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SELECTION PROCEDURES FOR RESTRICTED FAMILIES OF
PROBABILITY DISTRIBUTIONS!

By Ricaarp E. BARLow AND SHANTI S. GUPTA
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1. Introduction and summary. Let II;, II,, - -- , IIx be k populations. The
random variable X ; associated with IT; has a continuous distribution F';, ¢ = 1, 2,
- -+, k. We are primarily interested in selecting a subset such that the probability
is at least P* that the selected subset includes the population with the largest
(smallest) quantile of a given order @« (0 < @ < 1). We assume each F; has a
unique a-quantile, £ . Let Fiq(z) = F, denote the cumulative distribution func-
tion of the population with the sth smallest a-quantile. In the following, we con-
sider families of distributions ordered in a certain sense with respect to a speci-
fied continuous distribution G and propose and study a selection procedure
which is different from the non-parametric procedure of Rizvi and Sobel (1967).
We assume

(@) Fla(z) 2 Fy(x),2 = 1,2, ---, k and all z.

(b)3 a continuous distribution G 3 Fig X G, Vi =1,2, ---,F,
where < denotes a partial ordering relation on the space of distributions.

A relation X on the space of distributions is a partial ordering if

FXF Y distributions F
F X G, G < H implies F X H.

Note that F < G and G X F do not necessarily imply F = G.

Various special cases in addition to stochastic ordering are:

(i) F <+ Qiff F(0) = G(0) = 0 and G'F (z)/x is nondecreasing in z = 0
on the support of F.
(i) F <. G iff G'F(z) is convex on the support of F.

(i) F <, Giff F(0) = G(0) = % and G'F (z)/x is increasing (decreasing)
for x positive (negative) on the support of F.

(iv) F <,Giff F(0) = G(0) = % and G"'F is concave-convex about the origin,
on the support of F;ie., {z|0 < F(z) < 1}.

IfG(x) =1 — e forz = 0, then (i) defines the class of IFRA distributions
studied by Birnbaum, Esary and Marshall (1966) while (i) defines the class of
IFR distributions studied by Barlow, Marshall and Proschan (1963). For any
distribution G, F < « G iff F (z) crosses G (6z) at most once and from below if at
all as a function of z forall8 > 0. If G(z) = 1 — exp (—2") forz = 0 and X > 0,
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906 RICHARD E. BARLOW AND SHANTI S. GUPTA

then F < « G implies that F is “sharper” than the family of Weibuli distributions
with shape parameter \. Implications of orderings defined by (iii) were studied by
Lawrence (1966). Van Zwet (1964 ) studied orderings defined by both (ii) and
(@iv). Clearly <. ordering implies <4 ordering and <, ordering implies <.
ordering. ‘

IfX; = (Xa, Xa, -+, Xin) is the observed sample from the 7th population,
then we restrict ourselves to the class of statistics 7:; = T (X;) that preserve both
ordering relations (a) and (b), i.e.,

(@) Pr{TX) £ 2} Z Pp{TX) Sz} forallzande =1,2, ---, k.
M) Frxp < Grapyyt = 1,2, -+, k, where Frx,) represents the edf of T (X:)
under F; and Grey, is the edf of 7(Y) under G, Y = (Y1, Y,, --+, Y,) being a

random sample from G.

In Section 2 of this paper, we propose and study procedures £ (R') for select-
ing the population with the largest (smallest) a-quantile for distributions which
are < s ordered with respect to a specified distribution G. The infimum of the
probability of a correct selection is obtained in Theorem 2.1 and asymptotic
evaluation is given in Theorem 2.2. Section 3 deals with quantile selection pro-
cedures for the class of IFRA distributions. In Section 4, we study the efficiency
of procedure R with respect to a procedure studied by Rizvi and Sobel (1967)
under scale type slippage configurations. Asymptotic relative efficiency of B with
respect to a selection procedure for the gamma populations proposed by Gupta
(1963) is also investigated. Section 5 deals with selection procedures for the
median for distributions that are <. ordered with respect to a specified G. In
Section 6 we propose a selection procedure with respect to the means for distribu-
tions that are <. ordered with respect to G(z) = 1 — ¢ *. Application to the
selection of gamma populations is also given in Section 6.

2. Quantile selection rules for distributions < x ordered with respect to G.
We are given a sample of size n from each of the k populationsII;,7 = 1,2, - - - , k.
The distributions Fr; and the specified distribution G satisfy the assumptions
(2) and (b) of Section 1. The distributions F; are, otherwise, unspecified. Of
course, the correct pairing of the unordered and ordered F/s is not known. We
denote the k-tuples (F1, Fa, -+ -, Fi) by Q. Let T';,; denote the jth order statistic
from F; wherej £ (n + 1)a < j + 1. Clearly, T';,i —a.s. a5, the a-quantile as
n — o and j/n — a. The rule we propose, for selecting the population with the
largest a-quantile is

R:Select population IT; iff
2.1) T;i = cmaxi<r<i T, JIEm+a<j+1,

where ¢ = c(k, P*, n, ) is some number between 0 and 1 which is determined so
as to satisfy the probability requirement

2.2) info P{CS | R} = P¥,

where CS stands for a correct selection, i.e., the selection of any subset which
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coucains the population Iy with distribution F; . Before discussing the main
theorem concerned with the evaluation of P{CS|R}, we present a known
result for order statistics. Let H; :(z) be the edf of the jth order statistic from
Fq and let G;(z) be the cdf of the jth order statistic from G. Let us define

Bin@) = /G — 1)! (n — )1 fiw (1 — u)™ du

so that

(23) H;:(x) = Bju(Fa(x)) = B;.Fig(z).
Since

(24) Gy 'Hj:(x) = [BiGI'BiF 14 (x) = G'Fiq (),

we see that order statistics preserve each of the partial ordéring relations (i)-(iv).
For additional applications of (2.4) see van Zwet (1964).

Now we state and prove a theorem which enables us to compute the constant
¢ which defines the procedure R.

TuEOREM 2.1. IfF15(0) = G(0) = 0, Fa(x) = Fiy(x),2 2 0,7 = 1,2, --- , k,
and Fyy <« G, then

2.5) info P{CS |R} = [ [G;(x/c)]" " dG;(x).
Proor. Note that
P{CS|R} = [cIi=Hy (/) dH,k(x) = [7 [Hjx (/) dH i ().

We wish to bound the right hand side. Let X;, (r = 1, 2, , k) be iid with edf
,k(:c) (Note that X;,, = T;,when Frq = Fpy, Y ). Letgo(x) =G 'H;i(zx) =
G 'Fy (x) so that ¢ (2)/z is nondecreasing in 2 = 0. Then
(26) ¢(X;.)/X;r £ o(maxi<r<i Xjr)/maxs <, <k X;or
= maxi <, <k ¢ (X;»)/maxi<r <k Xjr r=12 ---,k,
so that
(27) ?(X]‘,r)/maxlgrgk ?(Xj,r) = Xj,r/maxlérgk Xi,r ’ r=12---, k.
Since Y;,, = ¢(X;.) has distribution @; forr = 1,2, --- , k, we have
(2.8) P{CS|R} = Py, (X t/maxicr<i X;»r = c

= PG,—{Yj,k/maxlgrgk Yj,r = C} = J';o [Gj(x/c)]k_l dGi(x),

provided c is between 0 and 1. This proves Theorem 2.1.
ReMaRk 1. The constant ¢ = c(k, P*, n, j) which defines the selection pro-
cedure R is determined by

(2.9) o 1G;(/c)F ! dG;(z) = P¥, (1/k < P* < 1).

These constants are tabulated for G(z) = 1 — ¢ ” for selected values of n, k, j
and P* in the first set of tables in the companion paper by Barlow, Gupta and
Panchapakesan (1969). Clearly, ¢ is independent of scale.
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ReEMARK 2. If G(z) = 1 — ¢ " forz = 0 and 6, \ > 0, then forj = 1, the
values of ¢ are independent of n. This can be seen from the fact that the distribu-
tion of the smallest order statistic involves n only as a scale parameter and that
the selection procedure (2.1) is scale invariant.

REmARK 3. It should be pointed out that Theorem 2.1 requires only Fx < « G
however, to apply the procedure R, we assume that F; <s G, Y ;.

Now we discuss the asymptotic evaluation of the probability of a correct
selection. We state and prove the following theorem.

TueorEM 2.2. If Fiy(x) <« G, Fuy(G) has a differentiable density fu(g)
i a neighborhood of the a-quantile £, (n.) and fiy (E«) #= 0 (g () 5= 0), then in
our previous notation (see Theorem 2.1)

imsse Pgi,,,{Xj,k/ma,xlérgk Xj,r = C} .
(2.10) = [Z.8 7 @/c + (1 — ¢)tafoa (F)'c " (ed) ™) d® (x)
20 @ (z/c + (1 — c)neg (na)nic ™ () ) do ()

where j/n — aasn— o, & =1 — aand ®(-) s the cdf of the standard normal
variate.
Proor.

v

P{X;r = ¢ maxi<r<i—1 Xj,0}
211) = P{(X;x — )fm (Ea)n’ (ea)™
> cmaxigrsia (Xir — &) + (€ — 1) &l[(ea)!/ 0w (€))7}
R 2.8 @/e + (1 — o)bufua (ba)nic ™ (aa) ) dB (),

since X;x ~ N (£ , ad/nfii (). (Note: an & b, means limp.e @n/bn = 1.)

To prove the second part of (2.10), note that Fx; < « G implies G 'Fp ) — =
changes sign at most once and from — to 4+, if at all. Since Fiy; < x G is invariant
under scale changes, we can assume 7, = £, 50 that F (¢,) = G (&). Either F = G
in a neighborhood of £, or the slope of the tangent line to F' at &, is greater than
the slope of the tangent line to G at & . In either case fi (=) = g(¢.) and in
general £.fp (a) 2 Mag (na).

ReMARK 4. Setting
212)  [Z @ (@/e 4+ (A — o)nag(na)n'c (aa) ) dd(z) = P,
we see that
(2.13) ¢k, P*,n,j) &~ 1 — w(k, P, a)n™? as n— »

where w (k, P*, &) is some constant independent of n.
Fork = 2,and g(z) = ¢ *, we see

(2.14)  ¢(2, P*, n,j) = 1 —2'C/nt + C/n — (3/20C*/nt + 0(n ™)
where C=3"'P"a)/Q — a)l—log 1 — a)].
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Subset selection rule for smallest a-quantile. The rule for selecting the population
with the smallest a-quantile is

R':Select population II; iff
(2.15) dT,: £ mim<r<i Tj,r JEm+1a<j+1

where 0 < d = d(k, P*, n,j) < 1is determined so as to satisfy the basic proba-
bility requirement. If Fi3(z) < Fiy(),2 =1,2,---,k, and all z = 0 and
Fu; <« G, then the constant d is given by the equation

(2.16) [51G;xd)* " dG;(x) = P*

where G(z) = 1 — G (). In a manner similar to the proof of Theorem 2.1 we can
show that
P{CS|R} = [7[G;(xd)]"™ dG;(x).

The values of d are tabulated for selected values of k, P* n and 7 in the companion
paper by Barlow, Gupta and Panchapakesan (1969).

The rules R and R’ select nonempty subsets. The size of the selected subset is a
random variable which takes values 1, 2, - - - , k. The expected size of the selected
subset is a common measure of the efficiency of the procedure (Gupta (1963)).
However, it is difficult in our more general framework to set meaningful bounds on
the expected size without further assumptions. If we asusme, in addition, that
there exists GT such that G* < x F; for all 4, then we can obtain an upper bound
on the probability of including the “worst”” population in the selected subset for
rule B. We consider this in more detail later for IFRA distributions.

If we assume that F; (z) is stochastically increasing with respect to ¢, then

(2.17) P{select Iy | R} = Pf{select II; | R} if 7=7.

The proof is similar to the one given in Gupta (1966 ). A result similar to (2.17) is
true for R’

3. Quantile selection procedures for the class of IFRA distributions. If F <« ¢
where G(z) = 1 — ¢ “forz = 0, then F is an IFRA distribution. The problem of
selecting the best one of several IFRA populations has been considered by J. K.
Patel (1967). He was interested in selecting that population with the smallest
failure rate at a prescribed time T'. His decision rule depends only on the number
of observed failures in [0, T'] for each population and not on the times at which
failure occurred.

We show how to obtain ¢, values for the Weibull distribution with shape param-
eter A > 0. We remark that the class of distributions 7, such that F < & G\ where
G@E)=1— ¢ forz = 0 and 6, X > 0 is the smallest class of continuousdis-
tributions containing the Weibull class of distributions with shape parameter A
which is closed under the formation of coherent structures and limits in dis-
tribution.? To select populations < 4 ordered with respect to Gy, choose ¢ cor-

? Private communication with James Esary and Albert Marshall.



910 RICHARD E. BARLOW AND SHANTI S. GUPTA

responding to n, k, j, and P* based on an exponential assumption and set
en = (¢)™ To see this, let Y ; denote the jth order statistic from population 7
(all populations having the exponential distribution). Then Y37} is distributed as
the jth order statistic from G and

(3.1) Po,{CS|R} = P{Y}}/maxicizk Y34 2 ol
= P{Y;/maxicick Vi 2= (&)}
or ¢ = (a)

If, in addition to the assumptions of Section 2 (See Theorem 2.1), we assume
that (a) Fiy(x) = Fra(@) forallz 20,2 =1,2,--- , k, and (b) G\ <« Fyy for
alle = 1,2, ---,k X > 1, then we can obtain an upper bound on the probability
of selecting the ‘“worst” population, i.e.,

(3.2) P{Selecting Iy |R} = [5 [Gi(x/M)] " dG;(x)
where ¢ is chosen so that
P(CS|R) 2 [7[6;(/o)f" dG;(s) = P*,
Clearly, the upper bound is an increasing function of A for A = 1.

4. Efficiency of procedure R under slippage configurations. We consider
slippage configurations Fiz(x) = F(/s), ¢« = 1, 2,---, k—1, and
Fuy(x) = F(z),0 < & < 1. We obtain asymptotic expressions for the probability
of a correct selection and the expected size of the selected subset for procedure R
and for two other procedures. ,

Using our previous notation and letting 7';,; (unknown) denote that T';,. asso-
ciated with F; .

P{CS|R} = P{T;; = ¢ maxi<,<i T.}
(41) = PEj,k{Xj,k = c maXi<r<k 5Xj,1}

2 Py{Y;s = cdmaxigr<k ¥

where Y;,,r = 1,2, .-+, k, are iid with the cdf G;(y). From (2.11), we obtain
4.2) P{CS|R} ~ [Z8" (/b + (I — 8)taf(E)nic 6 (@a) ) d& (z).

Note that the probability of a correct selection is a monotone decreasing func-
tion of 4. For the slippage configuration

43)  E@S|R) = P{CS|R} + (k — 1)P{T}; = ¢ maxea T} 4,
P{ T;,l g € MAaX %1 T;,f;} = P{_Tj'l - 6&: Z ¢ max (maX2§,-§k__1 (T,'," —32,,),
44) Tik — bx + £« — 0k) + 00kx — Ok}

R [2.®(6x/c — f(Ea)ta(l — 8/c)n’ (@a)™h)
@ (/e — Lf (f) (1 — ¢TI0 (e) ™) dB ().



SELECTION PROCEDURES 911

Setting k£ = 2, we have
4.5) E(S|R) — P{C3| R} = &(—f(fa)ta(1 — 8/c)n’ (@) (1 + (3/c)*) .

Setting the right hand side of (4.5) equal to ¢, —f(£a)& (1 — 8/ca)n’ =
(az)1 + (8/¢4)*)]}@ 7 (¢), where we have putc = ¢, . Nowusing ¢, & 1 — C'/n’"
(from (2.14))
46) —f(E)E( — & — 2'Co/nh)n’

= &7 (e) (aa)l1 + 3*(1 + 2!¢/n? + 20%/n)]

from which, keeping terms of order n}, we obtain
@47) na(e) & [— (@) () A + &) + 2'Cotaf (Ea)12[£a2f2(£a)(1 — 8)T

Comparison with Rizvi-Sobel Procedure. Rizvi and Sobel (1967) propose and
investigate a distribution-free procedure, R; , for the quantile selection problem.

R;:Select population IT; iff

(4.8) Tj: 2 maxicr<k Tiar

where a is the smallest integer with 1 < a < j — 1 for which
4.9) infg P{CS | Ry} = P*

is satisfied.

A disadvantage of this procedure is that for any given « and k a value of
a £ j — 1 may not exist for some pairs (n, P*). However if P* is chosen not
greater than some function P;(n, a, k) where 1/k < Py < 1, then a value of
a = j — 1 does exist that satisfies (4.9). Rizvi and Sobel compare the efficiency
of this procedure relative to several competing procedures under translation con-

figurations.
We discuss the asymptotic of a correct selection using their procedure under the

scale slippage configuration.
P{CS|Ri} = P{T;s = maxi<,<i T}
= P{(Tjs — &)nf () (ea) ™ 2
(4.10) maxi <r giot (Tjoar — 8 + (6 — 1)8)67" (2@) ™ )onf (£a))
[ (/s + v(aa)?
+ (1 — 8)tan*f (£)8 7" (@d) ) Do .
The derivation above uses the fact that
(Ti—ar — ) (2@) 7 (£a) = 1aw N (=7 (@)}, 1)

where v /n% = a/(n + 1). (See Lemma 2 of Rizvi and Sobel (1967)).
Similarly
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E(S|R1) — P{CS| Ry}
(4.11) R [Z0® (e + v(ea) T — (1 — 8)tan'f (k) (@@) ™)
B2z + y(ea)?) do(z).
Setting k = 2, we have from (4.11)
(4.12) E(S|R) — P{CS|Ry} ~ &((v — (I — 8)&f(ta)n?)
cea)@ 4+ ).
Equating the right hand side of (4.12) to ¢, we obtain
(4.13) nay (€) & [(@a) (1 + )87 (e) — 21 (1 — &) [taf (G

For the slippage configuration above we define the asymptotic relative efficiency
ARE (R, Ry ; 6) of R relative to Ry to be the limit as e — 0 of the ratio of ng, (¢)
to ng (é).

ARE (R, R, ; 3) = limelongl (e)/nR (6)

(4.14) = limyo [(@a)! (1 + 6")!@ 7" () — I
= (@@ () (1 + 8" + 28CkSf (t)]
= 1.
Using the fact that F < 4 @ implies £.f (5«) = 7.9 (14), We see that
(4.15) Py{CS|Ri} = Po{CS|Ri}
and

4.16)  EF(S|R.) — PF{CS|Ri} < Es(S|R:) — Po{CS|Ri}

where both (4.15) and (4.16) are asymptotically true asn — o« for the slippage
configuration.

Now we describe the relative performance for small sample size (n = 15) of the
two procedures R and R; using Monte Carlo technique. For this purpose we chose
from the class of IFRA distributions the gamma and Weibull distributions with
densities

gamma: ¢ 0L ()] (z/0:),  i=1,2
Weibull: e 79,7  (2/6:) ™", i=1,2.

Based on 5000 simulations, we computed P{CS | R}, E(S | R), P{CS | Ry} and
E (S| R:1). These values are given in Table 1.

Comparisorn with Gupta procedure. Gupta (1963) gave a selection procedure for
gamma populations with densities

(C(@r)8:) " exp (—x/6:)(x/6:) ", >0, 6,>0, 5=12--,k.

This procedure R, , based on the means of sample size n from each of the k
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TABLE 1
Monte Carlo Comparisons of R and R,
P* = 90,k =2,n =15

Gamma Gamma Weibull
r=1 r=35 r=2
01=1, 02=2 01=2, 02=3 01=1, 02=2
P{CS | R} .993 1.000 .985
El|R) 1.47 1.88 1.85
P{CS | Ri} .997 1.000 .939
E(S| Ry) 1.64 1.96 1.76

populations is:
R, : Select the population corresponding to the observed mean &; iff
(4.17) T = bmaxigick T

where b is the largest constant (0 < b = 1) chosen so that P{CS|R,} = P*.
Letting » = 2nr, it is shown that log, b &~ —d(2/(» — 1))* where d is independent
of n and satisfies

(4.18) 2o ® (@ + d)de(z) = P*.
Assume that the ranked 8,’s have the slippage configuration 6;; = 60y ,0 <8 < 1,
1=1,2,--+-,k — 1. Then
E(S|R;) — P{CS| Ry}
(4.19) ~ (k= 1) [2,8 (@ — (logh)(2/( — 1))
‘@ (z — (logb/8)(2/(v — 1)) de(x)
so that for k = 2
(420)  E(S|Ry) — P(CS|Ry) =~ &(— (logb/8)27 (v — 1)7H).
Setting the right hand side of (4.20) equal to e and solving for n = ng, (e)
(4.21) nr, (€) R [207 () — 24 dP[2r (log 8)7] 7.
ARE (R, R, ; 8) = lim. o nga(e)/ne ()

(4.22) = 2(1 — 8)’[tf ((a)['Ir[log 8@ (1 + 8")
2 2(1 —5)*(1 — a)—log (1 — @)
-[r (log 8)’am(1 + 8")]7, r=1,
ARE B, R:;6 1 1) = [taf ()] (raa)™
(4.23) 2 (1 —a)(—log (1 —a))(@(l —a))7,
letting r = 1,

log2’ = 493, «a=

B
.
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b. Selection with respect to the median for distributions r-ordered with
respect to a specified distribution G. We consider selection procedures with
respect to the median for distributions # which have lighter tails than a specified
distribution G. We say that F; has a lighter tail than G if F; centered at its median,
A;, is <,-ordered with respect to G(G(0) = %) and (d/dz)F:(x + A;)|smo
= (d/dz)G (x)|smo . Here we are following an ordering proposed by Doksum
(1967). (See van Zwet (1964 ), Lawrence (1966).)

We wish to select a subset of the k& populations containing the population with
the largest median Ay . The selection rule, we propose, is in terms of the sample
medians. We use the same notation as in Section 2. The rule R; is:

R; : Select IT; iff
(5.1) Tjiz maxigrx Tjr — D, = (0 +1)/2<7+ 1,
and D is chosen to satisfy
(5.2) infq, P{CS | Ry} = P*

where Qy is set of all k-tuples F1 , F, , - - - , Fy, satisfying assumptions given above.
Now, we state and prove a theorem related to the infimum of probability of a
correct selection when rule R; is used. Let F; (x) denote the distributions with

median Ay ,2=1,2, ---, k.
THEOREM 5.1. Ime(x) > Fuy (), for all x, G0) = % and G 'Fyy(x 4+ Aw)/z
s nondecreasing (nonincreasing) in ¢ = 0(x = 0) and

(d/dx)Fuy (& + Ap)|smo = (d/d2)G (@ )sm0 ,
then
infq, P{CS|Rs} = [2. G/ (t + D) dG;(¢)

where G; is as defined before.
Proor. By stochastic ordering of the order statistics, we have

P{CS|Rs} = [Z.H (t + D) dH, 1 (t)
(5.3) = P{Xj.k = maxi<r<k—1 Xj.r - D}
P{X;r — Apy 2 maxigr<ea (Xjr — Awg) — D}

where X;1,X;2, -+ , X;are iidrv with distribution H;x . (Note the last part of
(5.3) requiring n odd.)

Let ¢(z) = G Fuy(@@ + Awg) = G5'M (x) when M is the distribution of
X;r— Am . Note that o(X;» — Apy) = Y, has distribution G; . Now ¢ (x)/z T
inz20,0()z | inz <0ande (0) > 1imply

(54) lpmaxigr<r (Xjr — App)) — 0 (X — Aw)l
‘[maxicrer Xir — Amy) — Kiae — Aw) " 2



SELECTION PROCEDURES 915

Hence

(5.5) maxi<r<k Yir — Yig = MaXigrcr Xjr — Xjk

implies

(5.6) P{Y;, = maxicr<i1 Yir — D} < P{Xjp Z maxigr<e Xjir — D}

which proves the result.

6. Selection with respect to the means for the class of IFR distributions. Let
i be the mean of the distribution F (z; pi), ¢ = 1,2, - -+, k, and assume

(a) F(z;p0) = F(x;ppg) fore = 1,2, .-+ ,k — land all 2.

(b) F(z; pa) <.G() =1—¢€ fori=1,2,--,k
Note that by assumption (b) we are confining attention to the so-called IFR
class of distributions. It will also be convenient to assume F (0; ugs) = Ofor all z.

Let & = =1 %:;/n, Where &;; is the jth observation in a random sample of
size n from II;. Let K:(x) = K(x;u:) be the distribution of #;. Then if
Ky (x) = K(x; pra)

(6.1) Ky (x) = Ky (=) for ¢=1,2,---,k—1 andall =
(6.2) Ky <. G for 1=1,2,-+-,k.

(6.1) is an immediate consequence of (a) while (6.2) follows from (b) and the
closure of IFR distributions under convolution (see Barlow, Marshall and

Proschan (1963)).
If we are interested in selecting a subset containing the population with the
largest upy , we use the rule

R4 : Select population II; iff

& = ¢ maxicjn T .
It follows that
THEOREM 6.1.

P(CS| Ry} = [7[G(x/c)] dG ()

where G(z) = 1 — €°.

The proof is the same as for Theorem 2.1. The disadvantage is that the right-
hand side of the inequality is independent of n. However, by restricting the class
of distributions to the gamma family we can obtain a lower bound which depends
on n.

Application to the selection of gamma populations. Let us consider k¥ populations
with densities

AN T (@), z =0, X >0, i=1,2 -,k
Assume that @ = 1, but otherwise unknown. This implies that thedistributions

are IFR. We are interested in selecting the population with the smallest (largest)
value, Ay (A ), based on an independent sample of size n from each of the k



916 RICHARD E. BARLOW AND SHANTI S. GUPTA

populations. Note that urq = a/A; fors = 1,2, - -+ , k. The subset selection rule
based on the sample means, &;,7 = 1, 2, - - - , k, is R4 as before.

Let G denote a gamma distribution with parameter a. Since D j= i is
distributed as a gamma random variable with distribution, G it follows from a
result of van Zwet (1964 ) that

G(na) <, G(n)
when « = 1. It follows that in this case

6.3) P{CS| Ry = [T[G™ (x/c ) dG™ ().
The constant ¢’ is determined by
(6.4) JS 16 @/ dG™ (z) = P*.

The values of ¢’ are tabulated in Gupta (1963). It should be pointed out that for
selecting the population with the largest A, the rule can be modified to:

Rs : Select population II; iff
Z; = dmim<jcr &5
where d is determined by »
o1 — 6™ (/) dG™ (z) = P*.

The values of d are tabulated in Gupta and Sobel (1962).

The shape parameter & = 1 need not be the same for all populations. It is only
necessary that the distribution of the population, Il , with the largest mean be
stochastically larger than the others.
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