The Annals of Mathematical Statistics
1969, Vol. 40, No. 5, 1610-1616

STOCHASTIC INTEGRALS AND DERIVATIVES!

By DeAN IsaacsonN

Towa State University

0. Introduction. The question we consider in this paper is whether or not
the stochastic integral has a property analogous to the Fundamental Theorem
of Caleulus. That is, if Y (¢, ) = [46(s, ) dM (s, ) and if AY (t, ) =
Y+ Aw) — Y (¢, w), does limao AY (¢, w)/AM (t, w) = ¢({, w) and in what
sense does the limit exist?

1. Stochastic integrals using Brownian motion as integrator. In this section
we consider only stochastic integrals using Brownian motion as integrator.
Throughout this paper we will let X = (X,, F;,¢ = 0) denote one dimensional
standard Brownian motion defined on (2, , P), a complete probability space.
Let 5, be the complete sub o-field of § generated by {X,:s < t}. (By standard
Brownian motion we mean the process is normalized so that

Var [ X({,w) — X(s,w)] =t —s for s<t)

For notational purposes we let Plima;,o AY (¢, ) = H ({, @) mean that AY (¢, »)
converges in probability to H (i, w) as At — 0 where we always take At > 0.
DerinrTION. A real valued process, ¢ (s, ), is stochastically integrable on R*
with respect to X (¢, ) if:
(1) ¢ (s, w) is adapted to {F.}.
(ii) ¢ (s, w) is measurable on (R* x , B(R™) x ).
(iii) [$E |¢(s, w)|*ds < oo for all finite ¢ = 0.
Let M1 (X) denote the space of all processes stochastically integrable with re-
spect to X (f, w). For ¢(s, w) e M1(X) one can define the stochastic integral
ff) ¢ (s, w)dX (s, w). For a discussion of this integral see [2] or [3].

To motivate the type of answer one should expect to our question, consider
the case where ¢ (s, w) = X (s, w). i.e., as an integrand we take Brownian motion
itself. One can easily show that X (s, w) is stochastically integrable. In fact, the
integral can be evaluated.

JoX(s,0)dX (s, 0) = (X*(t, 0)/2) — (/2) (2] page 444).
Hence, if Y(t, 0) = (X*@, )/2) — (t/2), then
AY (t, w)/AX (t, w) = X, w) + (AX (t, 0)/2) — (At/2AX (8, w)).

We now must show the last two terms on the right-hand side go to zero. Fix
t = 0. Now as At — 0, one easily sees that AX (f, w)/2 — 0 a.s. and in L, . How-
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ever, At/2AX (t, w) does not converge to zero in either of these senses. Fortu-
nately, it does converge to zero in probability. This is easily shown since
AX (t, )/ (At)’ is a normal random variable with mean zero and variance one
independent of ¢ and At.

We now turn to the case of more general integrands. In the remainder of this
section we will make repeated use of the following property of the stochastic
integral.

(L1) EIfid(s @) dX (s, ) = [$ B |6(s, o) ds.

This property is discussed in [3].
TaEOREM 1.1. Let ¢ (s, w) be a continuous process tn M1(X). Then if Y (t, w) =
[ 6 (s, @) dX (5, @), Plimaco AY (¢, 0)/AX (t, 0) = ¢ (t, w) for every t Z 0.
Proor. Clearly it suffices to show

(1.2)  Plimawo [i{™[¢(5, @) — ¢ (¢, @)] dX (5, 0)/AX (t, @) = 0.
i.e., that if e > 0, there exists § = §(t, ¢) > 0 such that 0 < At < & implies
PlI[f [6(s, 0) — ¢(t, )] dX (5, 0)/AX (¢, )] > ] < e
Now
Pl (s, w) — ¢t @) dX (s, @)/AX (K, @)| > ¢ =
(1.3) P [8(s, @) — ¢(t, )] dX (5, @)/ (A8)'] > ¢/K]
+ P[|(at)}/AX (¢, w)| > K]

for K > 0. Fix K = K. so that P| (at)"/AX (, )| > K] < ¢/2. This can be done
independently of ¢ and At since AX (¢, w)/ (At)! is normal (0, 1). From the con-
tinuity of ¢ (s, w) one can choose § > 0 such that

Ploisupigizes [6(s, ©) — ¢ (¢, 0)f > €/(4K")} < ¢/4.
Now define a stopping time by
T(w) = inf {set, t + 8]:[6(s, @) — ¢, )" Z €/ (AK")}.
T(w) = » ifnosuch s exists.

T is a stopping time since {T < s} = {w:supi<r<s [¢ (1, @) — ¢ (¢, w)[ = &/ (4K}
= {w!SUDt<r<s |9 (17, @) — @(, w) = €/(4K*)} where r; ranges through a
countable set since ¢ (s, w) is separable. The right-hand side is clearly in &, .
Define a new process

¢* (s, w) = ¢(s, w) if s<T
%@, 0) = ¢(T(w),w) if s> T.

It follows that ¢ (s, w) — ¢(f, ) is stochastically integrable on [t, £ + 6] with
respect to X (s, w). Use the fact that ¥ (s, ) = ¢(s A T(w),w) wheres A Tis
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a stopping time ([4], pages 70-73). Now

BI[i™ %G @) — ot )] dX (s, @)/ (At)']°
= [T E " (s, 0) — ¢t )" ds/At £ €/ (4K”)
if At £ 4. Therefore
P [" (s, 0) — ¢(t, @) dX (s, @)/ (At)}| > ¢/K] < ¢/4 if At < 6.
Using this and the facts that P[| (A¢)'/AX (¢, w)| > K] < ¢/2 and

Plp™ (s, ) 5 ¢ (s, w)] < ¢/4

we get (1.2) from (1.3).

ReMARk. If the integrand is not random, we need only assume the path to be
right continuous and the conclusion of the above theorem still holds. The proof
is a simple modification of the above proof.

We now treat the case where ¢ (s, w) is only assumed to be stochastically
integrable. Let &., denote the o-field generated by U5_; 5. .

TurEorREM 1.2. Let Ly (2, Fo , P) be separable. Let ¢ (s, w) e M1(X). If Y ({, ) =
6 (s, @) dX (s, @), then Plimao AY (f, ©)/AX (t, 0) = ¢(t, w) for t 2 N” where
N” is a Lebesgue null set.

Proor. We must show there exists a null set, N”, such that for ¢ > 0 and
tz N” thereis a 8 = &, > 0 such that

14) Pl oG, 0) — ¢t )] dX (s, @) /AX (G 0)] > ¢ < €

for At = 4. As in the previous theorem, fix K = K. > 0 such that
P[|(At)}/AX ¢, w)] > K] < €/2.

Now (1.4) is proved from (1.3) by showing

(15) Pl (s, @) — ot ©)] dX (s, 0)/ (A8)'] > ¢/K] < ¢/2

fort # N” and At < . By separability let Q = {v:(w)} be a countable dense sub-
set of Lp (2, Fs). Fix vi(w) € Q. Let S > 0 be fixed and consider

limarso [T E ¢ (s, 0) — vi(w)* ds/At for tel0, ).

E|¢(s, ) — vi(w)|* is Lebesgue integrable on [0, S) so by classical Lebesgue
theory

limaeso [ E |6 (s, 0) — vilw)[" ds/at = Elo(t, ) — vi(w)]

for a.e. t £ [0, S). Let N, denote the Lebesgue null set where convergence fails
for the fixed random variable v;(w). Let N' = {te[0,S):E |¢(t, w)' = «}. N’
is a Lebesgue null set since by hypothesis [0 E |¢(s, w)[Pds < . Let
N” = N u (U N,). Now fix t e N”, where t £ [0, S).
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limao B [T (¢ (s, 0) — ¢, w)] dX (s, w)/ (A1)}
= limawo [IT™ E |¢(s, @) — ¢ (1, w)[*ds/At
< 2limao [TV E |6 (s, @) — v:(w)[* ds/At
+ 2limaeo [1TE |vi(0) — ¢ (t, o) ds/At
=4E [¢(t, ©) — vi(w)["

Now ¢ (t, w) € L2 (R, F,) since ¢ (I, w) is adapted. Therefore by the denseness of
Q the left-hand sideis zero so [{™** [¢ (s, w) — ¢ (t, @)] dX (s, @)/ (At)* converges
to zero in L, and hence in probability. Now S > 01is arbitrary so (1.5) is true and
hence the theorem is proved.

REMARK. In the above case where §, is chosen to be minimal one has L. (2, F,)
is separable so it need not be assumed.

It is possible to define a stochastic integral for integrands that do not have all
the properties of the above theorems. That is, instead of property (iii) one need
only assume P[ [ |¢(s, @)[*ds < «] = 1for each ¢ > 0. The above two theorems
can be proved in this case also. To do this define ¢ (¢, w) = ¢, w) if
[616(s, w)[*ds < N and ¢éx(t, @) = 0 otherwise. ¢y (t, @) has the properties of
the previous theorems and limy.. ¢y ({, w) = ¢ ({, w) a.s.

2. Stochastic integrals using general integrators. The stochastic integral
has been defined using integrators that are much more general than the Brownian
motion used in Section One. In particular, Meyer has defined the integral using
right continuous square integrable martingales as integrators [5]. Hence, if
N w) = fé o (s, w) dM (s, w), it is reasonable to ask whether

Plima:o AN (i, 0)/AM (¢, ) = ¢ (¢, w).

Unfortunately, this is not true in general. In this section we will discuss what is
known about this question but many proofs will be omitted. We will only con-
sider the question for continuous integrands although similar results hold in
general.

For the reader’s benefit we will now state a few standard definitions and known
results.

DEerINITION. A process A (t, w) is called a time change for a Brownian motion .
X:,%,,t=0)if

(i) A (¢, ) is right continuous and nondecreasing as a function of ¢ for a.e. w.
(ii) A(t, ) is a stopping time for each fixed ¢.

(iil) E |A (¢, w)| < o for each finite ¢.

In the remainder of this paper we will restrict our attention to the special class
of martingales that can be written as a Brownian motion with a time change.
According to Dambis, we know this includes all continuous martingales with
Mo = 0 [1]. Now if we define M (¢, w] = X (A ({, w), w) the process M (¢, ») is a
right continuous square integrable martingale. (i.e., E[M "] < < for all finite t.)
(12] page 365). In fact, E[M*(t, w) — M*(s, w)| 5] = E[A(f, w) — A (s, w)|F] s0
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(M, M), = A(t, ) where (M, M), is the natural increasing process associated
with M (¢, w) when A(¢, w) is continuous [5]. The martingale M (f, ») is adapted
to the family of o-fields {F(4:,.,} Which we will denote by {G.}.

DEFINITION. A stochastic process Y (s, w) defined on (R* x Q) is called very
well measurable if the function (f, w) — Y,(w) is measurable with respect to the
o-field on R* x Q generated by the processes having left continuous paths.

DEerFINITION. A real valued process, ¢ (s, w), is stochastically integrable with
respect to (M, , G,) if

(i) ¢ (s, w) is adapted to {G.}.
(il) ¢(s, ») is very well measurable on (R* x Q).

(iii) E [o|p(s, w)* &M, M), < « for all finite ¢ > 0.

Let L (M) denote the space of processes stochastically integrable with respect to
M.For¢(s,w) e L* (M) one can define the stochastic integral [ ¢ (s, w) dM (5, «).
For a discussion of this integral see [5].

If we take a nonrandom time change, we get the following theorem.

TuaeorREM 2.1. Let M (t, w) = X(A(t), w) where A () s a right continuous
strictly increasing function. If ¢(s, w) e L*(M) is continuous and N (t, ) =
[6 (s, w) dM (s, ), then Plimao AN (¢, 0)/AM (t, 0) = ¢ (t, w) for every ¢ = 0.

Proor. The proof is very similar to that of Theorem 1.1, so it will be omitted.

Now consider a time change of the form A (¢, w) = Z:Ll 15, (w)A:(t) where
UL B: = Q, BinB; = ¢ for i  j, and A.(t) is a right continuous, strictly in-
creasing function of ¢. Let M (t,w) = X (4 ({, w), ). The analogue of Theorem 1.1
is still true but the proof requires the following lemmas.

LeMMA 2.1. Let B S and let A (s, ») be a time change of the form A (s, ) =
15 (0)A1(s) + lge(w)As2(s). Let ¢ (s, w) & L* (M) be continuous. Then

L [{ [0 (s, ©) — ¢t )] dX (A (s, ©), )
= L [{"[8(s, @) — (¢, ©)] dX (41(5), @) as.

Hint orF proor. Use step processes to approximate ¢ (s, w) and easily show
the result for integrands that are step processes.
LeMMA 2.2. Let Z (t, ) be a stochastic process for which

Plimy.o Z (4;(t), ) = 0

for each of denumerably many real valued functions A;. Let Ui B; = Q where
BinB; = ¢fori#j Let A(t,w) = D im 15, (0)A:(t). If 15,2 (A (¢, w), ) =
15,Z(A:(t), w) a.s. then Plim,,s Z (4 ({, ), w) = 0.

Proor. The proof is straightforward and will be omitted.

Using these two lemmas, one can prove:

THEOREM 2.2. Let A (s, w) = D im1 15,4:(s) as described above, M (s, w) =
X(A(s, w), w) and ¢(s, w)e L*(M) be continuous. Then if Y({, ») =
[6¢(s, w) dM (s, w), Plimaro AY (¢, w)/AM (¢, @) = ¢ (¢, @) for every t = 0.

Now one would hope that by approximation, the desired convergence could be
proved for all integrators of the form M (s, w) = X (4 (s, w), »). However, we
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have an example where A (s, w) is right continuous and convergence fails. We
will sketch the ideas of the example here. Choose a sequence of points converging
to zero as follows. Let by = 1, b, = sup {s < ba/2:P[X (, ) = 0 for some
tels, buoa/2]] = +8}. Define

Ay, w) = inf {s:by < s < bay/2 and X(s, w) = 0}
A(bn,w) = buy/2 ifnosuch s exists.
Let
A(s,w) =5 if s=1
A, w) = Abn, @) + [baa/20n1 — ba)lls — ba] if b £ 5 < busy
AO,w) = 0.

It can be shown that A (s, w) is a time change for X. Now choose for each n = 1
a point ¢, such that b, = ¢ < bay and PX (A (4, w), w) = 0] £ +%. This is
possible since X (A (bn , @) 4+ [ba—1/2(ba1 — bn)][t — ba], @) behaves like Brown-
ian motion for b, = ¢ < b,_1 . Define

¢(0,w) =0 forall weQ
(s, w) = 1/n if bn=s<ta, weQ
(s, w) = —1/n if & = s < by, we

6 (s, w) is clearly in L* (M ). In fact, it is right continuous and nonrandom so one
would hope for convergence for all £ = 0 by the remark following Theorem 1.1.
However,

P[e" ¢ (s, @) dX (A (s, @), @) > € X (A(On, ), @)]] 2 }

for infinitely many », with b, — 0.

There remains a very interesting class of martingales of the form M (¢, w) =
X (A (¢, ), w) for which no conclusions have been drawn. That is the case where
A (t, w) is assumed to be continuous. It is still unknown to the author whether or
not one gets convergence in this case.

There is one additional type of martingale for which we get convergence using
the above methods.

TueorEM 2.3. Let ¢ (s, w) € M1(X) be continuous. Let

Mt o) = [56(s, @) dX (s, w).

Let H(t, w) e L*(M) be continuous. Assume Pl (t*, ©) = 0] = 0. Then if
N(@r, o) = [(H(@, o) dM (¢, »), Plimano AN (t%, @)/AM (t*, ©) = H (¥, o).
Proor. N(r, w) = [tH(, w)é(t, «)dX (t, @) so by previous theorems

Plimac.o AN (t*, 0)/AM (t*, ©) = Plimaw.o AN (¥, 0)/AX (¥, ») -
-Plima o AX (%, 0)/AM (t*, w) = H (¥, w).
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We conclude this paper with a second method for recovering the integrand of
a stochastic integral. This method will not yield convergence at every ¢ for con-
tinuous integrands but the method is applicable to all stochastic integrals in
which the integrator is a right continuous square integrable martingale. The
essentials of this theorem are due to Meyer ([5], pages 74 and 79).

TuarorEM 2.4. Let M (s, w) be a right continuous square integrable martingale,
o(s, w) e LX(M), and N (t, 0) = [5¢(s, w) dM (s, w). Then for t £ [0, L]

(21) lim LZZ" <N’ M>k/2" _ <N’ M>k—1/2"
n—>% k=0 <M, M>k/2n - <M, M)k—l/zn
a.e. d(M, M) a.s.

Proor. From Meyer’s construction of the stochastic integral it is known that
N, = [ ¢,dM, implies (N, M), = [o¢:d(M, M), [5]. Now (M, M), generates a
finite measure and (N, M), generates a signed measure of finite variation. We
clearly have (N, M) < (M, M). Hence, as an application of martingale theory one
has (2.1). ([2] page 344.)

Lig-ronkpom = ¢(¢, @)
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