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ON BARTLETT’S TEST AND LEHMANN’S TEST FOR HOMOGENEITY
OF VARIANCES!

By Nariakr Suvciura Anp Hisao Nagao
University of North Carolina and Hiroshima University

1. Introduction and summary. The purpose of this paper is to compare a
modified likelihood ratio test (Bartlett [2]) with the asymptotically UMP
invariant test (Lehmann [8]) for testing homogeneity of variances of £ normal
populations. We denote these tests by the “M test” and “L test,” respectively.
The M test has been investigated by many authors, whereas the L test has not.
Fitting beta type distributions, Mahalanobis [9] and Nayer [11] computed the
percentage points of M, when the numbers of observations in each sample are
the same. Nayer’s results were confirmed by Bishop and Nair [3], using the
exact null distribution of M in a form of infinite series derived by Nair [10].
Asymptotic series expansion of the null distribution of M was obtained by Hart-
ley [6], using Mellin inversion formula, from which tables for percentage points
were calculated by Thompson and Merrington [16], without assuming the
equality of k-sample sizes. Later in a more general formulation, Box [4] derived
the asymptotic series expansions of the null distributions of many test statistics,
including that of the M test, by using the characteristic function. Recently
Pearson [12] obtained some approximate powers of the M test both by fitting a
gamma type distribution to the inverse of the modified likelihood ratio statistic
and by using the Monte Carlo method. No attempt was made, however, to in-
vestigate the asymptotic non-null distribution of M. Sugiura [18] has shown the
limiting distribution of M in multivariate case under fixed alternative hypoth-
esis to be normal.

In Section 2 of this paper we shall show that the L test is not unbiased, though
the M test is known to be unbiased (Pitman [14], Sugiura and Nagao [19]).
In Section 3, we shall derive the limiting distributions of L and M under se-
quences of alternative hypothesis with arbitrary rate of convergence to the null
hypothesis as sample sizes tend to infinity. Limiting distributions are charac-
terized by x*, noncentral x°, and normal distributions, according to the rate of
convergence of the sequence. In Section 4, asymptotic expansion of the null
distribution of L is given in terms of x’~distributions, and asymptotic formulas
for the percentage points of L and M are obtained by using the general inverse
expansion formula of Hill and Davis [7], with some numerical examples. In
Section 5, asymptotic expansions of the non-null distributions of L and M under
a fixed alternative hypothesis are derived in terms of normal distribution func-
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tion and its derivatives, from which approximate powers are computed. It may
be remarked that the limiting non-null distributions of L and M degenerate at
the null hypothesis, by which asymptotic null distributions cannot be derived.

2. Biasedness of the L test. Let X;;, Xis, :--, Xiv; be a random sample
from a normal distribution with mean u; and variance ¢ (i = 1,2, - - - , k). For
testing the hypothesis H:o1* = 02’ = --- = o) against all alternatives K:a;® #
;" for some 7 and j (¢ 5 §) with unspecified u; , the L test eriterion due to Leh-
mann ([8], page 274-275) is given by

(2.1) L =% 2 i nddlog (Sa/na) — n™* 2 b nglog (Ss/ng)},

where S; = > Ny (X0 — X))’ with X; = N, 2%, X0, and n; = N; — 1
with n = D% n,. The M test criterion due to Bartlett [2], without correction
factor, is given by :

(2.2) M = nlog (2 tei 8a/n) — 2 hci nalog (Sa/na)

with the same notation as above. The L (or M) test rejects the hypothesis H,
when the observed value of L (or M) is larger than a preassigned constant. The
M test is equivalent to the modified liklihood ratio test known to be unbiased
(Pitman [14]). The modification consists of replacing sample size N, by degrees
of freedom n, . The following theorem shows that the L test is not always un-
biased.

THEOREM 2.1. In the two-sample problem (k = 2), the L test is unbiased if and
only if the two sample sizes are equal. In this case (ny = ny), the L test is equivalent
to the M test.

Proor. If k = 2, L = (nyna/2n){log (ns81/718:)}" and the acceptance region
of the L test is simply ¢ < n2S1/(718s) < 1/c¢ for some constant ¢ (0 < ¢ < 1).
Putting the derivative of the power function at the null hypothesis to zero,
Ramachandran [15] showed that an acceptance region, ¢ < n2Si/(miS:) < ¢
for any constants ¢; and ¢; (0 < ¢1 < ¢2), gives an unbiased test if and only if
the condition

(2.3) "™ (1 + mey/ne) ™" = ei"™ (1 + mey/ne) ™"
is satisfied. In our case ¢1 = ¢, ¢z = 1/c and (2.3) becomes
(24) cn1—n2 = [(’l’Lz + nlc)/(nl + mc)]"

for 0 < ¢ < 1. To show that (2.4) has a solution if and only if n; = n., take
logarithms of both sides and define

(2.5) g(a) = (a — @) logc — log [(& + ac)/(a + ac),

where o = ny/n, @ = 1 — a. It is easily verified that g(0) = ¢g(3) = ¢(1) =0
and ¢" < 0for0 < o < %,¢” > 0forl < a < 1. Hence the only solution is
m = ny (excluding the case 71 or n2is 0). When ny = ny, M = 3nlog [(){1 +
(81/82)}%(85/81)], the acceptance region of which is equivalent to ¢ < Si/S; <
1/¢ for some ¢. Hence our proof is completed.
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3. Limiting distributions under sequences of alternative hypotheses. Since the
statistic

Se/ca = D2 5% (Xapg — Xa)/ou®

has a x’—distribution with n, degrees of freedom under the alternative K, the
statistic Ta = [(Sa/0al) — nal/(2n4) ! has asymptotically the standard normal
distribution as n, tends to infinity. To express the statistics L and M in terms
of 1, -+, Ti, put e = pan With 2%y ps = 1. Clearly

(3.1) log (8o/na) = log oo’ + log (1 + (2/n.)'T.),
which implies, for large n with fixed p.(> 0),
L =31 2 a1 pa(Ga — )"+ 1 2ot pa(3a — &) log (1 + (2/10)'T)

+ in 2eci pallog (1 + (2/na)'T)

(3.2) — hanslog (1 + (2/n)'Ts)}’
= (1/2) 2t pa(5a — 8)* + (20)" Dot (50 — ) T

+ 2t (7 = Fat DTS — (Xm0 Ta)® + 0p(n7)
where 5, = log o, and & = D 51 pa l0g oo’ Similarly
(83) M =n(logs — &) + (20)} 2het (va — Dpa'Ta + 2 s T

— (L pavelo)” + Op(n ™),

with & = D%t pava and v, = 04/5.

Now we shall specify the sequence of alternatives K; as oo = o + 0n"° for
a=1,2, ---,kand § > 0, where not all 6’s are assumed to be equal. If 0 <
§ < %, we can rewrite the expression of L in (3.2) as
(34) L = (n/2) D i pal(6a — &)°

+ 207257 3o (0 — )pa'Te + 0p(n"™),
where 8 = D % pafo and (1/2) D hci pa(de — )° = O(n'™). This means
that the statistic n'H[ — in D % 1 pa(a — #)%] has asymptotically a normal

distribution with mean zero and variance 7.° = (8/6°) D41 pa(fa — 0)° If
6 > 1 we can write the statistic L from (3.2) as

(3.5) L= DA TS — (X palTa) + 0p(nfY,

which shows that L has asymptotically a x’-distribution with ¥ — 1 degrees of
freedom. In this case, the sequence of alternatives K; converges so fast to the
null hypothesis that the limiting distribution is the same as under the null
hypothesis. On the boundary 6 = %, we can write

(36) L = ’fx=l {Ta + (2Pa)*(0a - 9)/0'}2 - (Z’fx=l pa%Ta)z + OP(n_%)°

Thus the statistic L has asymptotically a noncentral x’-distribution with & — 1
degrees of freedom and noncentrality parameter 8,° = (2/0%) > i pa(fe — )2
Summarizing the above results, we have the following theorem.



ON TESTS FOR HOMOGENEITY OF VARIANCES 2021

TaEOREM 3.1. Under the sequence of alternatives Ksio, = o + 6,m " for a =
1,2, .-+, kand § > 0, where not all @’s are equal, the limiting distributions of the
test statistic L given by (2.1) for large n with fixed p, = nq/n > 0 are the following:

(1) When 0 < 6 < &, 0" YL — (n/2) D %1pa(3a — &) has asymptotically
a normal distribution with mean zero and variance v, = (8/0%) 2 %1 pa(fe — 8)%
where 6 = D 1 paba, Gu = 10g 0’ aNd & = Dot Pabe -

(2) When 6 > %, L has asymplotically o x'-distribution with k — 1 degrees of
freedom.

(3) When 6 = %, L has asymplotically a noncentral x'-distribution with k — 1
degrees of freedom and noncentrality parameter 8,° = (2/d") > i pa(8a — )%

The result (3) in the above theorem has been used in discussing the asymptotic
relative efficiency of nonparametric tests for scale parameters by Deshpande
[5] and Sugiura [17]. However, for completeness, we have included it in the state-
ment of the theorem. Similarly we have the following results for the modified
likelihood ratio statistic M given by (2.2) from the expression (3.3) of M.

TarorEM 3.2. Under the same assumptions as in Theorem 3.1, the limsting
distributions of the test statistic M under K are the following:

(1) When 0 < 6 < % 0" M — nlog (2 ket pata’/ [[om1 0o} has asymp-
totically a normal distribution with mean zero and variance

Tt = (8/0%) D i1 pal(ba — 6)%

(2) When & > %, M has asymptotically a x’-distribution with k — 1 degrees of
Sfreedom.

(3) When 6 = %, M has asymptotically a noncentral x*-distribution with k — 1
degrees of freedom and noncentrality parameter 8" = (2/0%) D et pa(fa — 6)°

Noting that the two noncentrality parameters 6,° and 6,  in Theorem 3.1
and Theorem 3.2 are the same, we immediately have the following corollary.

COROLLARY. Pitman’s asymptotic relative efficiency of the L test with respect to
the M test is equal to 1.

When § = %, the limiting distributions of L and M are the same. Even when
0 < & < %, the asymptotic variances r,* and 7 " are equal. Thus we are interested
in the asymptotic means of L and M, namely, in cases (1), B, =
(n/2) Dk i pa(5a — #)° and Ey = nflog (D kmi patal) — D uipalogodl.
We can expect the L test to have the larger asymptotic power when £, > E,,
and the smaller asymptotic power, when E, < E . We can easily see that

EL = 0'_2277«1—28 Z’fx=l Pa(oa - 9)2

‘ _ 0_—32n1—38 Z]fx=1 Pa(oa _ é) an + 0(n1—48)
Ey = o 2Rt Z’fx=1 a0 — 9)2

— 1670n 8 Y pa(Be — ) (0 + 26) + O(n*™*).

Hence the first main terms in the above expansions of E; and E, are equal.
Putting 6 = fand 6; = 6, = - -+ = 641 = 0 (equality of first k — 1 variances),
we have
(38)  Ey— Ex =} "4n'm(1 — o) (1 — 20) (6 — 6)° + O(1).

(3.7)



2022 NARIAKI SUGIURA AND HISAO NAGAO

Hence for large n, E, > E, when p, < % and § > 6, , whereas the reverse
inequality holds when p, < % and 8 < 6, . We cannot make a unique choice from
the two tests L and M which will be better against all alternatives from the
asymptotic powers near hypothesis.

4. Expansions of the null distributions of L and M. We shall first derive an
asymptotic expansion of the null distribution of L given by (2.1). The statistic
L is rewritten as

(41) L = 32 iandlog (Sa/na)}* — n7{26-1 s log (Sp/ns))).

Under the null hypothesis H, we may assume that S, has a x*-distribution with
N4 degrees of freedom. Thus the statistic (74/2)?log (Sa/na) has the density
function

(4.2) Cno €XD { (370a) %Z/ — 3nq exp [(Z/na)‘%y]}, —0 <y< +o,
where ¢, = (n/2)*" (T (4n)} ™. We can express the characteristic function
of L as

(4.3) C(t) = (IThatcae) Jexp [it D b1 yar — 4D 5t pa'ya)’]
exp { Xt ((310) o — 310 €xp [(2/70) yal)} s - dige

The second exponential part in the above integrand is expanded asymptotically
for large 7 using the formula

(44) 2kt naexp [(2/74) 'ya]
=n+ 2 ((202) e + ya’ + 3na 2% + a7yl + 0.
We find
C(t) = (Tl cne™™ ) [exp [(it — %) 2hci v’ — (DXt pa'ya)’]
(4.5) {1 — 327 hana ) — (1/12) Zecina
+ (1/36) (2t naya))"} dys -+ - dye 4+ O(n ™).
The quadratic form (it — %) Sk i ye — (D1 pa’ye)® can be written as
—3y/27y, where y’ = (y1, %2, -+, %) and 2 = (0up) apmt...x With
(4.6) Gap = (a5 — 2it(paps)’) /(1 — 2it).

The symmetric matrix = has a simple characteristic root equal to 1 and (k — 1)-
ple root equal to 1/(1 — 2¢). Noting that all characteristic roots of = have
positive real parts, we can use the following well-known formulas based on
moments of the k-variate normal distribution with mean zero and covariance
matrix = = (o.), to get the integral in (4.5).

(4.7) E[Y, ™ =0, E[Y.] =304, E[Y."] = 15¢%,
E[Y'Y§'] = 90aaopsoas + 605 .
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Since all product moments of odd degree from a normal population with mean
32 in (4.5) vanishes, giving

zero are zero, we can see that the term of order ™
C(1) = (1Lem cne™™) (2m)*(1 — 205) "0
=307 2amp (1 = 2itpa) /(1 — 201))°
(4.8) + (5/12)n7" D i pa (1 — 2itpa) /(1 — 2it))°
+ 307 Das (1 — 2utpa) (1 — 2itog) (—208) /(1 — 23)°
+ B0 ((=26i0) /(1 = 20t))* Daws paps + O(n7)].

Applying Stirling’s formula log I'(z) = log et + (z — 1) log x — 2 —
(1/12)z" + 0(z™?), to the coefficient c,, in (4.8), we get
(49)  JTha (g ™@2m)?) = 1 — (B0 Zearpa ' + 0(n7).

Arranging the second factor of the characteristic function (4.8) according to the
magnitude of negative powers of (1 — 2¢), and using (4.9), we obtain the
following asymptotic formula.

C(1) = (1 —2i)~ "1 + (1/12)n7{2(1 — p)
(4.10) + (3K* + 6k — 6 — 3p) /(1 — 2it)*

— (3K + 6k — 4 — 55)/(1 — 2it)"}] + O(n™),
where 5 = D_%_1 po . Inversion of this characteristic function yields the follow-
ing theorem.

TueOREM 4.1. The null distribution of Lehmann’s test statistic L given by (2.1),

expanded asymptotically in terms of the x'-distributions for large m with fized
pa = Mo/n (positive), is

P(L <z) = Poa+ (1/12)n {a1Piot + aaPris + asPrist + O(n70),
(4.11) o =2(1—p), a=3k+ 6k—6— 3p,
as = —3k* — 6k + 4 + 55,

-1

where Py = P(xs* < 2) and p = D ee1 pa -
From this theorem, we can easily get the asymptotic mean of the statistic
L under the null hypothesis H,

(412)  EIL|H =k —14 (3/2) 2han. — 3k(k + 2)/n + O(n™%).

This can also be obtained by computing directly the asymptotic means of
log (S«/n.) and {log (Se/ne) }%in (2.1). A correction factor d can be determined
such that E[dL | H] = k — 1 + O(n™?), that is the expectation of dL is equal
to the mean of the limiting distribution up to the order n~>. We have

(4.13) d=4 3k — D73 Xhana — k(b + 2)/m}]"

Then the statistic dL is expected to show better approximation by x’-variate
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with ¥ — 1 degrees of freedom, for large n. We could not choose, however, a
correction factor such that the term of order n~* in the asymptotic expansion of
the null distribution vanishes, as is the case with Bartlett’s test M.

We shall take a correction factor ¢ for the M test, because of Box [4], as

(4.14) c=1—3k— 1D Qhan — 2,

which is asymptotically equivalent to Bartlett’s correction up to the order n
Bartlett [2]. Then (Box [4], Anderson [1], page 255) we can get the asymptotic
expansion of the null distribution of ¢M as

(4.15) P(cM < z) = Py + m 7wy (Prya — Ps) + m °ws(Prys — Py)
+ m {wi(Prys — Py) — @’ (Pra — Pp)} + 0(m™),
where m = cn, P; = P(x; < 2) withf = k — 1 and-
w = —(p—1)"/36(k — 1)
(4.16) ws = (p — 1)%/81(k — 1)* — (ps — 1)/45
@ = w'/2 — (p— 1)*/216(k — 1)* 4 (p — 1) (ps — 1)/45(k — 1),

with 5 = Q%1 pa and gz = >k 1 pa . Applying the general inverse expansion
formula of Hill and Davis [7] to (4.11) and (4.15), we can get the asymptotic
formulas for percentage points of L and ¢M in terms of the percentage point
u of the x’-distribution with f degrees of freedom as

(4.17) u+ [/ (6nfw)](p — D{2(f + 2) (f + 4) + 2u(f + 4) + 5u}
— 3(f + 9’ + 0(n7™)
w A+ M2y D a4/ i + M 208 Dt U/ fe ’
(4.18) + m M on 2 r 20/ fwy — [u/finl(u + f + 2) (u° — du+ f* — 4)}

+ 0(m™),

where fiy = f(f + 2) -+ (f + 2a — 2). We shall examine the effectiveness of
these formulas in the following examples.

ExampLE 4.1. Using the 5% points of the x’-distribution in Pearson and
Hartley ([13], page 136), we get the following approximate 5% point of the L
test from (4.17).

Case 1 Case 2

nm = Ng = 50 ny = 50, Nng = 100, ng = 150
first term 3.841 5.991
term of order n~* 0.088 0.118
approximate value 3.929 6.109

The improvement of the approximations to the 5% points of L compared with



ON TESTS FOR HOMOGENEITY OF VARIANCES 2025

the formula (4.11) and that using the correction factor d in (4.13) are shown
below:

Case 1 Case 2
P(L > 3.841) = 0.0526 + O(n™®) P(L > 5.991) = 0.0529 + O(n™?)
P(dL > 3.841) = 0.0503 + O(n®)  P(dL > 5.991) = 0.0507 4+ O(n™?)
P(L > 3.929) = 0.0500 + O(n?) P(L > 6.109) = 0.0500 + O(n™%).

ExampLE 4.2. The asymptotic formula (4.18) for the percentage point of the
cM test gives the following results.

Case 1 Case 2 Case 3 Case 4
n = 50
ne = 100 m=4 mn=---
n1=n2=50 1L3=150 n2=20 =n5=4

first term 3.84146 5.99147 3.8415 9.4877
term of O(m—z) —0.00045 —0.00023 —0.0389 —0.1512
term of O(m—3) 0 0.00000 —0.0045 —0.0116
term of O(m—4) 0.00000 0.00000 0.0030 0.0165
approximate value 3.84101 5.99124 3.801 9.341

When k& = 2, both the L test and the c¢M test are equivalent to F tests, based
on the different acceptance regions, except when n; = n., and the exact 5%
points of ¢M can be computed by Table 743 in Ramachandran [15], giving 3.80
in Case 3 (1 = 4, n2 = 20). Thus our approximate 5 % point 3.801 is accurate,
at least to two decimal places. For &k > 2, Thompson and Merrington [16] gave
tables for 5% and 1% points of M, based on the asymptotic formula of the
distribution of M by Hartley [6], which were reproduced in Pearson and Hartley
[13]. They showed 10.37 as a 5% point of M in Case 4 (ny = ng = - -+ = nz = 4),
that is, 9.333 as 5% point of c¢M, the exact value of which, due to Bishop and
Nair [3], is 10.38 for M (9.342 for ¢cM) (see Thompson and Merrington [16]).
Hence our approximate value 9.341 is reasonable. It should be noted that in Case
4, the term of order m™ is larger than of order m ° in absolute values, which
shows irregularity of the asymptotic expansion for small n, .

6. Expansions of the non-null distributions.

5.1 Expansion of the non-null distribution of L. We shall consider the asymp-
totic expansion of the non-null distribution of L (Lehmann’s test) under a fixed
alternative. Putting

(5.1) L' =L —n2 pa(da — 5)°

in (3.2), we can easily see that (L'/nY) — D% 1 (2p0)} (60 — ) Ta = Op(n_’).
Hence the statistic L’/ nt converges in law to the normal distribution with mean
zero and variance 7> = Y %oy 2pa(7. — &)°. More precisely we have

(52) WL = W(T) + w(T) 4 1 7(T) + 0,(n7),
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where
W(T) = 2 (2pa)%(&a — ) Ta;
(5.3) WT) = 2l — (X palTW)%;
B(T) = 22an 00 Ta" + (Xect (200) 'Ta) (s T

with ¢y = & — 7, + 1 and ai = 2%.7H(2) (54 — 5) — 1}. Hence the charac-
teristic function of L'/ (n 71) (7 > 0) is expressed as

(54) Cwu(t) = Elexp (itlo(T)/7.){1 + n Ytl(T) /7,
+ 0 (T) /7 4+ 36)°W(T)Y )] + O(n ™).
Since To = (X — 7a)/(2n4)%, we easily obtain ‘
(5.5) E["™] = (1 — (2/na)) ™" exp (— (na/2)%),
= {1+ 3(2/n)' + 0 G + /91" + 0(n7*).

Similarly E[T.'e"™] (I = 1, 2, 3, 4) are given by substituting m for n and putting
A = 0 in formulas (5.16. 2) —(5.16.5), respectively.
Applying formula (5.5) to the first term in (5.4), with the abbreviated nota-

tion by = (2p4) (it/71) (50 — &) in lo(T), we have
(5.6) Elexp (ith(T)/72)] = ¢™[1 4+ §(2/n)} Xt ba¥/pal
+ n{(1/9) (a1 be’/0) + § Xhablt/pd] + 0.
Noting that Z’Z,=l Pa’by = 0, we can write each expectation in (5.4) as
EL(T) exp (ith(T)/71)] = ¢ [ awhsl + 3. au — 1
(5.7) + 2 02 /0l (X aabe®) 4+ 3H(X be/ped) (X aa — 1)
+ 2 22 adba’/pad + 2 3 aaba/pal}] + O(n™Y)
(58)  E[L(T) exp (ith(T)/71)] = ¢ 12 adbd + 3 X aubs] + O(n™h)
EL(T)* exp (ith(T)/72)] = € "P[(X acba®)* + 4 3 a.’b.

(5.9) + 22 b’ (X e — 1) + 23 a
+ (Zaa)z_ 4Zpaaa - 22“::
+ 3] + 0(n™Y),

where the symbol Z means the summation D k1. It follows that the charac-
teristic function of L'/ (n'r 1) can be expanded asymptotically as

(5.10) Co(t) = ¢ [L+ 07 {(it/r1) (Xhs [¢ — 6] + & — 1)
+ (it/TL)s(TL - — Zd—l Pa[aa - O'] ) + n—l Za_l (tt/TL) g2a];
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where the coefficients g2 , g4, gs , are given by
=2 (5a = )"+ HE (Ga— ) — (b +3) 2 (5 — 7)
+ 3 — 1)
3 2 pa(te — 8)' + 3 2 (3 — 3) X palda — 3)°
— 3k +5) 2 pe(6a = 8)" = X (3a = O)7i' + (b + 117’
go = (2/N{ 20 pa(Ga — )Y} — 372" 22 palGa — 5)° + 372"

Inverting this characteristic function, we have the followmg theorem.

THEOREM 5.1. Under the fixed alternative K:o 5 o,° for ot least some 1,7 (1 #
7), the distribution of the statistic L' = L — (n/2) Za_l pa(6a — &)°, where L
is given by (2.1) with 5, = logos and & = D i P, 18 expanded asymp-
totically for large n as

P(L'/(ntr1) < 2) = 8(2) — n @0 (2) 70 Db (5 — 54) + k — 1}
(5.12) + 8P @) 1 = § 2Dhmipa(da — 7)Y
+ 07 2 88 (D) gae/ 7+ O™,

where 7,0 = 2 D %t pa(3a — #)® and 7 (2) means the jth derivative of the
standard normal distribution function ®(z). The coefficients gs. are given by
(5.11).

5.2 Expansion of the non-null distribution of ¢M. We shall derive the asymp-
totic expansion of the distribution of ¢M (Bartlett’s test) under a fixed alterna-

tive. Putting cn, = ma (e = 1,2, - -+ , k) with the correction factor ¢ in (4.14),
we can write from (2.2)

eM = mlog (D i1 Sa/m) — D i malog (Se/ma),

where m = D %y m, . Let U, = [(8./0s) — mal/(2ms) %, then cM is expressed
by U, as

(5.13) oM = m(log s — &) + m'qe(U) + q(U) + m *qa(U) + Op(m™),
where 6 = D by paGar, & = > i pa log o and

06(U) = 2 et (200) (va — 1) Us
(5.14) a(U) = Yha U2 — (Xky palval

@(U) = 32%(Xha pavala)® — 2ot Ud/pal)

with v, = 0.’/ for abbreviation. Note that since the random variables U, , U, ,

, Up are independent and each of them has asymptotically the standard
normal distribution as m — o, the statistic M'/m* = {cM — m(log ¢ — #)}/m*
is distributed asymptotically according to the normal distribution with mean
zero and variance 7i° = 2D 4t pa(ve — 1)%. Further, the characteristic funec-

(5.11) g
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tion of M’/ (m*ry) (7x > 0) can be expressed as
(5.15) Cu(t) = Elexp (itgo(U) /7 ) {1 + m Hitgs(U) /72
+ m itge(U) /75 + 3(it)*q(U)*/ 72 B] + O(m™").
By the definition of U, ,
Ele%] = "1 4+ maH{1 2 A0t + 1§ 2%

(5.16.1) + m {3 + 200l + (3 + $pat)™}]

+ 0(m™")
(5162) E[U"] = "It + m.™ 23 + £(1 + 340.)

+ 38pd] + O(m™)
(5.16.3) EIU %" = "I + 1 + mo? 2438 + (7/3 + 34pa)¢

+ ((3/2)8pa + 2)8] + O(m™)

(5.16.4) E[UJ e = (¢ + 3t) + O(m™)
(5.16.5) E[Ue] = (& + 67 + 3) + O(m™?),

where A = n(1 — ¢) = O(1). If we set A = 0 and change m, to n, in (5.16.1),
we have the same result as in (5.5). After some computation with the abbreviated
notations by = (2pa)}(va — 1)it/7x in go(U) and 2 ao = >k 1@, we have

(5.17) Elexp (itgo(U) /7)1 = ¢ ¥ [1 + 3(2/m)* 3" ba’/pa’
+ W (1/9) (X b /pa®)* + 320 ba'/pa + 3425 03] + O(m™").
Putting a, = paivain qi(U) and ¢2(U) in (5.14), we have
Elg(U) exp (itgo(U) /7)1 = € ¥[20 0" — (22 aaba)” + 5 — 2 aa’
+ m ™ 23 (20 b ped) (20 ba
(5.18) — [ abdl’) + (X ba’/pa’) (3k + 2
— 32002 — 2( 2 aaba/pa’) (22 Gabe)
+ 22 ba(1 — ad’) /pa
— A Gapa’ 2 acba}] + O(m™)
Elg:(U) exp (itgo(U)/72)] = 32 ( X auba)® — 2 ba'/pa’

(5.19) + 320" taba — 32 ba/pa’}
+ O(m™)
Elq(U)* exp (itgo(U) /ra)] = ¢ [ 2 ba’ — (22 aube)’}’
. + 220k + 2 — 2 ad)
(5.20) + 2(2 awba)?(3 0 — k — 4)

+3(2 ad) — 20k + 2) 2 ad
+ k(k + 2)] + O(m™),
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which implies the following asymptotic formula of the characteristic function of
M) (mPr )

Cou(t) = ™[+ m™ {(&t/r20) (b — 2ot pavad)
(5.21) + (@t/730)°((4/3) Zemi pa(ve — 1° + 72" — 374}
+ 7 2 (1t/720) *hea] + O(m™"),

where the coefficients % , ks and hg are given by

hy = (11/2) (22 para’)’ — 42 pava’ — (b + 2) 2 pava® + k(k + 2)/2
- %ATMz
ha =22 pa(va — 1)* + (4/3) 2 pa(va — 1)*(k + 4 — X pava)
(5.22) + ralb+1—4 pava(va—1)Y + 272 (3 pavai—k —5)
+ %Tue
he = (8/9) {22 pa(va — D + 22 palva — 1)*(2 — ra) rar’

%‘7‘1&#(2 - TM2)2.
Inverting this characteristic function, we have the following theorem.

TuEOREM 5.2. Under the fixed alternative K, the distribution of the statistic M’ =
cM — m(log & — &), where cM is the modified likelihood ratio statistic given by
(2:2) and (4.14) with & = D %y pate’ and & = 2 %y pa log o.’, can be expanded
asymptotically for large m( = nc) as

P(M'/(mira) < 2) = ®(2) — m@V(2) (h — D et parad) /7
(5.23) + P (2)7u Y ((4/3) D i pa(ve — 1)* + 7’ — 3ra]
+m? 4, Q(Za)(z)hzﬂu—za + O(m—alz)’

where Ta = 22 51 pa(ve — 1) with va = 0o’/ and hae (a = 1,2, 3) are given
by (5.22) with A = n(1 — ¢).

The limiting distribution of the statistic M in multivariate models has been
obtained by Sugiura [18] and coincides with the first term of the formula (5.23)
in Theorem 5.2. Since the asymptotic variances 7,° and 7’ vanish when the
hypothesis is true, the asymptotic non-null distributions of L and ¢M have sin-
gularities at the null hypothesis, so that our formulas in Theorem 5.1 and The-
orem 5.2 do not give good approximation, when the alternative hypothesis K
is near to the null hypothesis. Also it means that asymptotic expansions of the
non-null distributions of L and M do not cover the expansions of the null dis-
tributions.

5.3. Numerical examples. We shall finally obtain some numerical values of the
asymptotic power of Lehmann’s test (= L) and Bartlett’s test (= ¢M) in the
following special cases.

Exampie 5.1. When k = 2 and n; = n,, the L test is equivalent to the M
test by Theorem 2.1. Hence the two powers computed by the formulas (5.12)
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and (5.23) should be equal within the accuracy of the percentage points. Using
the 5% points of L and c¢M obtained in Example 4.1. and Example 4.2. for n; =
ny = 50, we have the following approximate powers for the alternative K:o;" =
205,

Px(L > 3.929) Pg(cM > 3.841)

Formula (5.12) Formula (5.23)
first term 0.6641 0.6643
second term 0.0134 0.0124
third term 0.0014 0.0020
approximate power 0.6789 0.6787

Thus our formulas give a reasonable approximation in this case.

ExaMpPLE 5.2. When k& = 2 and n, = 4, n, = 20, the exact values of the power
of the M test for some alternatives have been given by Ramachandran [15] in
his Table 744a. Using the 5 % point of cM obtained by Example 4.2. and specify-
ing the alternatives K:o;' = d01’, we have the following approximate powers of
c¢M test from the formula (5.23).

Pi(cM > 3.801)

§=10 =25 6 = 10/3
first term 0.6563 0.3215 0.1391
second term 0.0748 0.0804 0.1146
third term 0.0000 —0.0013 —0.0171
approximate power 0.731 0.401 0.237
exact power 0.729 0.397 0.230

For the smaller values of 4, it happens that the first term is smaller than the
second term. Thus we cannot apply our asymptotic formula effectively for alterna-
tives near the null hypothesis.

ExampLE 5.3. Whenk = 5and n; = np = --- = ng = 4, Pearson [12] obtained
some approximate powers of the M test both by the Monte Carlo method and
by fitting a gamma-type distribution to the inverse of the modified likelihood
ratio statistic. For the alternative K:oy’ = 1, 08 = 05 = o’ = 1, 05 = 4 (al-
ternative VI in Pearson [12]), our asymptotic formula (5.23) gives the following
approximate power of the M test, based on the 5% point obtained in Example

4.2
Pg(eM > 9.341)

‘ first term second term third term approximate power
i 0.3119 0.1601 —0.0116 0.460
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Pearson’s approximate powers are 0.440 (by Monte Carlo method) and 0.493
(by fitting a gamma-type distribution).

ExavpLE 5.4. When &k = 3 and n; = 50, n = 100, n; = 150, the formulas
(5.12) and (5.23), together with the 5% points in Example 4.1 and Example
4.22, give the following approximate powers for alternatives K:cy’ = b0y’ and
g3 = ) o1 .

P;(L > 6.109) Ps(cM > 5.991)
6=1.5 6 =0.7 6 =1.5 6 =0.7
first term 0.8474 0.7549 0.8430 0.7658
second term 0.0784 0.0555 0.0700 0.0615
third term —0.0014 0.0069 0.0028 0.0077
approximate power 0.924 0.817 "0.916 0.835

This example seems to show that for 6 = 1.5, the power of Lehmann’s test is
larger than that of Bartlett’s test and for § = 0.7 the reverse inequality holds,
though the differences are small.
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