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0. Summary. Let W;;and X;;, 1 < < g, respectively denote the diagonal blocks
of a partitioned Wlshart matrix W and its matrix X of parameters. A Laguertian
expansion is given for the joint distribution of v; = tr W; E,‘,‘, 1 £j<q,whichisa
generalization of known multivariate chi-square dlStI‘lbuthI‘lS Approximations to
the joint distribution function are discussed, and probability inequalities are given
for this and a related multivariate F-distribution. Appllcatlons are made to some
simultaneous multivariate test procedures.

1. Introduction. Let W(p x p) be a central Wishart matrix having v degrees of
freedom, positive definite parameter matrix X(p x p), and rank min(p, v). The
distribution is nonsingular when v = p, its probability density function (pdf) well
known (cf. [2], page 154), and it is singular otherwise; in either case we shall
require only its characteristic function (ch.f.), which exists for arbitrary integer v.
Block partitions of W and X are W, and X, respectively, both (p; x p,), where
1<j,k=qandp,++p, =p. The random scalar v = tr WE™!, known as the
Lawley-Hotelling [9], [21] statistic, occupies an important place in multivariate
inference as well as in the analysis of univariate linear models, where it occurs as a
quadratic form when v = 1. Equally important to the development of some simul-
taneous multivariate procedures are the scalars v; = trW;; X} 1 , 1Z£j<q.
Accordingly, we shall be concerned here with the joint dlstrlbutlon of {vy, -, v},
the marginals of which clearly are chi-square (x?) distributions with vp,, - -, vp,
degrees of freedom, respectively.

When g = p and thus W, W,,, -+, W, all are scalars, expressions for their
joint pdf were given in the bivariate [11], [29] and multivariate [20] cases, and
some properties of their joint ch.f. have been studied [19] also. These multivariate
distributions all have the same number (v) of degrees of freedom marginally.
Attempts to remove this restriction through modifications of the ch.f. have failed

_at times (cf. [11] and [20]) because the modified functions are not necessarily
ch.f.’s. Such problems are avoided here through exclusive use of Fourier transforms
for known random variables.

Our principal findings follow. Inversion of the joint ch.f. of {v;, ***, v,} yields an
expression for their joint pdf as a series in Laguerre polynomials of vector argu-
ment, thereby extending results in [11] and [20]. From this expression is derived a
series for the pdf of an associated multivariate F-distribution of the Snedecor-Fisher
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134 . D. R. JENSEN

type which extends all of those reported in [6], [15], [16], and [25]. Unfortunately,
however, both series are quite intractable in form. In view of this, some con-
sideration is given here to the problem of approximating the joint pdf of {v,, -, v,}
using multivariate Edgeworth series (cf. [3], for example). Of much more practical
consequence are probability inequalities, which are given for both the multivariate
x2-distributions and F-distributions, based largely on work by Khatri [13], [14].
These inequalities provide conservative solutions to some problems in simultaneous
multivariate inference as noted later.

We remark in passing that the multivariate y-distribution given here also
generalizes the multivariate Rayleigh distribution (cf. [22], for example), which
has applications to signal detection [18], [23] and other engineering problems.
Further details will be omitted here.

2. Preliminaries. In the section following this, the joint pdf for {v,, -, v,} is
obtained upon expanding its ch.f. and inverting the expanded form. That develop-
ment will be aided by results given here.

(i) Notation. Bold-faced characters will represent arrays, lower case for vectors
and upper case for matrices unless otherwise indicated. The determinant, transpose,
and inverse of a matrix A will be indicated respectively by |A|, A’, and A~! when
appropriate. Let x and r be (¢ x 1) vectors, the latter containing non-negative
integers. Then we define [dx = [ -+ [dx, - - - dx, and the operator

d P 6 ri 0 \'a
b @) -G)G)

By Y7 is meant the sum over all indices ry, - -, r, which are partitions of the integer
p, and this notation should be distinguished from the sum Y7 =Y "o+ Y 7,
in which the indices independently range over the values indicated. Recall the
Maclaurin expansion for a function of ¢ variables as

n q xjrj d\
(22) g(x,,"',xq)=g(0,“',0)+ Z Z l—[ _I‘—' Z{;( g(xla'“axq)
e

nzt r j=1 x=0

where derivatives of the function are to be evaluated at x = 0. In particular, when
q —
Ya_,rj=nlet

q \ -1 d\" i
(2.3) c,,,,=—<j[=1] r,.> (E>g(x1,-~,xq)lx=0

whereupon (2.2) becomes
(24) g(xb T, xq) = g(O: e sO)_an 1 z'r' Cn,rxln. o xqrq'

(ii) Matric series. Distinguish the scalar-valued logarithmic function log(-) from
the matric-valued function Log ( - ), and let the latent roots {a,, - - -, &,,} of A(m x m)
satisfy |o;] <1, 1 £j<m. Then we write as convergent series (cf. Householder
[10], for example)
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(2.5) Log(I—A) = —[A+3)AZ+HA% +--]
(2.6) log|[I—A| = trLog(I—A)
= —tr[A+(DAZ+ (DA +---].

(iii) Laguerre polynomials with vector argument. Let y(x; ) be the joint pdf of g
independent gamma variates having unit scale parameters and shape parameters
0y, 0,1,

4 xPim1pmx;

2.7) U(x;0) = A
( 176,
This function now is used as a weight function for defining the Laguerre poly-
nomial of vector argument, L,(x; 0), by the g-dimensional analog of Rodrigues’
formula, namely,

s 0=x;<00; 0<0;<c0.

q —d h
@8) ([[ hj!) WX O)Ly(x:6) = (d—x) [, (x: 0)]

which reduces in the scalar case to the series
(2.9) Ly(x;0) = Yo o(= D320 Hx"m!

(cf. [1], where conventional notation for our L,(x; 0) is L, Y(x)). At this point
we observe that L,(x; 0) is simply the product of ¢ Laguerre polynomials, each
having a scalar argument, and its orthogonality properties follow immediately
from this construction in the g-dimensional product space which is the domain of
L,(x; 8). More general Laguerrian polynomials with matrix argument have been
investigated by Constantine [4] using as weight function the central Wishart pdf.

The polynomials L,(x; 0) associate in a natural way with the inverse Fourier
transforms needed later, for we observe that

1 T(0;+h;)
hi, ..y hq . = SNy .
X1 xq W(x s 0) jl:[l r(ej) !//(X H 0 + h)

and the ch.f. of y(x;0+h) is known to be ¢ (t)=[]4-,(1—it)""~" from
properties of the gamma distribution. Then y/(x; 6 +h) is the integral transform

(2.10) G2, 2L [T (1= it;) "% "M exp (—it'x) dt = Y(x; 0+h)
and, upon differentiating both sides with respect to x, we find

it

© © q . h j
@11 (Jin)qf f (—DEf"fﬂ[(l_i; )oj] exp(—itx)dt
— 00 -0 ji=1 J

- T "
- 115, L(ﬁ) i xg "y (x; 0)]
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From the definition (2.8) we conclude that []4-, [it;/(1—it;)*/]* is the Fourier
transform of the function
1 h ()
(2.12) fu(x;0) = S
’ ,.1:[1 I(0;+h))
(iv) Expansion of a determinantal function. Consider the polynomial of total order
pin the scalars {z,, ***, z,} given by the determinant

Y(x; 0)L,(x; 0).

(213) g(zla'“szq) = |Ip_A(z)'
where A(z) is defined
0 z; Ry z; Ry,
zZ,R 0 z,R
(2.14) A@=| " . 2
l z, Ry z, Ry, 0

and R}, is of order (p; X p), pr+-""+p, =P- We seek to expand the function
g(zy,**+, z,) in a terminating Maclaurin series of the form (2.4), where 1 Sn <p
and clearly g(0, - -, 0) = 1. A special case of this problem, in which R, is replaced
by a scalar pj, for all j and k, was considered in [20], where the Maclaurin
coefficients were found directly upon differentiating a cofactor expansion of the
determinant. This approach is not instructive when applied to block-partitioned
determinants, and we consider another instead.
Using the series (2.6), we formally expand the determinant (2.13) and write

(2.15) g(zl,?-',zq)=exp{—z;‘,‘,’=1(1/m)trAm(z)}

which now is to be differentiated with respect to its arguments. To this end we
employ Good’s [8] generalization of Fad di Bruno’s formula for the repeated
differentiation of a function of a function, for which we require the partitions of a
vector r of integers. Let {S;} = {s;;, =", S;,} be a set of m; distinct vector partitions
of r and let {i;} = {ij, " i;s,} be their multiplicities (i3 >0) such that
T, iysj =r for each j, where k ranges from 1 to m; and j ranges over the total
number N = N(r) of such sets. For example, if r’ = [4, 3] we may take the distinct
vectors in one such set to be {S;} ={[1,1], [1,0]}, in which case [4,3]=
3[1,1]+[1,0] and {i;} = {3, 1}. Then from Good [8] we obtain

(2.16) G(r)'((%)rexp[— i (l/m)trA"'(z)]
_ % TTrz, {G(s)(d]dz)y [ — Y= (1/m) tr A™(2) ]}
j=1 n;z"i1 ijk!
x exp [ =Y =1 (1/m)tr A"(z)]

where GTY(t) = 1,1+ 1,\.
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To obtain the Maclaurin coefficients C, ,, we perform the operations indicated
in (2.16) and then evaluate the resulting expression at z = 0. Further simplification
can be achieved upon noting that the ultimate effect of the operation

<diz>s[ - mil (1/m)tr A”’(z)] ,

after products of such terms are formed and the resulting expression is evaluated at
z =0, is simply to extract the coefficient K, ; of z,°'-++z % in (1/0) tr A°(z), where
0 = s+ +s, Thusfrom (2.3) and (2.16) we write

I_I;("é 1 [_ G(sjk)Ko'.Sjk]ijk
1 Hl\""i1 e .

Observe that K, ; = 0 by virtue of the fact that tr A(z) = 0, and consequently the
first-order terms vanish. _

As a partial check on our computations, when ¢ = 4 and » = 4 we find the Mac-
laurin coefficient for z,z,z5z, to be C, , = 2tr(Ry,R,3R3, R, +R LR R R, +
Ri3R3:R 4R, ) — (tr RypRyy) (tr RyuRy;5) —(tr Ry3Ryy) (tr RyuRyo)—(tr RyyRyy)
(tr R,3R;,), which agrees with that of Krishnamoorthy and Parthasarathy [20]
when our matrices R;, are replaced by their scalars p;, 1 <j, k <q. We further
compute the coefficient of zj%z,z; as C,,=trR;,R,;R 3Ry, —(trR;,R;,)
(trRy3R;,), which vanishes when the matrices R, are replaced by scalars as noted
in [20].

For later reference we summarize the developments of this section in Theorem 1.

N
(2.17) Cov=-Y
J

THEOREM 1. The Maclaurin expansion for the determinantal function g(z,, -, z,)
given by (2.13) is

(2.18) (20 2) = 1=Y 2, Y0C, 2,7 2,00
where the coefficients C, . are given by (2.17) and the first-order terms vanish.

3. Multivariate y*-distributions and F-distributions. First we consider the joint
distribution of v; = tr W ; Z;jl, 1 £j £ q. The ch.f. of the central Wishart distri-
bution with parameters v and X is (cf. [2]) ‘

3.1 $w(T) = |I,—2iTE| "

where T is real and symmetric. By direct methods, either from (3.1) using con-
volutions and linear transformations of the elements of W, or by finding the
expectation & exp [it'v] in terms of the original Gaussian variates, we find

(3.2) ,(t) = I, — 2iH*(O)Z| ™+
where
(3.3) H*(t) = Diag(t, £}, -+, 1, X,

is a block-diagonal matrix.
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For convenience we now make the change of scale u; = Jv;, 1 <j < ¢, and we
exploit its symmetry and definiteness to write X;; = X} JE;J in terms of its sym-
metric, positive definite square root. Starting with (3.2), by elementary operations

we determine the ch.f. of {uy, -, ,} in the form

(3.4) o (t) = [I,,— iH(t)R]'*”

where now

(3.5) H(t) = Diag(#, 1,,," ", 4,1,

and R is a block-partitioned matrix with elements R;; and Ry,

I EJ,‘E,(,( , 1 £J, k = q. Upon forming the product H(t)R, lettmg z =it;/(1— 1tj)
for 1 £/ = ¢, and factoring terms out of the determinant, we write
(3.6) 6O = [10=1 (A =it) 3P [g(zy, -, 2)] ¥
where g(zy, "+, z;) is given by (2.13). Details parallel those of [20] with no
additional complications arising from our block-partitioned form.
From (2.18) we now write [g(z,, ‘", zq)]'%” = [1—B(z)]~ **, which we formally

expand in the binomial series

2 T3v)+m]
m=0 l—(%v)m’

where, by the multinomial theorem, B™(z) is the finite sum
(3.8) Bm(Z)= zzo...Z;'L:OAazlan...zqaq

and the coefficients A4, are functions of both the multinomial coefficients and the
Maclaurin coefficients C, ,; in particular, their generating function is

Z::ll:O .. 'ZZ;=0Aazlm .. .anq
= (23 C2,rzlrl .. .zq’q_|_. . +Z£’ Cp,rzln . 'quq)m_

Here {a,, -, a,} are non-negative integers and unless at least two of them are
1 q

positive, the corresponding coefficient A, of such first-order terms vanishes. In

agreement with our conventions of notation, we now write

ml __ m ..\'m
Zn - ay= o’ Zaq=0

(3.7) [1-B@)]* = B"(z)

(3.9)

where m1’ = [m, - -+, m].
Combining (3.6)-(3.8) and replacing z,%'---z,% by 4, [it;/(1—it)]", we
finally write the ch.f. ¢ (t) as

® T[4 v)+m
(3.10 sq0= 5 LIRS

m=0 r(
Upon applying (2.11) and (2.12) term-by-term to the series (3.10) to find its inverse
Fourier transform, we obtain the pdf given in Theorem 2.

Z 4, H [it; /(1= it e,
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THEOREM 2. The joint pdf of u; = (3)tr W;;E7, J , 1 £j<q, is expressible in the
series
= Tl +m] %

(3.11) (u)=m§0 TGym] gAafa(u;%VP)

where the functions f,(u; vp) are defined in (2.12) and the coefficients A, depend on
the matrix X through R, = 722,503 1 < j, k <q.

From (3.11) we can obtain the joint pdf for the scalars {v,, - -, v,} directly upon
making a simple change of scale. Special cases of the expression (3.11) were given
when p = ¢ by Kibble [11] (p = 2) and more generally by Krishnamoorthy and
Parthasarathy [20]. Absolute convergence of the serles (3.11) can be established
along the lines of the development in [20].

Starting from the joint pdf for {v, -, v,}, we now derive a multivariate F-
distribution of the Snedecor-Fisher type. In particular, let the random scalar v, be
distributed independently of {v,, -, v,} as central x2 with A degrees of freedom,
and form the ratios f; = v;/vy, 1 < j < g (equivalently f; = u;/u,, where uy, = 1v,).

From our definition (2.8) of the Laguerre polynomials L,(x; ) of total order
hy+-+-+h,in several arguments, it follows that the analog of the series (2.9) is

(=D)™I(0;+hj)x;"
C(hj—m;+DI(0;4+m;)m;!

(3.12) Ly(x;0) = Z Z

m j=1

Using this expression and the definitions of y(x; 8) and f,(x; 0) (cf. (2.7) and
(2.12)), we reduce the latter to the form

1)"‘

(3.13) fi(x;0) = Z H (h - t//(x 0+m).
Thus from (3.11) f(u) becomes
- r[(z")"‘""]
G4 =T a2 A ;JHI = ), w(u dup-+r).
Now letting
q _1)"Ja !
(315) ar_ U (a —p )" ' a

and using (2.7) together with the independence of u, and {uy, -, u,}, we write
their joint pdf as
0 l—-[(zv)+m]m1 a 2)—

- P u  Nexp (= Yo uy)
(3.16) f(“m“)*mgo TGvym! ZZ ‘”F(li) IJ I[Gvpp+r]

At this point we make the transformation f; = u;/u,, 1 < j < g, and then integrate
term-by-term using a result of Ghosh [6] (see also [25]) to obtain the joint pdf for
{f1, ", f,}. We finally encounter the form given in Theorem 3.
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THEOREM 3. Let the joint distribution of u; = (5)trt W, X!, 1 <) <q, be given
by Theorem 2, and suppose that vy = 2ug is dzstrlbuted independently of {uy, -, u,}
as central y* with A degrees of freedom. Then the joint pdf of {fy, -, f,}, where
fi=ujluy, 1 < j < q, can be written as the series

0 r[(zv)_’_n?]ml a lf tvpitri—1

(317 glfiefa) = ,,,;0 I'(Gvym! 226 T4 :7} JAGPD b

a r

where
G, - [[Z,Gvpj+r)+34] [ l_[ (—1)a;t A
' i) =y (a;— )i T[Gvp)+1)]
and the coefficients depend on T only through R, = 7 L, 204 1 < j, k < q.

We remark that special cases of Theorem 3 have been reported elsewhere in
somewhat different notation. When X is block-diagonal and thus R;, =0, j # k,
then {uy, -, u,} are mutually independent and all terms vanish in the series (3.17)
except the first (m = 0), which then agrees with Ghosh [6] and Ramachandran
[25]. Some earlier references to this Dirichlet distribution and its applications are
given in Wilks [30]. A more general distribution of this type was given by Olkin
and Rubin [24], who considered the joint distribution of S,7*S;S;™% 1</<q,
where S, S;, -+, S, are independent Wishart matrices. When p; =p, ="+ =
P, = 1(p = q), aspecial case of (3.17) was given by Krishnaiah [15].

4. Approximations and inequalities. Series for the multivariate y*-distributions
and F-distributions are obviously intractable, sufficiently so to limit seriously their
applications. Several problems are immediate, including the required partitions of a
vector of integers. In some of the more important applications the joint distribution
is beset by numerous nuisance parameters. In view of such difficulties we now
examine some approximations, first to the pdf of {v,, -, v,} itself, and then to the
joint probabilities for both distributions as required in the construction of simul-
taneous multivariate test procedures. In what follows let y,, - -, y, be independent,
identically distributed Gaussian p-vectors with zero means and covariance matrix
L (denoted y; ~ N,(0, X)), and partition y;' =[yi, ", ¥i,] and Z =[E;] as
before, where y;(p; x 1), 1 £j<gq, and p,+ --+p, =p. Then we write W =
Yoya Footyy and Wy =y vty v 1 S k2.

Chambers [3] has given a detailed account of approximations to multivariate
pdf’s by means of multidimensional Edgeworth series. Under regularity conditions
on orders of magnitude of the cumulants, he provided the asymptotic bounds
o(n®~** Dy on the error of approximation afforded by r terms of the series, for
¢ > 0 and some parameter n. Algorithms are available [3] for expressing the series
in terms of cumulants, and for evaluating its coefficients numerically. The regu-
larity conditions are that the cumulants of order s for properly standardized
variables be O(n~ %) for s = 1, O(1) for s = 2, and O(n~***!) for s > 2. Chambers
pointed out that these conditions are satisfied by the (standardized) central Wishart
distribution for v = n. Upon recalling that {v,, -+, v,} result from a linear trans-
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formation and convolutions involving the elements of W, we conclude immediately
that cumulants of the (standardized) multivariate y>-distribution are of proper
order to justify Chambers’ development. Consequently its pdf can be developed in
a multivariate Edgeworth series as in [3].

In this connection we give explicitly the cumulant generating function for the
joint distribution of {v,, -*, v,}. Starting from (3.4) and applying (2.5) and (2.6),
we find

4.1) log dy(t) = vy e_ 2" 1im tr [H()R]"/m

and the joint cumulant ..., of total order s =s;+---+s,, can be obtained
from the sth term of (4.1) upon multiplying the coefficient of i°t,° -~ -1 by
sy!+++5,! using a standard procedure. In particular, we easily establish the means,
variances, and covariances to be ev; = vp;, Var(v;) = 2vwp;, and Cov(v;, v;) =
2vtrR,R,;, 1 £ j, k < g. From the definitions of R, and the canonical correlations
[2] between the Gaussian vectors y;; and y,, it follows that the correlation of v;
with v, is equal to the sum of squares of canonical correlations between y;; and
yu. For the special case p; =+ =p, =1, the correlation between v; and v, is
p%. the square of the simple correlation parameter, as noted by Cramér [5], page
317, when p = 2 and by Krishnaiah and Rao [19]. Higher order cumulants follow
similarly.

We shall give useful probability inequalities for both the multivariate y2-
distributions and F-distributions in terms of their marginal distributions. To this
end we require the following definition and corollary from Khatri [13], [14].

DeriNiTION. (Khatri [13]). A region D(x,, **-, X,) is separately symmetric in
X, "', X, about the origin if (x,, -, x,)e D implies (g,Xy, """, &,X,)€ D for all
€, ', g, suchthate; = +lorg;= —-1,15j<n.

COROLLARY 1. (Khatri [14]). Let z, ~ N,(0, £,), 1 < i < n, and let them be inde-
pendent. Partition z; = 2y, -, 2], 1 £i =< n, let Dy = D(2yy, ***, Zi) be convex
and separately symmetric in z,,, - - -, 2, about the origin for 1 < k < q, and let D, be
the complement of D,. Then

P{Ni=1D} = HZ=1P{Dk} and P{Ni{-; D} 2 Hz=lP{5k}'
Using the foregoing results, we now state and prove the following.

THEOREM 4. Let W = [W ;] be a central Wishart matrix with v degrees of freedom
and parameter matrix £ =[X ;. Further let v; = tr W;; ' 1 =j=<q.Then

(4.2) P{Ul§al,"‘,vq§aq}gl_H:lP{vjéaj}
for arbitrary scalars a,, - -, a,.

PROOF. As before write W, = ) I_,y,;yi in terms of the partitioned Gaussian
vectors y,, ', y,, each (p x 1). In view of earlier developments we can take
L =R without loss of generality, in which case v;=trW E};! =trW;; =
trY -,y;¥i; Now let D; be the region D;:{(yi; *** ¥))|tr Y0 =1¥i¥ij = a;}»
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1 £j < g, and observe that they are separately symmetric regions, for y;; can be
replaced by —y,; without consequence. Corollary 1 of Khatri [14] thus applies
immediately to establish the theorem.

Our final theorem deals with the multivariate F-distribution treated in Theorem
3. The symbol P,{-} indicates the probability measure applicable when the
numerators of the ratios f; = v;/vy, 1 £ j < g, are mutually independent (cf. [6],
[12], and [25]).

THEOREM 5. Let {v,, ", v,} be as in Theorem 4, and let v, be distributed inde-
pendently of {v,, -, v,} as central ¥2 with A degrees of freedom. Then

(43) P{fi by fySsb}ZPo{fisb - fysb}z[l-i P{f; S by}

for arbitrary by, - -+, by, where f; = v;/vy, 1 <j 4.

Proor. The first inequality in (4.3) easily follows an application of Theorem 4
conditionally to obtain the inequality

P{v, §b,vo,"‘,vq§bqvolvo} = Po{v, §b1007...$vq§bq00|')0}

which is shown to hold unconditionally as well upon taking expectations on both
sides using a standard argument (cf. [28], for example). The second inequality was
given by Kimbeall [12].

5. Some applications. Multivariate distributions from earlier sections occur
naturally as the joint distributions of statistics useful for simultaneous hypothesis
tests in a variety of cases. The probability inequalities provided in Theorems 4 and
5 are particularly important, as they facilitate the construction of conservative
simultaneous procedures free of nuisance parameters. In the context of multi-
variate linear models (cf. [2], Chapter 8), we now discuss simultaneous tests
involving subsets of the responses, as well as subsets of the factors, using Lawley-
Hotelling (cf. [7], [9], and [21]) statistics in large samples.

Let y;, ¥,, "', ¥, be independent (p x 1) vector observations from N,(u;, Q),
1 <j<n We write ¥y =[y,, ' y,/](1 xnp) and u' =[n,’,- -, u,']. Clearly
Yy~ N, (p I, x Q), A x B indicating the Kronecker product, and we adopt the
convention that Y ~ N, (M, 1, x Q), where Y' = [y, -, y,J(p x n) and &Y' =
M’ = (pu,, -, u,](p x n). Further assume the multivariate linear model M = X ©,
where X(n x r) of rank r(r <n) is a matrix of concomitant variables and ® =
[0,)(r x p) contains unknown parameters. It is well known that the maximum
likelihood estimators @ = (X'X) " !X'Y have the properties @ ~ N,(®, T x ),
where T = (X'X) ™!, and that @’'X'X0 is a possibly noncentral Wishart matrix with
r degrees of freedom and parameter matrix . We shall arrange the elements of @
(and similarly for ©) in matrix or vector form as convenient. First let @ =
[0,,---,0,) and 6 =[0,",---,0,')(1 x rp). Alternatively let ® =[f,, -, f,] and
B =B, B, 1(1 x rp); clearly 0~ N, (0, T x Q) and B~ N,B, 2 xT). In
what follows we exploit the fact that 80'(rp x rp) and BB'(rp x rp) are possibly
noncentral Wishart matrices having one degree of freedom and parameter matrices
T x Qand Q x T, respectively.
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Now consider simultaneous tests for hypotheses regarding the parameters
associated with subsets of the responses. In particular, partition ® = [@,, -+, O]
and write the hypotheses to be considered as H;: ®; = 0(r x p;), for 1 £j <q and
pi+ - +p,=p. The large-sample (@ known) form of the Lawley-Hotelling
statistic for testing H; is tr ® /X'X0,Q7;', 1 < j <g¢. Upon writing W = ©'X'X® in
partitioned form as

PN

@ !

9,
W- [ |xxe...0)
q

and recalling its Wishart distribution with parameter matrix £, we conclude that
the Lawley-Hotelling statistics are of the form v; = tr W;, Q7! as studied in earlier
sections. An important special case occurs when p;, = .-+ =p, =1, i.e. ¢ = p, for
then the hypotheses H;: B; = 0(r x 1), regarding parameters associated with each
of the p responses, are to be tested simultaneously, 1 <j < p. In this case the
likelihood ratio (equivalently, Lawley-Hotelling) statistics are of the form
B/X'XB;/w;;, 1 £j < p. Recalling the Wishart character of W = BB’ and making
the identification £ = Q x T, we conclude that the large sample statistics are of
the form, B;/X'XB;w;;=trp;B;/T w;;=trW;L;;! =v,, treated in earlier
sections.

We turn now to simultaneous tests for hypotheses regarding the parameters
associated with subsets of the factors. To this end partition ®" = [®,’, -, ® ]
(similarly for ®) and (X'X)™!' =T = [T;](r x r), where dimensions are ®;(r; x p),
Ty(r; xr) for 1 £j, k<qand ry+---+r,=r, and consider simultaneously the
hypotheses H;: ®; = 0(r; x p), 1 <j < q. The appropriate Lawley-Hotelling statis-
tics are tr ®; T;;'®;Q ", respectively, for 1 < <g¢. In order to deduce their joint
distribution, we write ¢,' = [01', 0 1 xrp), &) =100 41,0, 0 4,11 %
r2p) ¢q n+ ctrg- H1 0;1+ +rq](1 qup) and ¢/—[¢15'“3 ¢q
(1 x rp) We note as before the Wishart character of ¢¢'(rp x rp) with one degree
of freedom and with parameter matrix T x Q = [T;, x Q], 1 </, k =Zq.

Now the Lawley-Hotelling statistic for testing H, can be written

(5.1) tr®d,'Gd, Q' =tr[0,,---,0,1[9][0,, .0, Q"
=tr) il Y ey 0,0, 9,90

where we have replaced T;! by G = [g,](r; x r;). Moreover, upon making the
identification W = @¢¢'(rp x rp) and £ =T x Q = [T, x Q], whereupon %' =
T;' x Q7 !, wefind forj = I that v, = tr W,,Z;' becomes

JJ
vy = trq;l J)I’Tl—ll xQ™!
(5.2) =tr[)iL,0,0,9;,97"]
= terLIZ;Lléiék’gikQ—l

where, as before, G = T;;' and the second equality contains in square brackets
the typical 7, j block of the indicated block-partitioned matrix. Upon comparing
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(5.1) and (5.2), we conclude that the Lawley-Hotelling statistic for testing H, has
the form v, = tr W, X7;!. A similar development applies for all of the statistics
tr®, T;'®,Q ', 1<j<q.

Two special cases will be noted. Hypotheses regarding the parameters associated
with each of the r factors can be tested simultaneously upon lettingr; = ++- =r, =1
(g =r), in which case we write H;:0;=0(p x 1), 1 £j<r. Upon identifying
W=00 and E=TxQ, we observe that trW;Z;'=1tr00,;;'Q!
0,/Q719,/t;;, where t;; is the jth diagonal element of T, 1 S j<r. It follows that
the joint distribution of the r quadratic forms involved is thus the limiting form of
a joint distribution of Hotelling’s T2-statistics. It is apparent that this joint distri-
bution reduces to the special case of our Theorem 2 which was treated by
Krishnamoorthy and Parthasarathy [20], as noted also by Siotani [29] when
p = 2 and by Krishnaiah [17] more generally.

Another important special case occurs when p =1, for then the hypotheses
H,, -, H, specify values for partitions of the vector p(r x 1) of parameters in the
univariate linear model, i.e. H;: ; = 0(r; x 1), 1 <j < q, where g’ =[B,’, -+, B,'].
Upon noting that £ now is a scalar, say 62, and specializing expressions given
previously, we find that the (likelihood ratio) statistics for testing H,, - -, H,,
respectlvely, are f ST B /6%, 1 <j < q. Their joint distribution thus is the multi-
variate y2-distribution considered in the preceding sections. Moreover, if o2
unknown and the residual mean square 42 is used instead, then the joint distribution
of B;/T;;'B;/6*, 1 < j < g, is given by Theorem 3, and a useful probability inequality
for this distribution is given in Theorem 5.

In conclusion, note that simultaneous tests regarding subsets of responses using
the Lawley-Hotelling statistics are alternative to other procedures which have been
proposed (cf. Krishnaiah [15] and Roy [26]); however, the latter both require a
sequence of conditional statements for the null distributions to be as claimed. Some
other alternatives were considered in [27].
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