THE SAMPLING DISTRIBUTION OF AN ESTIMATOR ARISING IN CONNECTION WITH THE TRUNCATED EXPONENTIAL DISTRIBUTION

By Jan M. Hoem

University of Oslo

1. Introduction. Let T_1 , T_2 , \cdots , T_N be independent exponentially distributed random variables with $P\{T_j \leq t\} = 1 - e^{-\lambda t}$ for $t \geq 0$, and let $T_{(1)}$, \cdots , $T_{(N)}$ be the corresponding order statistics. For ease of exposition we shall speak of the T_j as failure times of N parallel test items. We consider a situation where observation is truncated at time τ . $D(\tau) = \max\{n\colon T_{(n)} \leq \tau\}$ is the number of failures observed at or prior to time τ .

$$M(\tau) = \sum_{j=1}^{D(\tau)} T_{(j)}$$

is the total time on test until time τ for items failing at or prior to time τ , and $L(\tau) = M(\tau) + \tau \{N - D(\tau)\}$ is the total time on test until time τ . Then $\lambda^*(\tau) = D(\tau)/L(\tau)$ is a common estimator for λ . The purpose of the present note is to establish the sampling distribution for $\lambda^*(\tau)$.

2. Previous results. Sverdrup (1961) gives large sample properties for $\lambda^*(\tau)$. Bartholomew (1963) studies (small sample) properties of $1/\lambda^*(\tau)$ as an estimator for $\theta = 1/\lambda$, conditional on $D(\tau) > 0$. An interesting application of Bartholomew's result is given by Barlow et al. (1968).

A result closely related to our Theorem 1 is mentioned by Epstein [(1960), pp. 85–86]. Our result (2) was obtained by different methods by Bain and Weeks (1964).

3. Preliminaries. (i) If V_1, \dots, V_m are independent and uniformly distributed over [0, a], and if $Z = \sum_{i=1}^m V_i$, then Z has a probability density

$$\phi_m(z, a) = (a^m \Gamma(m))^{-1} \sum_{\nu=0}^m (-1)^{\nu} {m \choose \nu} (z - \nu a)_+^{m-1}$$

for all z. Here $x_{+}^{0} = 1$ for x > 0, $x_{+}^{0} = 0$ for $x \le 0$, and $x_{+}^{n} = \{\max(x, 0)\}^{n}$ for $n = 1, 2, \dots$.

(ii) Let T be distributed as the T_j and let U = T for $T < \tau$, $U = \tau$ for $T \ge \tau$. Then $P\{U \le u \mid T \le t\} = b_t(1 - e^{-\lambda u})$ for $0 \le u \le t$, with $b_t = (1 - e^{-\lambda t})^{-1}$, and the corresponding (conditional) density is

$$f_t(u) = b_t \lambda e^{-\lambda u}$$
 for $0 < u < t$.

(iii) Let $f_t^{n^*}$ be the *n*th convolution of f_t with itself, and let $F_t^{n^*}$ be the corresponding distribution function. A simple induction then shows that

(1)
$$f_t^{n*}(u) = b_t^{n}(\lambda t)^n e^{-\lambda u} \phi_n(u, t).$$

Received 10 May 1968; revised 9 September 1968.

(iv) Finally, for
$$m = 0, 1, \dots, N$$
,
$$P\{D(\tau) = m\} = \binom{N}{m} (1 - e^{-\lambda \tau})^m e^{-\lambda \tau (N-m)}.$$

4. The sampling distribution.

THEOREM 1. Given that $D(\tau) = m$, $T_{(1)}$, \cdots , $T_{(m)}$ may be regarded as the order statistics of m independent variables each of which has the probability density f_{τ} .

The proof is straightforward. An immediate result is

(2)
$$P\{M(\tau) \leq u \mid D(\tau) = m\} = F_{\tau}^{m^*}(u)$$
 for $m = 1, 2, \dots, N$.

If $F_t^{0*}(u) = 1$ for $u \ge 0$, $F_t^{0*}(u) = 0$ otherwise, (2) holds also for m = 0. Thus $P\{L(\tau) \le x \mid D(\tau) = m\} = F_\tau^{m*}\{x - (N - m)\tau\}$, and

$$P\{\lambda^*(\tau) \leq v \mid D(\tau) = m\}$$

$$= F_{\tau}^{0*}(v) \qquad \text{when } m = 0,$$

(3) =
$$1 - F_{\tau}^{m*} \{ mv^{-1} - (N-m)\tau \}$$
 when $m = 1, 2, \dots, N$ and $v > 0$, and $v > 0$, otherwise.

The distribution of $\lambda^*(\tau)$ is then found to be

$$P\{\lambda^*(\tau) \leq v\} = \sum_{m=0}^{N} \{1 - F_{\tau}^{m*}(mv^{-1} - (N - m)\tau)\}\binom{N}{m}$$

$$(4) \qquad \qquad \cdot (1 - e^{-\lambda \tau})^m e^{-\lambda \tau (N - m)} \qquad \text{for } v > 0,$$

$$= e^{-\lambda \tau N} \qquad \qquad \text{for } v = 0, \quad \text{and}$$

$$= 0 \qquad \qquad \text{for } v < 0.$$

We may also easily find expressions for such quantities as $E(\lambda^*)^k$ by (3), but the formulae are so messy that they probably are of little practical value.

REFERENCES

Bain, L. J. and Weeks, D. L. (1964). A note on the truncated exponential distribution.

Ann. Math. Statist. 35 1366-1367.

Barlow, R. E., Madansky, A., Proschan, F. and Scheuer, E. M. (1968). Statistical estimation procedures for the 'Burn-in' process. *Technometrics* 10 51-62.

Bartholomew, D. J. (1963). The sampling distribution of an estimate arising in life testing.

Technometrics 5 361-372.

Epstein, B. (1960). Test for the validity of the assumption that the underlying distribution of life is exponential. *Technometrics* 2 83-101 and 167-183.

Sverdrup, Erling (1961). Statistiske metoder ved dødelighetsundersøkelser. Institutt for matem. fag, Universitetet i Oslo.