by David and Barton (1966) [5].
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