UNIFORM CONVERGENCE OF FAMILIES OF MARTINGALES1

By N. F. G. MARTIN

The University of Virginia

It is known [3] that under bounded conditions on the expected values of a martingale sequence the martingale will converge almost surely to a random variable and if the rth powers of the absolute values of the random variables in the martingale are uniformly integrable then the martingale will converge in L_r to a random variable with finite rth absolute moment. In this note we consider the case of a family of martingales each adapted to the same increasing family of σ -fields and give a condition on the family which will assure under bounded conditions on the martingales that the convergence given by the martingale convergence theorem is uniform in the family. We obtain uniform L_1 convergence for arbitrary families and uniform a.s. convergence for countable families. The a.s. convergence was proven for a slightly different case in [4] and the L_1 -convergence is obtained from a suggestion made by the referee of that paper.

Throughout we will be working in a fixed probability space $(\Omega, \mathfrak{B}, P)$ and all σ -fields will be sub σ -fields of \mathfrak{B} . If A and B are sets $A \triangle B$ will denote the symmetric difference of A and B, i.e., $A \triangle B = (A - B) \cup (B - A)$. The expected value of a random variable will be denoted by E, the conditional expectation given a σ -field \mathfrak{C} by $E(\cdot \mid \mathfrak{C})$ and the condition probability given \mathfrak{C} by $P(\cdot \mid \mathfrak{C})$. The conditional entropy of a σ -field \mathfrak{C} given a σ -field \mathfrak{C} is denoted by $H(\mathfrak{C} \mid \mathfrak{C})$ and is defined to be

$$\sup \{E[-\sum_{F \in \mathbb{F}} P(F \mid \mathfrak{C}) \log P(F \mid \mathfrak{C})]\}$$

where the supremum is taken over all finite partitions \mathfrak{F} of Ω into sets from α . For properties of $H(\alpha \mid \mathfrak{C})$ one may consult Jacobs [2] or Billingsley [1].

DEFINITION 1. Let I be an index set and for each i in I let $\{X_n^i : n \ge 0\}$ be a sequence of random variables. We say that $\{X_n^i\}$ L_r -converges uniformly in i to X^i provided that for every $\epsilon > 0$ there is an $N(\epsilon)$ such that for all $n \ge N(\epsilon)$ sup ${}_iE\{|X_n^i - X^i|^r\} < \epsilon$. We say that $\{X_n^i\}$ a.s. converges uniformly in i to X^i provided that there exists a set Z of probability zero such that for every $\epsilon > 0$ and $w \not\in Z$, there exists an integer $N(\epsilon, w)$ such that $\sup_i |X_n^i(w) - X^i(w)| < \epsilon$. We shall denote these types of convergences respectively by $X_n^i \to X^i$ [L_r unif i] and $X_n^i \to X^i$ [a.s. unif i].

LEMMA 1. Let $\{\Omega_n\}$ denote an increasing sequence of σ -fields and Ω denote the σ -field generated by $\bigcup_n \Omega_n$. If for some n, $H(\Omega \mid \Omega_n) < \infty$ then for every $\epsilon > 0$ there exists an integer N such that for all $A \in \Omega$, there exists an event $B \in \Omega_N$ such that $P(A \triangle B) < \epsilon$.

PROOF. Since $H(\alpha \mid \alpha_n) < \infty$ for some n, $\lim_n H(\alpha \mid \alpha_n) = H(\alpha \mid \alpha) = 0$

Received 12 August 1968.

¹ Research supported in part by ARO Grant 662.

and for $\epsilon > 0$ given, there exists an integer N such that $H(\alpha \mid \alpha_N) < \epsilon^2/4$. We will show that if $A \in \alpha$ and B is defined to be the α_N -event $[P(A \mid \alpha_N) > 1 - \epsilon/2]$ then $P(A \triangle B) < \epsilon$.

Let A be an α event. From the definition and properties of $H(\alpha \mid \alpha_N)$ by considering the finite α partition $\{A, \ \Omega - A\}$ of Ω we obtain $0 \le -\int_A \log P(A \mid \alpha_N) dP < \epsilon^2/4$ and hence $P(A \mid \alpha_N)$ is positive almost surely on A. Then

$$0 \le \int_A \left[1 - P(A \mid \mathfrak{A}_N)\right] dP \le \int_A -\log P(A \mid \mathfrak{A}_N) dP < \epsilon^2/4.$$

Hence

$$\epsilon^2/4 > \int_{A-B} [1 - P(A \mid \alpha_N)] dP \ge (\epsilon/2) P(A - B)$$

and one obtains that $P(A - B) < \epsilon/2$. Also, since $B \stackrel{\circ}{\epsilon} @_N$,

$$P(A \cap B) = \int_B P(A \mid \mathfrak{A}_N) dP > (1 - \epsilon/2)P(B).$$

so that $P(B-A) < \epsilon/2$ and it follows that $P(A \triangle B) < \epsilon$.

THEOREM 1. Let $\{Q_n\}$ be an increasing sequence of σ -fields and Q be the σ -field generated by $\bigcup_n Q_n$. Let $\{g^{(i)}: i \in I\}$ be a uniformly bounded family of Q measurable random variables. If $H(Q \mid Q_n) < \infty$ for some n then $E(g^{(i)} \mid Q_n) \to g^{(i)}$ [L_1 unif i].

PROOF. Suppose that $\{A^j\colon j\ \varepsilon\ J\}$ is an indexed family of events from \mathfrak{A} , and consider the indicator functions $I(A^i)$ of these sets. Let $\epsilon>0$ be given. By Lemma 1, there exists $N(\epsilon)$ such that for every $j\ \varepsilon\ J$, there is a set $B^j\ \varepsilon\ \mathfrak{A}_{N(\epsilon)}$ such that $P(A^j\ \triangle\ B^j)<\epsilon$.

Since $I(A^i)$ is square summable and $E(\cdot \mid \alpha_N)$ is projection of $L_2(\alpha)$ onto $L_2(\alpha_N)$ and $I(B^i) \in L_2(\alpha_N)$ for all $n \geq N(\epsilon)$ we have that

$$E\{|P(A^{j}| \mathfrak{A}_{n}) - I(A^{j})|^{2}\} \leq E\{|I(B^{j}) - I(A^{j})|^{2}\}$$

so that $E\{|P(A^j | \mathfrak{Q}_N) - I(A^j)|^2\} < \epsilon \text{ for all } j \in J \text{ and all } n \geq N(\epsilon).$ Thus $E(I(A^j) | \mathfrak{Q}_n) \to I(A^j) [L_2 \text{ unif } j].$ But $P(A^j | \mathfrak{Q}_n) - I(A^j) \in L_1$ so $E(I(A^j) | \mathfrak{Q}_n) \to I(A^j) [L_1 \text{ unif } j].$

Now let $\{g^i : i \in I\}$ be a uniformly bounded family of α measurable random variables, say $|g^i| \leq M$ for all i, where M is an integer. Define g_k^i , $k = 1, 2, \cdots$; $i \in I$ as follows:

$$g_k^{i} = \sum_{m=-Mk}^{Mk} mk^{-1}I(A_{m,k}^{i})$$

where $A_{m,k}^i = [mk^{-1} \le g^i < (m+1)k^{-1}]$. Let $\epsilon > 0$ be given and select K > 0 so large that $K^{-1} < \epsilon/3$. Then $|g_K^i - g^i| < \epsilon/3$ for all i and we have $E(|g_K^i - g^i| | \mathfrak{A}_n) < \epsilon/3$ for all i and n.

Also

$$|E(g_{\kappa}^{i} | \alpha_{n}) - g_{\kappa}^{i}| \le \sum_{m=-MK}^{MK-1} |m| K^{-1} |P(A_{m,K}^{i} | \alpha_{n}) - I(A_{m,K}^{i})|$$

so that

$$\sup_{i} E\{|E(g_{\kappa}^{i} \mid \alpha_{n}) - g_{\kappa}^{i}|\} \leq 2M \sup_{m,i} E\{|P(A_{m,\kappa}^{i} \mid \alpha_{n}) - I(A_{m,\kappa}^{i})|\}.$$

From the first part of the proof there exists N such that for all $n \ge N$, $\sup_{m,i} E\{|P(A_{m,K}^i \mid \mathfrak{A}_n) - I(A_{m,K}^i)|\} < \epsilon/6M$.

Thus if $n \geq N$,

$$E\{|E(g^{i} | \Omega_{n}) - g^{i}|\} \leq 2E\{|g_{\kappa}^{i} - g^{i}|\} + E\{|E(g_{\kappa}^{i} | \Omega_{n}) - g_{\kappa}^{i}|\} < \epsilon$$

for all i and it follows that $E(g^i \mid \alpha_n) \to g^i [L_1 \text{ unif } i]$.

COROLLARY. Let $\{\Omega_n\}$ be an increasing sequence of σ -fields and Ω be the σ -field generated by $\bigcup_n \Omega_n$. For each i in an index set I let $\{X_n^i : n \geq 0\}$ be a martingale adapted to $\{\Omega_n\}$. If $H(\Omega \mid \Omega_n) < \infty$ for some n and if $|X_n^i| \leq M$ for all i and n then there exist random variables X^i such that $X_n^i \to X^i$ $[L_1 \text{ unif } i]$.

PROOF. Since $\{X_n^i\colon n\geq 0\}$ is uniformly bounded it is uniformly integrable for each i and hence there exist L_1 -functions X^i such that $X_n^i\to X^i$ $[L_1]$. Moreover $X_n^i\to X^i$ [a.s.] so $|X^i|\leq M$ for all i and $E(X^i\mid\alpha_n)\to X^i$ $[L_1$ unif i]. Since X^i is a right closing random variable for $\{X_n^i\colon n\geq 0\}$, $E(X^i\mid\alpha_n)=X_n^i$ and the result follows.

THEOREM 2. Let $\{\Omega_n\}$ be an increasing sequence of σ -fields with Ω being the σ -field generated by $\bigcup_n \Omega_n$, and let $\{g^i : i \in I\}$ be a countable uniformly bounded family of Ω -measurable random variables. If $H(\Omega \mid \Omega_n) < \infty$ for some n then $E(g^i \mid \Omega_n) \to g^i$ [a.s. unif i].

PROOF. This follows from Lemma 1 and a slight modification of Theorem 4.4 in [4].

COROLLARY. Let $\{\Omega_n\}$ be an increasing sequence of σ -fields and Ω be the σ -field generated by $\bigcup_n \Omega_n$. For each i in a countable index set I let $\{X_n^i : n \geq 0\}$ be a martingale adapted to $\{\Omega_n\}$. If $H(\Omega \mid \Omega_n) < \infty$ for some n and if $|X_n^i| \leq M$ for all i and n then there exist random variables X^i such that $X_n^i \to X^i$ [a.s. unif i].

REFERENCES

- [1] BILLINGSLEY, PATRICK (1965). Ergodic Theory and Information. Wiley, New York.
- [2] JACOBS, KONRAD (1962/63). Lecture notes in ergodic theory. Mathematisk Institut, Aarhus Universitet.
- [3] LOÉVE, MICHAEL (1953). Probability Theory. Van Nostrand, Princeton.
- [4] Martin, N. F. G. (1966). Continuity properties of the entropy, Quart. J. Math. 17 44-50.