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SOME PROPERTIES AND AN APPLICATION OF A STATISTIC
ARISING IN TESTING CORRELATION'

By J. S. MeaTA AND JOEN GURLAND
University of Wisconsin

0. Summary. In testing a hypothesis concerning the correlation coeflicient in
a bivariate normal distribution where all the parameters are unknown, the
Pearson product moment statistic is appropriate. It may happen, however, that
there are relations among the parameters in the distribution, in which case the
Pearson statistic would not utilize this information. In particular if the variances
of the two marginal distributions are equal, it is possible to test the correlation
coefficient by means of a simpler statistic which makes uge of this information.
In this paper we explain how this statistic arises and present some properties of
its distribution. This statistic as well as its properties developed here are utilized
in the latter part of this paper where we consider the problem of estimating the
difference of the means when some of the observations corresponding to one of
the variables are missing,

1. Introduction. Let &11, Z12, ++ - , Twv and Za1 , Taz, * * + , Lax be samples from
a bivariate normal population having means p;, pe and covariance matrix

2
o1 po1 02
(1) [ \
po102 g2

Under the assumption o; = o, the likelihood ratio test of the hypothesis Ho:p = po
leads to a critical region based on the statistic 4 (say) defined as follows

) u = 28/ (s + 8°)

where

3) Ns® = D0 (@ — &)° for i=1,2,
4) Nsp = D2 0= (xy — &1) (3 — &),

%) NZ; = D w1 2.

We present in Section 3 the general non-central distribution of this statistic
corresponding t0 o1 5 o2 and p 5 po and we give the first two moments of u in
Section 4. These moments are used in Section 5 in investigating the behavior of
an estimator of w1 — wz which is proposed here for the case of missing observations
corresponding to one of the variables (say) X .
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2. A derivation of u. Let us test Ho:p = po against Hi:p = pp . Under the as-
sumption ¢y = g2 = ¢ (say) the logarithm of the likelihood function can be written
down as follows:

log L = —N log 2r — N loge® — 1N log (1 — p°)
(6) — 3N — )7 (s + &' — 208) — NS — o)
@ — m) + @ — w) — 2@E — m) @& — w)
The solution of the likelihood equations
dlogLi _ dlogLy _ dlog Ly _ dlog Li _ 0

du Ous do? dp

turns out to be
@) =% fe=%; E=36"+s0); b= 2s/("+ ).

We note here that the maximum likelihood estimate p of p is the statistic » given
in (2). The maximum value of the likelihood function under H; is

8) maxe, L (w1, p, 0% p) = (we) V[ (s* + 82°)° — 4sh] ™%

Similarly under the null hypothesis Ho:p = po it can be verified that the maximum
likelihood estimates of w1, p2 and o® are

) =1 G=f&; o =30+ ).

The maximum value of the likelihood function under Hp is

(10) maxm, Lu, w2, 0% po) = (we)™ (1 — po’)"?/ (s:® + 85 — 2p0812) "
The likelihood criterion is given by

maxg, L(p, p2, o’y po) _a- p0) V(s + 827)° — 4shl™?
maxa; L(ui, pe, 0% p) [s12 + s2* — 2p0 812"

= [(1 = p") (1 — w)(1 — pow) """
which is a function of u. The likelihood ratio test is
(12) A =p)(1 —u')(L —pu)" < ¢

where ¢ is chosen so that the probability of the inequality in (12) when samples
are drawn from normal populations with correlation p, is the preseribed signifi-
cance level .

The critical region can be written equivalently

(13) u > [oec + @ = p’)A — )/ (pd’c + 1 — po’),
u < [oc — (1 —p)A = ¢)'l/ (o + 1 — po).

(11) x=
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When py = 0 the critical region becomes
(14) u> (1—c)
u< —(@1—c)l

3. Distribution of w. The distribution of % both for the null case p = 0 and the
non-null case p % 0 has been given by DeLury (1938) under the assumption
o1 = o3 . In this section we derive the non-null distribution without the restriction
g1 = 03.

In order to find the density of » we start from the Wishart density which can
be written as

(15) p(st, 8 s12) = K(si’ss® — s32)i" ™ exp [—iN(1 — )T

2 2
81 S 2ps12

o1 (1 0102

where
(16) K= NN_1[4‘"'P (N - 2){012022 (1 —_ pz)} Q(N_l)]_l
0< 812’ 322 < o} —518 < S12 < 8182

To obtain the distribution of » we apply three successive transformations.
The first transformation is

. 2 2 2 2 2
Tiiu = 28/ (81" + 82°), v=s8 + 8, w = 8.

As the joint probability density function of , v, w is obtained in a straightforward
manner, the details are omitted here. Next we apply the transformation

Toiw = 301 + ¢(1 — u?)

and integrate out the variable v in the joint density function of u, v, ¢ to obtain
the joint probability density function p (u, ¢) of » and ¢.

(1 _ u2)}(N—3)(1 . t2)}(N—4)

1/1 1y 1/1 1 ._2%__/’3‘_]”—1
[2 (02 + a'f) + 2 (0'22 012> (1 —w)’ 7109

—1<u<l;—-1<t<l.

an plu¢) «

On applying the transformation
: Ts:t= (1 —2)/(1 4+ 2)
we obtain the joint probability density function of u, z which, when z is inte-
grated out yields the probability density function of u
(N — 2)2"2-4(21 — p")I Y (1 — oo
7,-(01 oy )%(N 1)
,[2aB<%N, %(N—zn]

(a2 — b2)N/2

(18) p(u) =
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which is valid for any sample size N > 2. Here

_1(1 1Y _ e 11 1N ey
(19) a_2<012+022> g10y’ b_2(0'22 012> ( w)h

When o; = o2 = o, say, we have from (19)
(20) a=(1—pu)/’; b=0.
Substitution of these values for @ and b in (18) yields
(21) p@) = 7 TENIGW — 1))@ — o)
-1 - u2)%(N—3) (1 — pu)” (N—1)>
and when p = 0 this becomes
(22) p@) = = TEN)TGE — 1) (¢ — o) .

It is evident from (22) that the null distribution of % under these restrictions is
the same as that of the product moment correlation coefficient corresponding to
N + 1 pairs of observations.

4, First two moments of u. It is possible to obtain the moments of » by utilizing
directly the distribution of % in Section 3. In this section we obtain these moments
through a technique based on moment generating function which yields these
results more readily.

Suppose X and Y are random variables with joint moment generating function
¢x,v(t, &). If Pr {Y < 0} = 0, the mth moment of X/Y is given by

@) paxmr= [ o[ [ Eetw ] T e

where we set f, = Y 71 ;. (cf. Dixon (1944).)
Now the moment generating function of the Wishart distribution is given by

(24) ¢012,823,2812 (vll ) 7] ) 1)12) = II - 22VI_* (N_l), Where

2
o1 o12 Vi Ui

(25) z = \ ; V = ; o1z = po1 oy .
o1z 02 Vig U

Consequently the moment generating function ¢x,y(t, &) of X = 2s13 and
Y = s* + s, is given by

¢X,Y(t1 , t2) = ¢s,2,5,2 205 (t2, la, tl)

1 0 of o\ [ &
-2
0 1 o o) \b b

= [1 — doph — 2(0)" + 02 ) — 4 (o0’ — o)t + 4(or'e’ — oh)B"TH N

—1/2(N—1)

(26) =
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Thus the first two moments of % are given by

(21) B = [ ‘; [ﬂﬂ;;—]@] o d

_ [ 4(N — Dow dte
—® [1 i 2(0‘12 + 0'22)t2 + 4(0’12 0‘22 ol a‘%z)tzzl%(lv".l)'

0 2
B = - [ o] THBB]

0 2 2 2
(28) = — f_m[ 4N — D) (o' o' — di)ta dby

1 — 2(0® + o))t + 4(01% 02 — U%z)tzz]“N"'l)

- [ 4N — 1ok o
~ [L = 2(02 + 0Dty + 4(02® 08 — oh)ts?] PV

These integrals can be evaluated by standard techniques utilizing reduction
formulae. In Section 5 below we have evaluated these integrals for specific values
of N in order to obtain the numerical values of the efficiencies in Table 1.

5. An application of u to incomplete data. In the present section we consider
the problem of estimating the difference of the means in a bivariate normal
population when the sample has some missing values corresponding to one of the
variables. This problem can arise in sample surveys, archeological investigations,
psychological tests, and many other situations where it is not always possible or
desirable to obtain all of the observations corresponding to both variables (cf.
Nicholson (1957)). The problem of estimation of the parameters of a bivariate
normal distribution when the sample available is incomplete has been considered
by Wilks (1932) and Rao (1952). These authors have obtained the maximum
likelihood estimators of the mean vector along with their large sample variances
and covariances. More recently, the problem of estimation of the mean vector
from an incomplete sample from g trivariate normal population has been con-
sidered by Anderson (1957) and Lord (1955). We are concerned here with the
problem of estimating the difference of the means. For this, an estimator desig-
nated below as Z, in which the u-statistic is utilized, is suggested and the behavior
of its variance for small samples is studied.

Suppose that we have a sample

(29) Tii, L1z, © 5 Tiny Binl, =0 5 Tin
x21"x227 ”’,x2n-

with (N — n) missing values of the variable X, as indicated. Let the underlying
bivariate normal population have means u; , u2 and covariance matrix = asin (1).
We wish to estimate difference of means é, say where

(30) 0= — p.
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Let us write
31) Nz ™ - 212;1 L1 nd, ™ = ZLl T4 5 ng ™ = Z{L L1
(N — n)z W ZZH 1, .

A simple estimate of § which is unbiased is given by

(32) T = @ w) _ 1_}2(")

which has variance

(33) Var (T) = n 0[N + k — 200 (k)]
where

(34) k= o’/o; N =mn/N.

There are, however, other unbiased estimators of § which, although not as simple
as T, have variance less than that of T for certain values of the parameters in-

volved, namely p, k& and A.
One such estimator of § can be obtained as follows. Consider the estimator Z,

defined by

(35) Zo= A ™ + Am YV — 5@
which will be unbiased for § if A, = 1 — A;. Accordingly we write
(36) Zo=A&m" + 1 — A)u Y™ — 5™

where A; is an arbitrary constant to be specified. A plausible method of specifying
A1 is to choose that value which minimizes the variance of Z,. It is easily shown

that the variance of Z, is

(87)  VarZ, = n oA + (1 — 4A)NQA — N7+ k — 2041 (k)7
and the value of A; which minimizes (37) is given by

(38) A=+ p®) W — n)/N =N+ p(k) (1 — ).

Of the three parameters A, p and % involved in (38), A will generally be the only
one known in any given practical situation. Thus to employ Z, in practice as an

estimator of & we must specify p and k.
Now, as already shown,  is the maximum likelihood estimate of p when & = 1.

Consequently one would expect that the estimator Z defined as

(39) Z = Ax—l (n) + (1 — A)il (N—n) _ ﬁg(n)
with
(0) A=2r+ul -

would perform well in the neighborhood of £ = 1. As will become evident in the
following sections it turns out that this estimator has a smaller variance than the
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estimator T, not only in the neighborhood of ¥ = 1 but also in certain other
neighborhoods, depending on the value of the correlation coefficient p and the
number of missing values.

6. Efficiency of Z. Since Z is an unbiased estimator of u1 — u» a natural way
of evaluating its behavior is to compare its variance with that of 7. For this
purpose we define the efficiency of Z as

(41) eff Z = Var T'/Var Z.

We obtain the variance of Z as follows, utilizing the fact that Z is conditionally
unbiased given u.

Var Z = E,[Var (Z | u)]
(42) =o'n 1 —N)!
Do+ @ =Nk — {2+ 1= Np®)EA) + E(4)]
where
(43) E(A) =2+ 01 —NE@)
EAY) =N+ 200 = NE@w) + 1 — \)’E@).
Consequently the efficiency of Z is

N+ &= 20()N) (1 — )
N4+ @ =Nk —2{N4+ 1 = Npkt}EA) + E(4)] "

It can be easily shown that eff Z 2 1 according as
45) E@) S 20(k)'E (u).

Since E (u’) > 0, there is a loss in efficiency if p = 0. By the continuity of the
expression for efficiency there is a small interval around p = 0 for which Z will
continue to be inefficient. The behavior of Z when p is not in the neighborhood of
zero is not so obvious and will be examined in some detail below. At the same time
the dependence of efficiency on values of & will also be examined.

We have calculated the efficiency of the estimator Z for several values of n and
also for a grid of values of the parameters p, A and k. As the results for moderate
values of n are all quite similar it will suffice to present here the values of the ef-
ficiency for ». = 17 only. In Table 1 appear the values of the efficiency for the
indicated values of p, A and k.

On examining the table it is evident that there is a gain in efficiency in some
regions of the parameter space and a loss in others. There appears to be a general
loss of efficiency in the region around p = 0 extending from about p = —.1 to
p = 0.1 with a few exceptions where there is a very slight gain. In the remaining
region of p extending beyond |p| > 0.1 there appears to be a general gain in
efficiency except for a few instances where there is a slight loss.

For fixed values of & and p the gain in efficiency decreases as A increases from

(44) eff Z =
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TABLE 1
Efficiency of Z when n = 17

0.1 0.2 0.5 1.0 2.0 5.0 10.0

1.0942 1.2645 1.8046  2.3104  2.2014 1.5752 1.2898
1.0306 1.1231 1.3595 1.5182 1.4899 1.2828 1.1574
.9773 1.0181 1.1225 1.1897 1.1918 1.1246  1.0741
.9382 .9483 .9941 1.0313 1.0474  1.0379 1.0244
9151 .9110 .9346 .9629 .9854 .9986  1.0010
.9101 .9061 .9316 .9616 .9850 .9986  1.0010
.9262 .9388 .9932 1.0351 1.0516  1.0400 1.0254
.9690 1.0245 1.1604 1.2366 1.2258  1.1376 1.0793

0.1 —.

1.0488 1.2011 1.5846  1.7885 1.6591 1.3321 1.1744

1.1828 1.5689  3.1843  4.7419  3.2928 1.7475 1.3361

0.5 - 1.0141 1.0418 1.1237 1.2020  1.2334 1.1745 1.1109
- 1.0049 1.0223 1.0738 1.1197 1.1367 1.1036  1.0668

- .9961 1.0037 1.0310 1.0561 1.0667 1.0521 1.0342

- .9886 .9883  0.9982 1.0110  1.0191 1.0175 1.0120

- .9835 .9780 .9782 .9852 .9934 .9993 1.0005

.9816 .9751 .9749 .9832 .9926 .9993 1.0005

.9844 .9828 .9973 1.0166 1.0272 1.0225 1.0145

.9933 1.0072 1.0671 1.1189 1.1258 1.0808 1.0469

1.0107 1.0605  1.2552 1.4163 1.3850 1.2026  1.1064

1.0405 1.1746  1.9820  3.0507  2.3907 1.4708 1.2107

0.9 - 1.0016  1.0049 1.0144 1.0235  1.0283 1.0240  1.0169

1.0006 1.0027 1.0090 1.0151 1.0183  1.0154  1.0108
.9995  1.0005  1.0040  1.0076  1.0097 1.0084  1.0058
.9986 .9985 .9998  1.0016  1.0030  1.0030  1.0022
.9980 .9972 .9969 9977 .9989 29999  1.0001
.9978 .9967 .9963 9972 .9987 .9999 1.0001
.9981 .9977  0.9996  1.0029  1.0052  1.0045  1.0030
.9992  1.0010 1.0108  1.0217  1.0253 1.0171 1.0100

1.0001  1.0083 1.0420 1.0793  1.0812 1.0450  1.0236

1.0051  1.0241 1.1649 1.4047 1.3063 1.1087  1.0483

© T UUCO 0 T T D O ~T T = 08 DN =T O O ST et = s 89 Gt =T o

0.1 to 0.9. On the other hand the loss in efficiency decreases as \ increases. It is
also apparent that whatever be the values of k£ and X the efficiency increases as p
moves away from zero in negative or positive direction. Further, for values of p
close to +1 and whatever be the value of A the efficiency appears to attain a
maximum for values of & in some interval around ¥ = 1. This is not surprising,
however, since k¥ was assigned the value one in constructing an estimator Z with
minimum variance.

In conclusion, it is evident that the estimator Z has a substantially smaller
variance than that of T if the values of the parameter p are sufficiently far away
from zero. It was, in fact, for this purpose that the estimator z was constructed,
namely, to take advantage of the possible correlation between the two samples

» when such correlation may exist. Although in the construction of this statistic Z
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the ratio k£ of variances was taken to be one, it turns out that the variance of Z
is still substantially less than that of T in a wide range of k¥ values when the
correlation is sufficiently large numerically. Consequently the statistic % is not
only interesting in itself as a simpler estimator than the product moment correla-
tion coefficient, but it can also be utilized advantageously in the problem of
estimating a difference of means.

7. Use of Z in testing Hy:6 = & . In Section 5 we considered the statistic
Z=A5"+ (1 - A5 "™ —5®

with variance
V(Z) =270 =N’ + (1 — N)oi — 2{har® + (1 — Nporoo} E(4)

+ o’E (4%)].
It should be noted that the parameters involved in V (Z) are o1’, 05’, 013 (= po10s ).

Now under Hy, [V (Z)]# (Z — 8) has a standardized normal distribution N 0,1).
If o1’ 02’ 012 are unknown one can use the modified statistic

(46) Z*=[W@)Ntz - s

where now s;’, sy, s12, the maximum likelihood estimators of o’, a5, 012 TESpEc-
tively have been substituted in the expression for V (Z) to give V (Z). Since the
maximum likelihood estimators are consistent, therefore, as n, and consequently
N — n, tend to infinity the distribution of Z* tends to N (0, 1). The referee has
suggested the possibility of utilizing Z* for testing Ho , and this aspect is currently
under investigation.

8. Example. Now we illustrate the use of the estimator Z through an example.
A sample of size 10 was drawn from a bivariate normal population with mean
vector [s] and covariance matrix [o.; “§]. Let us assume that the last five observa-
tions on X, are missing. The quantities required in calculating Z are

5™ =4956;, &Y™ =3160; &™ = 6.238;
A=05; D7 (@— &™) = 4.773;
D (@ — &™) = 25266, 27 (wu— &) (@ — ™) = 4.484.
This yields # = 0.299, 4 = 0.649 and consequently Z = —1.912.

For the purpose of comparison we note that T = & ™ _ 5™ = —2180.
Evidently for this sample the estimate obtained by using Z is closer to the true
value y1 — pe = —2.0 than the simple estimate obtained by using 7.

For further comparison we consider the estimate which would have been ob-
tained by taking the difference # " — % “? if all 10 observations on both vari-
ables had been available. From the sample we obtain w59 = 92049,
This is closer to the true difference y; — ps = —2.0. However the performance of
Z in the absence of 5 observations indicates some advantage over the use of the
simple difference of the means when such data are missing.
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