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TESTS FOR MONOTONE FAILURE RATE II'
By P. J. BickEL
University of California, Berkeley

1. Introduction. In a prewious paper [2] K. Doksum and the author investi-
gated the asymptotic power behavior of various tests in the following problem.

We observe Xi , - - -, X, independent and identically distributed observations
from a population with unknown distribution function ¥, such that F(0) = 0.
We wish to test the hypothesis that F is a negative exponential distribution with
(un)known scale parameter against the alternative that F has monotone in-
creasing nonconstant failure rate. This problem arises in life testing situations.

In accordance with the notation of [2] let Xgy < -+ < X, be the order
statistics of the sample and define, taking X = 0,
Di=(n—1i+1)Xw» — X)), 1=i=mn

to be the normalized sample spacings. Finally let R; be the rank (counting from
the bottom) of D; among Ds , - - - , D, . If the null hypothesis is that F is negative
exponential with unknown scale parameter various tests of level o have been
proposed based on,
(i) Statistics of the form Y i~ &, (X:/ (O X1)) (8]),

(ii) Linear functions of (Di/ (2 Ds), --- , Da/ (32 Dy)) (1), [7], [9]),

@iii) Locally most powerful tests based on (Bi, ---, R,) ([2]),

(iv) Linear functions of :

[—log 1 —Ri(n+ 1)), -+, =log (1 — R.(n + 1)™)]  (2]).

All such tests are similar for the null hypothesis. In this paper we shall establish
a result stated in [2] to the effect that under the regularity conditions of Theorem
4.1 of [2] each one of the classes (i), (i), (iii) and (iv) contains a test asymp-
totically equivalent to the asymptotically most powerful similar test.

This is in sharp contrast to the situation when the scale parameter is known,
for which it was shown in [2] that the last three classes do not contain asymp-
totically most powerful tests and consequently that the ranks are not asymp-
totically sufficient. With the slight additional uncertainty concerning the scale
the ranks yield asymptotically as much information as the ‘‘natural”’ statistic

[Xl/(z Xz); T Xn/ (E Xi)]°

2. The main results The notation and assertions of this section are based on
those of [2] Section 1. For a fuller discussion we refer to that paper.
Let {fs}, 8 = 0, be a family of densities all vanishing off the nonnegative axis
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such that fo(t) = ¢ %, t = 0, is the standard negative exponential density. We
introduce an unknown (inverse) scale parameter A > 0 and define,

2.1) fon &) = Me(M).

In this model we are testing H:0 = 0 versus K:0 > 0 on the basis of inde-
pendent observations Xi, ---, X, each distributed according to fe» . As in[2]
assume the existence and finiteness of,

(2.2) In(t) = 9log fox (t)/30 ls=o

and let 6, be a sequence of parameter values such that lim,n!0, = b where
0=b< .

As usual, we say a (randomized) test ¢ (X1, - -+, X,) is similar of size o if
and only if,
(2.3) Eoy(@X1, -+, Xa)) = «
for allx > 0.

The notation Eg, , Py is used for expectations of random variables and
probabilities of events defined on the sample space when (6, \) is the true value
of the parameter. Our first theorem is,

TueoREM 2.1. Let {0, (X1, -+, X,)} be any sequence of (randomized) tests
each simalar of size a. Suppose that {fe )} satisfy conditions (3.5) (a), (b), (e) of
[2] and hence that {fw, )} are contiguous to fon for each fixed N in the sense of [2].
Then,

(24) limsup, B, nlenXi, -+, X)) £ 1 — @A — a) — a1()b), "
where ® is the standard normal cdf, ® 4s its inverse and
(2.5) o (h) = [o k@) dt — [[o tha(t)e™* dif.
Consider the following similar tests;
Xy, o, X)) = 1 it 7,9 > ¢,@
(2.6) = 5,@ it 7Y = ¢,@
=0 otherwise,

where 1 < j < 4, and the statistics T, are defined as follows.

@.7) 7,0 = 07 3t (X2 X,

(2.8) 7,2 = Y taGin + 1D D)™ — a
where

(2.9) a@t) = (1 — )" [Zioea—n b (s)e™" ds,

for0 < ¢ < 1 and,
(2.10) a=n"Yiwa@/(n+ 1)).
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As usual 4, is the derivative of A .
(2.11) T,® = n? 2 Byl X)) By, -+, R
=07 2 Boplh (Cia Xy (0 — 5 + 1)™)1.

The symbol Equ[-|Ri, -+, Rs] denotes conditional expectation given
Ry, ---, R, and the second line in (2.11) refers to an expectation computed when
Ry, -+, R, are treated as constants.

Finally,

212) T.° = = 35 (aG/n+ 1) — a)log (1 — Ri(n + 1)™).
The constants ¢, and va'? where 0 < v.? < 1 are chosen so that,
(2.13) Eon(@n? (X1, , Xa)) = a.

The test proposed by Moran [8] when {fya} is a family of gamma densities is of
the class ¢,

If {fon} 1s a density of “generalized Makeham’ type it was shown in [2] that
the test ¢, corresponds to the “total time on test” procedure advanced by Lewis
[7], Nadler and Eilbott [9] and Barlow [1]. The whole class of tests of type ¢,®
are locally most powerful rank tests for the given parametric family but are un-
fortunately qulte complex. Type ¢, tests are simple and asymptotically equiva-
lent to type ¢, . Our main result is,

TaroREM 2.2. If the assumptions of Theorem 2.1 are satisfied then,

(2.14) lim, Egnlen® X1, -+, Xa)] = 1 — @1 — @) — a1(ha)b).
If in addition the assumptions of Theorem 4.1 of [2] hold, then
(2.15) lim, Eg, mlen” (X1, -+, X)) = 1= 3@ (1 — @) — o1 (ha)b)

for 2 £ j < 4 as well. In fact, all the tests ¢, are asymptotically equivalent in the

sense that the T, have a nondegenerate limiting distribution under H and

T, — T, — 014n Poy, and P, » probability whatever be i and j 7
CorOLLARY 2.1. If in addition to all the hypotheses of Theorem 2.2

(2.16) lim, Eg,nle” (X1, -+, X)) = 1

whenever n*9, — « it follows that the sequence {¢,"} s asymptotically most power-
ful among all similar level « tests in the sense of Wald (see [2] for a discussion).

The corollary is an immediate consequence of Theorems 2.1 and 2.2 in view of
the definition of asymptotically most powerful test. The proofs of the theorems
as well as the statement of a generalization of a result of LeCam [5] which is
central to our argument are given in the next section. The final appendix con-
tains a sketch proof of the generalization of LeCam’s theorem.’

% A result considerably more general than our Theorem 3.1 has recently been proved by
M. Wichura in his thesis [11]. His result also encompasses another extension of LeCam’s
theorem (to functionals of the sample spacings more general than T,, which may be
found in Pyke’s interesting paper [10].
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3. Proof of Theorems 2.1 and 2.2 and a generalization of a theorem of LeCam.
The result of LeCam that we need is given by,

Taeorem (LeCam). Suppose that the X; are independently and identically
distributed according to a standard negative exponential distribution. Let

(3.1) Sn=n"2k (Xi— 1).
Suppose that {g,} is a sequence of measurable functions such that the g,(X ;) are u.a.n.

where £ (-, - ) denotes “joint law” and £ (T, 8) is some limat law.
Then £ (T, 8) has characteristic function ¢ (t, s) = E (exp {#sS - @tT} ) which is
necessarily of the form,

(3.3) et s) = 0t s)

with

(34) log ¥ (¢, s) = —%{s" + 2Bst + C*’}.
Then, the conditional law of D i=1 gn(X:) given S, = 0,

(3.5) £ g (Xi) | 80 = 0) — £(To)

where Ty has characteristic function

(3.6) E (exp itThy) = w(t) exp — 3(C* — B*)¢.

»

The modifications we need follow. We use the notation of the previous theorem.
TureorEM 3.1. Under the assumptions of LeCam’s theorem,

(3.7) £(Zg=1 gn (X5) l Sn = 1v)— £(Ty)
uniformly in v for |y| £ M for any finite M. The variable T, has characteristic
Sfunction given by
(3.8) E (exp itT,) = w(t) exp {—3(C* — B’ + itBy}.

From this theorem we can derive,

CoROLLARY 3.1. Under the assumptions of Theorem 3.1 if w(t) = exp #tu for
some p, i.e. if £ (T, 8) is the joint normal distribution with E(T) = u, Var T = C”
and cov (S, T) = B then T, is normal with mean u + By and variance (C* — B*).

More generally suppose we are given a family of functions {g.”} where o
ranges over [0, 1] such that,

3.9) &Ll 0.7 (X:), 84) = £(T, 8)

uniformly in . Let 0 (- ), B, C'” be the characteristic functions and con-
stants of the representation. Write

(3.10) W@ () = p(¢t) exp [i arg (@ (t))]
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where arg. (@ (¢)) is chosen to be continuous in ¢. This is possible by analytic
continuation of log z since »'” (- ), being the characteristic function of an in-
finitely divisible distribution, never vanishes. We then have,

TurorEM 3.2. Suppose that {g.}, satisfying (3.9), », etc. are as above.
Assume that B, C and o (t) are continuous functions of o. Then

(3.11) Lt 0.7 (X0) | 8 = v) — £(T,)

uniformly in |v| £ M and o, where £ (T, is given by (3.8) (with suitable super-
scripts).

The proof of Theorem 3.2 which evidently implies Theorem 3.1 and its corol-
lary is deferred to Section 4.

Proor or TuEOREM 2.1. We begin by noting that if 8 = 0 the statistic S, is
complete and sufficient for A and hence by Theorem 2 of Section 4.3 of [6] any
similar test must have Neyman structure. It follows by the Neyman-Pearson
lemma that if we let

(3.12) Vi = D=1 [log fo,n (X:) — log fon (X:)]

then there exist random variables ¢, (S.) and v, (S,) with 0 < v,(S,) =< 1 such
that,

(B.13) Pon[Va > ¢a(Sn) | Sul + ¥ (Se)Pon[Ve = ¢ (Sn) | Si] = @ aus.
and
(3.14) P, [V > ¢a(Su)]l + [tvamentsi1 ¥n(Sn) AP,

z Bo,nle (X1, -+, Xa)I

for any similar level a test ¢. It is clear from the structure of the problem that
we can take A = 1. ,
By the assumptions of Theorem 2.1 we know that (see [2]),

(3.15) Ve — b D0 b (Xa) + 30°Eon (W (X1)) — 0

in P, and by contiguity in P, 1y probability.
It follows that under the null hypothesisif N\ = 1, (V,., S,) are asymptotically
jointly normal with

E(V) = —3'Eoplh’ (X1)] = —3b° [oh’@)e" dt,
(3.16) Var V = b* [5 b’ (@t)e* dt,
cov (V,8) = b [7 thi(t)e " dt,

where (V, 8) is the limit law of (V,, S,).
Applying Theorem 3.1 we see that

(3.17) EVal| 8 =1n)—e,)

uniformly in |y| £ M < « where V, is normally distributed with mean
—10* [T P (t)e "t dt + b [§ thi(t)e”* dt, and variance o1’ (h1).
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Now, for every ¢ > 0 and every n there exists (by the central limit theorem )
M < o such that,
(3.18) PonllSsl = M2 1 — e
From (3.13), (3.17) and (3.18) we conclude that,
(3.19) [ca(Sa) + 30" [T A (t)e " dt — S, [T th(t)e™ dt] — & (1 — a)bor (),
while

(3.20) Yn(8n) — 0

in P probability and by contiguity in P, 1, probability.
Finally, if

(3.21) Un = Vo + 3 [T (@)e" dt — b8, [5 th(t)e™ dt

It

bt il (Xs) — (Xia) [ th(t)e™ dt],

then under the null hypothesis with X = 1, (U, , V,) tends in law to (U, V) a
joint normal law with U having mean 0 variance b’o;’ (%) and with covariance
(U, V) = b’ (h).

By LeCam’s third lemma, [4], p. 208,

(3.22) Ltpn (Un) = RO (), boi® (1))

where 9T (g, o) denotes a normal law with mean u and variance ¢”. Therefore
combining (3.19), (3.20) and (3.22),

(3.23) P, n[Va> ¢u(Sa) + [1vnmens1 ¥a (Sn) dP, 2
=Pan[Un > &1 — adber(h)] = [1 — @@ (1 — a) — boy(h))].

From (3.23) and (3.14) we obtain Theorem 2.1.
Proor or THEOREM 2.2 Theorem 2.2 is a consequence of

(3.24) To? — 07 300 (Xs) + Sulfs tha(t)e ™" di] — 0

in P, and hence in P, 1) probability.

By the usual computations involving LeCam’s third lemma and Slutsky’s
theorem the assertion (2.14) follows if A = 1 as does the second assertion of
theorem 2.2 about the equivalence of the 7,". Since the distribution of the
T, is independent of \ the theorem will follow. A careful examination of the
proof of Theorem 2.1 and an application of (3.24) will reveal the additional
interesting fact that the critical regions of the most powerful similar level & tests
of the null hypothesis versus the alternatives fo, ) are asymptotically equivalent
to the regions given by ¢,“.

We proceed with the proof of (3.24). It was shown in [2] that

-1

(3.25) 7.9 — 0 35 @@/ (n+ 1) —a)(Di — 1) = 0
in P,3 probability. But

»
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(326) n )i (aG/(n+ 1) — a)(Ds — 1)
=02 aG/ (4 1)Di— 1) — an* 25 (X — 1).

Also in [2] it was shown that the first term on the right hand side of (3.26) is
asymptotically equivalent to n? i (X;)if 0 = 0and X = 1.
On the other hand,

(3.27) a— [sa@)dt= 3 A —t)" [Zioga—e b’ (s)e™* ds dt
) = —[osh'(s)e ds = — [ shi(s)e” ds,
since
(3.28) [5 hi(s)e™* ds = 0.
Therefore, (3.24) holds for 7,. In [2] it is also argued that

(3.29) T,® — 0 30 @@/ (0 + 1)) — 6)Bon[Xen] — 0

in P ©,1) probability.
By a result of Hijek [3],

(330) n7 i @@/ (n + 1) — @)Eoy Xmp)

—n > (a@/(n+ 1)) —a)(Di— 1) >0
in Py probability and (3.24) follows for 7,®. Similarly by Slutsky’s theorem,
(331) n{ X ra@/(n+ 1))D;(XC i D) — a)

— Y @@/ + 1) — a)(Di — 1) > 0

in P 1 probability and (3.24) holds for 7,®. For T, we argue as follows. It
suffices to show that,

(3.32) Popl|T.% — 27 i b (Xs) + A6 tha(t)e “dt] | ZelS, = v] — 0

.

uniformly in |y| = M for each ¢ > 0 and M < «. Equivalently since
7' > Xi = n%8, + 1 we must show that

(3.33) £(o,1){’n_%[2?=1[h1 X1+ ’Y’n_;)_l) — (X
’ "y [T th@)e "t dt] S = v} — £({0})

uniformly in |[y| £ M < «, where £ ({0}) is the law of the random variable
degenerate at 0.
In view of Theorem 3.2, (3.33) will follow if we can show

(3.34) n P XM [R(Xi(l + yn )Y — m(X)] = —v [0 th(t)e  dt
in P,y probability uniformly for |y| £ M < «, whatever be M. But,
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Bop{n [ Xia (X1 + yn ™)) — k(X)) + v [0 th(t)e™" dt)?
(3.35) = Varon [a(X:(1 +n7)7™) — k(X))
+ W' Bonlh (X1 + v ™) — b (X0)] + v o th(t)e™ dif.
Now
(3:36) n'Boplh(Xi(l + )7 — (X))
= [ @ P+ ) — e dt— —y [7th(t)e dt,
uniformly for |y| £ M by a standard application of the dominated convergence

theorem and (3.28).
Finally,

(3.37) Varoy (X1 (1 + yn)™) — b (X1)]
S JT @@+ )T — ()%t dt.
Let h, = log (1 + yn™?). Then the right hand side of (3.37) is bounded by,
2[[v (exp (y — ha)) exp 3{ly — ha] — exp [y — hal}
(3.38) — M(exp y) exp 3{y — exp y})* dy
= 7 h*(exp y)exp 3{ (y + ) — exp(y + ha)} — exp Hy — exp y}I* dyl™

The first term in (3.38) goes to 0 by the L, continuity theorem while the second

tends to 0 by the dominated convergence theorem. That the convergence to 0 is

uniform in |y| £ M is clear. Therefore (3.34) and Theorem 2.2 are established.
It is plausible to conjecture that under the assumptions of Theorem 3.1,

(3.39) Dot ganXi (i X)) 4+ BS, — Dt gu(Xs) — 0

in probability. L. LeCam suggested the following counterexample to this con-
jecture. Let &, be the indicator of the interval [1, 1 + n"]. It is easy to see that,
(i) Doi hy(X:) and S, are asymptotically independent.

(i) D= ha(X:) and D im ha(Xi(1 4+ yn?)™) are asymptotically inde-
pendent and have identical Poisson limiting distributions, uniformly in |y| < M.
Applying Theorem 3.2 we see that D i1 b, (nX D 1=t X)) — Dty b (X:) is
asymptotically distributed as the difference of two independent Poisson variables.

4. Proof of Theorem 3.2. For any 1, < m < n define

4.1) Spm =17 37 (X; — 1),
and similarly,
(4.2) Tom = 204 02 (Xa).
Suppose 0 < a < 1 and let m,/n — a. Then, by Lemma 1 of [5] we have that
4.3) L (T s Bamy) = £(Ta, 82)

uniformly in ¢ where S, has a normal (0, }) distribution and the characteristic
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function ¢, (¢, s) of (Ta'”, Sa) is given by
(44:) ‘Pa('r) (t, 8) = [‘P(a) (t, s)]a.

(Note that the complex valued characteristic function is raised to the ath power
by multiplying arg « (t) by a.)
Let f,m, denote the density of S, n, . Then Lemma 1 of [5] states,

4.5) [1fama @) = fu(@)] — 0

where fa is the density of the normal (0, o!) distribution. Define
4.6) ¢ (@) = E(exp {#T50} | Sum, = )

and

@.7) 0 @) = E (exp{itT.} | 8a = z).

Since £ (T, , Snmy) = £ (T, S.) We must have

4.8) 0 Grionn @0 (@ )foimy () d& = [T " (@)0 (@) () dv

uniformly in ¢ and uniformly for » ¢ V where V is any set of uniformly bounded,
equicontinuous functions. In view of (4.5) we may argue that

4.9) I3 @S, @0 (2)fa @) dz — [T 0. (@) (0 fulz) dov

uniformly in ¢ and v ¢ V.
The conditional density of Sy m, given that S.,» = v which we write pﬁ.:’,,).n ()
is given by,

410) pin.@) = (14 )P, (@ — yman™) (L + yn)7).
It follows from a standard calculation given in [5] that,
(4.11) P () = £ ()

uniformly in |y| < M where faq—a (z) is the density of the normal distribution
with mean ya and variance a (1 — a). If |[y| £ M, the set {p%.,} is uniformly
bounded and equicontinuous. From (4.9) if we let

rhn) = E(exp i#tTm, | Sum = )

we obtain,

(4.12) P = J 0 @)fda-w (2) dz = 177 ¢)
uniformly in ¢ and |y| £ M. Of course,

(4.13) J 4. (@) exp lisalfu () da = [¢ (@, 8)]I".

Arguing as in [5], p. 12, we find that
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4.14) "7 @)
= (exp 3V @) @r)? [20 exp —3{s* + 2B at + 4v)s
+ (€t} ds
= [« @) exp {#Bay] — §(IC"Te — [BT)}.
Evidently by the continuity conditions of the theorem

(4.15) e "7 (t) — E (exp 9T,)
uniformly in |y| < M, casa— 1 and
(4.16) ra " () — 1

uniformly in |y| £ M, ¢ as & — 0. (It is easy to see that arg v (t) is jointly con-
tinuous in ¢ and ¢.)

Suppose £ (T | Snn = ) does not converge to £(7,”) uniformly in
|[v| £ M, o. Then there exist sequences {v.}, {¢»} Which may be taken to con-
verge to vo , oo respectively such that, £ (T(“") | San = v,) do not converge to
L(T5Y) while £(T5) do so converge, by the continuity assumptions of the
theorem. Then, there exists ¢, ¢ > 0 such that,

(4.17) |E (exp iteTw% | Snn = vn) — E(exp iteTS?)| =
for all n. Write
(4.18) T% = T, + T,

Clearly £(T52). | Spn = v) = £(TS%-, | Sun = v) and by the continuity
assumptions of the theorem,
(T | Sam = va) = (TT0),  &@TNR, | Sam = 2) — S(TH2S),

where T."” is the variable with characteristic function r,'"'”. Therefore, the
sequence of bivariate laws £(Tom. , T7 | 8n.n = va) is relatively compact and
we may suppose that some subsequence converges to a limit law £(7, ro "°)

T$15). Hence,
(4.19) lim inf , |E (exp {72} | San = ¥n)
— E(exp ito (T + TH20) = 0
for every 0 < « < 1. But by (4.15) and (4.16),
(4.20) E (exp it (Ta(vo.ao) 1T )) E(exp{'&toT("o)})

as a — 1 whatever be the bivariate nature of (7, T2, Expressions

(4.19) and (4.20) provide a contradiction to (4.17) and the theorem follows.

Acknowledgment. I am indebted to L. LeCam and K. Doksum for some helpful
discussions.
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Note added in proof. I recently became aware of the fact that Theorem 2.1
and the first part of Theorem 2.2 can also be obtained (under stronger assump-
tions) as consequences of results of LeCam (Proc. Third Berkeley Symposium
Math. Statist. Prob. 6 (1956) pp. 129-156) and Neyman (Probability and Statistics,
The Harold Cramér Volume, (1959), Ulf Grenander, ed. pages 213-234).
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