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ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING
FINITE POPULATIONS—V

By V. P. GOpAMBE
Unaversity of Waterloo

1. Summary and introduction. Joshi (1965), (1966) studied in great detail ad-
missible estimation, in relation to survey-sampling. He (1966) also established
a property more demanding than admissibility namely uniform admissibility
(previously called global admassibility by Godambe (1966)) for the conventional
sample mean while estimating the population total. In this paper we establish
uniform admissibility of a class of Bayes estimators.

Using the notation similar to that of Godambe and -Joshi (1965) we denote
the population units by integers 1, 2, ---, N. Any subset s of the integers

¥ 1, -++, N is called a sample. If S denotes the set of all possible samples, (s ¢ S),
any real function p on S such that ) _sp(s) = 1 and 1 = p(s) = 0, for all
s e S is called a sampling design. Next we denote by x; the real value associated
with the unit ¢ (¢ = 1, --- , N) of the population. x = (21, *-+, &, -+, Zx)
is a vector in the N-dimentional Euclidean space Ry . Any real function e(x, s)
on the product space Ry x S, such that e depends on x only through those z;
for which 7 ¢ s, is called an estimator. Since in this paper we would be concerned
with estimation of the population total T'(x) = D_T z:, the terms such as esti-
mator, admissibility, uniform admissibility etc. used subsequently are to be
understood n relation to estimation of T. Now to distinguish ‘admissibility’ from
‘uniform admissibility’ we introduce the following four definitions.

DeriniTioN 1.1. For a given sampling design p, an estimator ¢’ is said to be
superior to the estimator e if for all x ¢ Ry,

2os ()€ (s,x) — T = 2sp(s)le(s, x) — T(x)F

strict inequality being true for at least one x.

DeriniTION 1.2. For a given sampling design p, an estimator e is said to be
admissible if no estimator ¢’ is superior (Definition 1.1) to e.

DerFINITION 1.3. A pair (¢, p’) of an estimator ¢’ and a sampling design p’ is
sald to be uniformly superior to another pair (e, p) if for all x ¢ Ry,

2osp ()€ (s, x) — T(x) £ 2sp(s)le(s, x) — T(x)I

strict inequality holding for at least one x.

DeriNiTioN 1.4. With respect to a class C of sampling designs, a pair (e, p)
of an estimator ¢ and a sampling design p is said to be uniformly admissible if no
other pair (¢, p) such that p’ & C, is uniformly superior to (e, p), (Definition
1.3).

For the discussion of the practical significance of the notion of uniform ad-
missibility, especially if in Definition 1.4, the class C = C, , where
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(1.1) Cn = {p: 2_sp(s)-n(s) = const. = n}

n(s) being the number of units ¢ such that e s, we refer to Joshi ((1966),

Section 7). Obviously C, above is the class of all sampling designs having a

fixed ‘average sample size.” The main result of this paper is the following
TrEOREM 1.1 With respect to the class C, in (1.1) of sampling designs the pair

(e*, ™), where €* is the estimator given by,

(1.2) 8*(8, X) = Zies X3 + Zi¢3 Az )

M, 0, Ai, -+, Ay being any arbitrarily fized numbers and p* is any sampling
destign belonging to the class C, in (1.1), is uniformly admissible. (Definition 1.4).

2. A Bayes estimator. Following the usual terminology we have

DermiTIoN 2.1. For a given sampling design p an estimator e* is said to be a
Bayes estimator, with respect to the prior distribution ¢ on Ry , for the popula-
tion total T'(x), if for every other estimator e,

(21)  [ay [2osp(s)(€¥(s, x) — T(x))*) di
< ey [22sp(s)(e(s, x) — T(x))) de,

For a discrete probability distribution ¢, the inequality (2.1) can be written as

(2.2) ey S 2sp(s)(e(s, x) — T(x)))]
< 2en S 2sp(s)(e(s, x) — T(x))].

Now by changing the order of integration and summation in (2.1) and (2.2) and
minimising the integrand for each fixed s, we obtain a Bayes estimator e* as
(2.3) € (8, %) = D ica®i 4+ Be( D i i| 8, xities),

where E¢(-|-) denotes conditional expectation, when { is the prior distribution:

Note. The Bayes estimator (2.3) is independent of the sampling design p.

Further we have from (2.3) the

TueorEM 2.1. For any specified numbers Ny, -+, Ni, * -+, Ay the estvmator
¢* given by (1.2) is a Bayes estimator for any prior distribution ¢ such that, when
distributed as ¢, x1, -+ , T~ are probabilistically independent and Ei(x:) = \;,
1=1,---,N.

Now for proving the Theorems 1.1 and 3.1 to follow, we would need two
lemmas, in the next section, based on the following classes @ and @ of prior
distributions on Ry .

A class of discrete prior distributions { on Ry ,
(2.4) Q = < such that for any point, say X, , in Ry, ,
there exists a o ¢ @ such that {(x,) > 0.

(a) & 1is discrete
(b) 1, ---, xy when distributed as £ are

probabilistically independent,
(25) @ =<t (c) Be(z) =N, i=1,---,N, Ay, -+, \y being any’ .
specified numbers,

(d) 21, - -+, z» have a common but unspecified
variance.
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3. Two lemmas. Noting, the facts: (1) although an estimator is defined as
being Bayes relative to a particular prior distribution, typically a Bayes estimator
depends only on certain characteristics of the prior and hence is Bayes relative to
a class of prior distributions, and (2) the Bayes estimator (2.3) is independent of
the sampling design, we have

LemMa 3.1. If €* is the Bayes estimator (2.3) for all prior distributions ¢ & Q
in (2.4), then for any sampling design p, e* is admissible (Definition 1.2).

The proof of the above lemma is quite straight forward. If ¢* is not admissible
then for some estimator ¢, for all x ¢ Ry ,

(3.1) 2sp(s)E (s, x) — T(x)" = 2 s p(s)le™(s, x) — T(X)V,

with strict inequality for some x say X, . Now let §, be a prior distribution in Q
in (2.4), such that {o(x,) > 0. Multiplying both sides of (3.1) by {o(x) and
summing it over Ry , we have,

(3.2)  2aw So(x) 2sp(9)€ (s, x) — T(x))
< 2orw o(x) 2sp(s)le*(s, x) — T(x)I.

But (3.2) clearly contradicts the fact that e* is a Bayes estimator (Definition
2.1) for the prior distribution &, , proving the Lemma 3.1.

Lemma 3.2. For any point, say X, , in Ry there exists a £, say & ¢ Q in (2.5) such
that Eo(Xo) > 0.

To construet & e Q@ for which (%) > 0 we proceed as follows: Let the th

co-ordinate of the point xo be i, i.e. X0 = (Zw, ***, Tio, ***, Tm). Next we
choose two other points x; = (zu, -+, Za, *++, Tm) and Xo = (T, -,
Zip, +-, Tys) 50 a8 to satisfy the following equation (3.3) and for some arbi-

trarily chosen o” equation (3.4). Fori=1,--- , N,
(3.3) ZTa + Ty = 3N — Ta,

(3.4) oh + 2k = 3(a° + \) — 2k

Note that whatever zi and A\; (¢ = 1, .-+, N), there would exist some z:; and
2o (1 = 1, ---, N), which would satisfy (3.3) and (3.4) provided ¢” is suffi-
ciently large. Now it is easy to see that the prior distribution & on Ry which
attaches equal probability (=3") to all the 3" points obtained by giving z:
(the 7th co-ordinate of a generic x) three values namely i , zi1 and i , belongs
to © in (2.5) and £&(xo) = £V > 0. This completes the proof of Lemma 3.2.

An immediate consequence of the Lemmas 3.1 and 3.2 is the following:

TuaeoREM 3.1. For every sampling design p, the estimator e* given by (1.2), for
arbitrarily chosen \1, --- , Ay, 1s admissible (Definition 1.2.).

4. Proof of Theorem 1.1. Noting again the fact that the Bayes estimator (2.3)
is independent of the sampling design, we first prove the following:
TueoreM 4.1. If ¢* is the Bayes estimator (2.3), with respect to every prior
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distribution § € Q in (2.4) and if C s a class of sampling designs p, such that the

Bayes risk

(4.1) 2y (X2 p(s)("(s, %) — T(x))"] = const. ({),

for all sampling designs p e C and all ¢ & Q, then with respect to C, the pair (e*, p*)

where p* is any sampling design in C, is uniformly admissible. (Definition 1.4).
To prove the above theorem we note that if (e*, p*) is not uniformly admissi-

ble, there must be a pair (¢, p’), p’ ¢ C, which is uniformly superior (Definition

1.3) to (e, p*), i.e.

(4.2)  2sp(s)(E€(s,x) — T(x))’ = 2sp™(s)(€¥(s, x) — T(x))’

for all x ¢ Ry with strict inequality for some x = x, say. Further let {, ¢ (in
(2.4)) be such that the probability {,(x,) > 0. Now multiplying both sides of
(4.2) by ¢o(x) and summing over all x ¢ Ry we get

(4.3)  2ay fo(x) 250/ ()(¢(s,x) — T(x))’

< Dy o(x) 25 p*(8)(e"(s, x) — T(x))™
Further because of (4.1) the right hand side of the inequality (4.3),
(44) ey So(x) 2sp(s)(€"(s, x) — T(x))"

= 2ory fo(x) 260 (s)(€%(s, x) — T(x))"
Now (4.3) and (4.4) together contradict (2.2), i.e. the fact that ¢* is a Bayes
estimator (2.3) with respect to all ¢ ¢ @ in (2.4) especially ¢, . Hence (¢, p)
satisfying (4.2) cannot exist. This proves the Theorem 4.1.

Now consider the class C, of sampling designs p, defined in (1.1) and for some
specified Ay, - - - , Ay the class of prior distributions @ in (2.5), the estimator e*
in (1.2). Substituting (1.2) for ¢* in the left hand side of (4.1) and interchanging
the order of summation we can write the Bayes risk for ¢* in (1.2) as

(4.5) 25 D(8) 2orw (Doies (i — ) )E(x)

where x = (21, -+, @i, -+, ov). If £ £Q in (2.5), the Bayes risk in (4.5)
equals

(4.6) 25 p(8)IN — n(s)lee’” = o'N — o7 2osn(s)p(s)

where n(s) is the number of individuals ¢ s and ¢ is the common variance
referred to in (d) of (2.5). Now o¢’ > sn(s)p(s) is constant, depending on ¢
only, for all sampling designs p ¢ C, in (1.1). Thus Theorem 2.1, Lemma 3.2 and
Theorem 4.1 together imply Theorem 1.1.

It is easy to see from the above that Theorem 1.1 would hold even if the class
of sampling designs C, is replaced by any subset of C, . Taking the subset to be
just one sampling design we get Theorem 2.1 as a special case of Theorem 1.1.

Acknowledgment. The author wishes to thank Mrs. D. Bos and Mrs. 1. Suerich

for typing the manuseript. He also is indebted to the referee and the associate
editor for suggestions which have improved the presentation.



676 V. P. GODAMBE

REFERENCES

GopaMmsg, V. P. and Josr1, V. M. (1965). Admissibility and Bayes estimation in sampling
finite populations—I. Ann. Math. Statist. 36 1707-1723.

GopaMBE, V. P. (1966). Bayes and empirical Bayes estimation in sampling finite popula-
tions (Abstract). Ann. Math. Statist. 37 552.

JosH1, V. M. (1965). Admissibility and Bayes estimation in sampling finite populations—
11, II1. Ann. Math. Statist. 36 1723-1742.

JosH1, V. M. (1966). Admissibility and Bayes estimation in sampling finite populations—
IV. Ann. Math. Statist. 37 1658-1670.



