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INFINITELY DIVISIBLE RENEWAL DISTRIBUTIONS
By F. W. SteUTEL

Technische Hogeschool Twente, Enschede, N etherlands

1. Introduction. It is well-known that many waiting-time processes yield
infinitely divisible (inf div) waiting-time distributions, independent of the divisi-
bility properties of the arrival and service time distributions. One might expect
that renewal processes also would often yield inf div renewal distributions. It
turns out however that even when the original distribution (with characteristic
function (cf) ¢ (¢)) is inf div then the renewal distribution (with cf {¢ &) — 1}
(iut)™") need not be inf div On the other hand a distribution, which is not inf
div may give rise to an inf div. renewal distribution. In this paper conditions, in
terms of the original distribution function, are derived for the renewal distribu-
tion to be inf div. In relation with this the infinite divisibility of some waiting-
time distributions is considered. It is shown that not all waiting-time distribu-
tions are inf div.

2. Preliminaries. We will be concerned with distributions having a probability
density function (pdf) of the form
(1) g@) = (1 = F(x)),

where F (z) is the distribution function of a non-negative random variable with
mean p > 0. If F is a distribution function, then by F** we denote the kth con-
volution of F with itself. The derivative of F** will be denoted by f**. The
Laplace-Stieltjes transform (L'T) of distribution functions F, @, - - - are denoted
by F(r), G(r), - - - , their Fourier-Stieltjes transforms (cf’s) by ¢ (t), v (), -+ .
In the waiting-time examples we use Wishart’s notation. We will have to consider
the function L (z) defined by

(2) L(z) = 2 k'F™* (z),
which has been studied by Smith [3].
Levuma 1. ForallT > 0
S k[ e dF**(z) = [ Ge "z dL(x).
Proor. By Fubini’s theorem (partial integration) we have
(3) [6 e™x dF* (x) = [¢ ¢ (ra — 1)F*™* () da.

Summation of (3) and the use of Fubini’s theorem to invert the order of sum-
mation and integration yields

S kG e x dF* (2) = [§ e (re — 1)L (z) da.

Using partial integration once more we obtain the required result.
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3. Renewal distributions. Examples of renewal-type cf’s, i.e. cf’s of the form

(4) {¢(t) — 1) (ut) ™,
which are inf div, are provided by mixtures of exponential distributions as studied
in [5]. If
o) = oA — )T dG(N)
with G(40) = 0 and ¢’ (0) = 4u, then
@ — 1)Gut)™ = Jo O — )N dG(N)
is again the cf of a mixture of exponential distributions (e da(n) = 1)

and therefore is inf div (ef. [5]).
Generally if

Y(@) = {1 — ¢} (—aut)”
then we can write
Y () = lima o ¥ (t) = limn o é1y (£)/dan (0),
where
on () = A\ — i)™
and
on(t) =N+ 1—¢)"

Both ¢ and ¢u are inf div (for ¢z see [2] p. 203). It follows that ¥ (¢) has a
Lévy-Khinchine representation determined by (see [2]) Ox(z) = Onx) —
©ux (z), where @1, and O correspond to On and O, and @ can be found in
[6]. It is possible to obtain © (z) = limy 0 ©x(z) explicitly for a large class of
distribution functions F. To avoid difficulties of convergence, however, it is
easier to use Laplace transforms. We prove the following theorem.

TureoreM 1. The Laplace transform of (1)

Gr)y = W) = F())
is inf div if and only if
(5) log & — Qe k' F* (z) s non-decreasing.

_ Proor. A necessary and sufficient condition for the infinite divisibility of
G (r) is the complete monotonicity of — (d/dr) log G (r) (see [1], p. 425). Now,
using Lemma 1, for all = > 0 we have

— (d/dr)log G(r) = 1 — F(x))" @/dn)F (r) + 7
= 2 F ()T @/dnF (@) + 7
= =Ykt [TexdF™* () + [Te T da
= [7 e zd (logz — L(z)).



INFINITELY DIVISIBLE RENEWAL DISTRIBUTIONS 1111

By the uniqueness theorem for Laplace-transforms (see [7], p. 63) and the repre-
sentation theorem for completely monotone functions ([1], p. 416) it follows that
— (d/dr) log G(r) is completely monotone if and only if log # — L(z) is non-
decreasing.

From (4) it follows that v(¢) is not inf div if ¢ (¢) is the cf of a lattice distribution.
In that case we would have ¢ (f,) = 1 for some ¢, % 0 and therefore y(t,) = 0 con-
tradicting the infinite divisibility. From Theorem 1 it follows that G is not inf div
if I () is discontinuous for > 0. The possibility of a jump in z = 0 can be ex-
cluded as F(z) and p + (1 — p)F (z) have the same renewal distribution.
Theorem 1, however, also implies, (this was pointed out to me by Prof. J. F. C.
Kingman ), the following corollary.

CoroLLARY. G (7) 4s inf div if and only if F (x) is absolutely continuous and if
the inequality

(6) DU @) = 27 @>0)

holds almost everywhere.

ProoF. As both F (z) and log x — F (z) must be non-decreasing it follows that
F (z) must be absolutely continuous with respect to the measure dlogz. As
F (z) is supposed to be continuous in # = 0 this implies that F (z) must be
absolutely continuous with respect to Lebesgue measure. The inequality (6) then
follows from (5). Condition (5) is not easily verified, therefore it is more useful
for proving that a certain cf is not inf div than for proving that it is inf div. If we
take F,' (z) = (n"/ (n — 1)!) 2" '¢"™ having mean 1, we have

50(6) = Sk ™ @) = ¢ X m )™/ ()
= e—m{ Z”‘;l exp (znx) — n}’

where 21, -+, 2, are the roots of 2" = 1. We find &1 = 1 —exp (—2),
Se = {1 — exp (—2x)}%. It is easily verified that S; < 1 and Sy < 1. Forn = 5
we have S, > 1 for part of the large values of z, as then Rez > 0. For large
values of n we have f,(1) ~ n} (2 )“* which contradicts the necessary condition
zf(xz) < 1.1t can also be seen without computation that the renewal distribution
corresponding to ., (z) = n*{(n — 1)} 7'z" " exp (—nx) cannot be inf div for
all . As the latter distribution tends to the degenerate distribution it would follow
from the closure property of inf div distributions that the uniform distribution
is inf div, which is contradicted by the fact that it has a bounded support (see e.g.
[1] p. 174). It follows that an inf div distribution need not yield an inf div renewal
distribution. We will now give an example of a distribution, which has an inf div
renewal distribution though it is not inf div itself. The ¢f (cf. [5])

o) =2/(1 —dt) —6/(3 —it) +5/(6 — 1)
=15 -0 —at)'@ —a) (5 — i)
is not inf div as it has real zeros. For the renewal cf we have

(6 — 1) @ut)™ = w23 — 8it — £)A — i) (3 —at) (5 — )7,
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which has a canonical representation (2), where @ (z) satisfies
0’ (z) = exp (—z) + exp (—3z) + exp (—5z) + 2 cos 7z exp (—4z),
which is positive (compare [5]). It follows that (¢ — 1) (dut)™" is inf div.

4. Monotone densities. If g(z) is a probability density on (0, «) with the
properties

(a) g (x) is non-increasing on (0, =),

(b) 9(+0) = a < o,
then g (z) can be written as g (z) = p (1 — F (2)), where F () is a distribution
function on [0, ) with mean p = & '. The cf of g(z) is then given by
{1 — ¢(t)} (—iut)™", where ¢ is the cf of F. From Theorem 1 deduce

TaroREM 2. If g(x) s a probability density satisfying conditions (a) and (b),
then :

(i) g(x) is not inf div if g (x) ¢s not absolutely continuous on (0, = ),

(i) if g (x) has a derivative g’ (), then a necessary condition for g (z) to be inf div

18  that

6) —¢ () = &g (+0).
Examples of pdf’s which by this eriterion are not inf div are given by
g(x) = cpexp (—2") (x> 0)

for n > e. Here we have —¢'(z) = na" "g(z) and g(4+0) = ¢, =n {T (™)} ™
The necessary condition of Theorem 2 now reduces to

nx" = exp (@").

which is not satisfied for 2" = log n and n > e. In general condition (6) implies
that g (z) should not decrease too sharply and in particular that ¢’ (z) should be
bounded in every interval [§, « ) with § > 0.

5. A non-inf div waiting-time distribution. It is well-known that many wait-
ing-time distributions are inf div. As the Lindley case always yields inf div wait-
ing-time distributions (cf. [4], p. 150 and [2], p. 203) we will have to look elsewhere
for waiting-time distributions, which are not inf div. In the last-come first-served
case as treated by Wishart [8] for the Laplace transform (LT) v (r) of the wait-
ing-time distribution we have

) v() =1—=p—+ML—=TEHr+ N =\ ()}L

Here I'(r) is the LT of the busy period distribution determined by I'(z) =
B(r N —AI'(7)), 8 denoting the LT of the service time distribution. For details
we refer to [8]. The continuous part of the waiting-time distribution has LT

ve(r) = p ML = T(r)}{r + N = A @)}
p ML — B+ N = AT(n)}{r + N = A ()}
which is inf div if {1 — B(s)}7 'w™" is inf div. This follows from the fact that

I
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exp —{r + N1 — T')} is an inf div L'T and that ¢ (—log ¢ (7)) is an inf div LT
if both ¢ and ¢ are (ef. [1] p. 427). On the other hand if 8 (r) is the LT of a lattice
distribution then the same holds for I' (7). It follows that I' () = 1 for some value
7 = 4t, where ¢ is real and ¢ # 0. But then v, (5) = 0, which implies that v, (7) is
not inf div. This is also true for p = 1, i.e. for v (#) in the case p = 1. This how-
ever means that v (r) cannot be inf div for all p < 1 as this would imply the
infinite divisibility for p = 1. An example of a waiting-time distribution,which is
not inf div is provided by the LT (takeX = p = 1 and 8(r) = exp (—7)in (7))

{1 -TEHr+1 =T},
where by Lagrange’s theorem
T(r) = Dopm (1/k) K exp —k(r + 1).
In the first-come-first-served case (Pollaczek-Khintchine) we have
y@) =1—=p+ N1 —p){1 = B)}Hr — N+ 28(r)} .

Here also the continuous part of the waiting time distribution is not inf div if
B(7) is a lattice LT, although v () itself is always inf div. The conclusion that
v () is not inf div for all p < 1 cannot be drawn, because v () does not converge
to the LT of a distribution function for p — 1. Again, when a(r) =
(ru) '@ — B(r)) is inf div, then v, () is inf div. In this case v, (r) has the form
Ye(r) = a(@)p(p + 1 — a(r))™", which is the product of two inf div LTs.
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