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0. Summary. Several authors [1], [2], - - -, [6], have derived characterizations of
a conditional expectation operator. That is, if T is a transformation which maps a
particular set of functions into the same set, then necessary and sufficient conditions
are specified so that 7 is a conditional expectation operator. It is shown in the pre-
sent paper that a similar sort of characterization can be found in the more general
case when T is a conditional expectation with respect to a ¢-lattice operator even

though T need not be linear.

1. Introduction. Let (X, </, u) denote a measure space. L, denotes the set of
equivalence classes of square-integrable functions defined by f~ g if f=g a.s. &
is said to be a sub o-lattice of o7 if % is a subset of &/ containing ¢ and X, which is
closed under countable unions and intersections. A real-valued function defined on
X is #-measurable if [f = a]e ¥ for all real a. The set of #-measurable functions
in L, will be denoted by L,(%). For an arbitrary function f belonging to L,, the
conditional expectation of f with respect to a o-lattice &, i.e. E(f | &), is defined to
be the function in L,(%) which minimizes [(f—g)*duV geL,(<£). Brunk [7]
shows that E(f |5f) exists uniquely, and that E(f |§f’) is the usual conditional
expectation when . is also a sub o-field of /. Brunk also shows that E(f | PL)is
characterized by (i) | [f— E(f | P)E(Sf | L)du =0 and (i) [[/— E(f | Phdu =0
VheL,(&).

2. First characterization. Let us first consider the case where u is strictly finite,
and T:L, — L,. The following terminology will be used.

Idempotency. T is idempotent if T(Tf) = TfV feL,.

Scale invariance. T is scale invariant if T(af) = aTf VfeL, and Va = 0.

Monotonicity. T is monotone if £ = g implies Tf = Tg.

Expectation invariance. T is expectation invariant if

[fdu=[Tfdu  ¥feL,.
Distance Reducing. T is distance reducing if
f(f-9)duz [(Tf-Ty)*dn  Vf,geL,.

Let F= {f:Tf=/f} denote the fixed points in L,. Observe that if T is scale
invariant, then feF implies that afe F¥a = 0. The following remark is a well-

known fact.

REMARK 2.1. If T is distance reducing then F'is closed in the L, norm.
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LeMMA 2.1. Suppose that T is distance reducing and monotone. Then if f, g€F,
fvgandfAgeF.

Proor. If T is monotone, T(fv g) = Tf=f, and T(fVv g) = Tg =g, so that
T(fvg)zfvgzf Hence [(f—fV g)?du< [[Tf-T(f v g))*du. But if T is
distance reducing then [(f—fVv g)* 2 [[Tf—T(fV 9))*du, so that T(fV g) =
SV g€eF. In a similar manner, one can show that f A g = T(f A g)€eF.

LEMMA 2.2. If'T is expectation invariant and distance reducing, then T(f+c) =
Tf+c, VfeL, and ¥ real c.

ProoF. The result is clear if ¢ = 0. Thus we may assume that ¢ # 0. Then
IT(f+0)—Tfdu = [f+cdu—[fdu = cu(X).

From the Schwarz inequality,

Jetdp- [[T(f+)—Tf PP du = [[ (T(f+c)— Tf ) du]?
=*[[T(f+c)—Tfdu]?

= u(X)? = [[c*dul’.
Divided by [c?dp,, we have

[T+ -TfPduz [ du= [(f+c—f) du.

However, since T is distance reducing, we have equality in the Schwarz inequality,
so that T(f+c)—Tf = a-c. Moreover, a = 1 since T is expectation invariant.

CoROLLARY 2.1. If T is expectation invariant and distance reducing and f€F,
then f+ceF V real c.

CoRrOLLARY 2.2. If T is scale invariant, expectation invariant, and distance
reducing, then F contains all constant functions.

LemMMA 2.3. Suppose T is scale invariant, monotone, expectation invariant, and
distance reducing. Then

(@) & = {[f= al; feF, areal} is a o-lattice containing ¢ and X, and furthermore
(b) F=Ly(2).

PROOF. (a) Let us show first that 4 € £ iff I, € F. The “if” part is trivial, so we
will consider the “only if”” part. If A€ £, A = [f = a] for some f€ F, and some real
a. Then f; = [(f—a+1) vO] A 1 and f, = (nf,—n+1) v 0, n> 1, belong to F by
Lemmas 2.1 and 2.2. However, one can use the Lebesgue dominated convergence
theorem to show f, — I, in L,, since f, — I, pointwise. Thus I, € F by Remark 2.1.
It is easily shown that if fe L,, f,eF, f, < f,n= 1,2, -, then \/ ,f,€F. Thus, if
{4,} is a sequence of setsin &, \/;2 I 4, € F,sothat [\, [, = 1] = U, 4, 2.
In a similar manner, one can show ;2 4,€ %, so that % is a g-lattice.

(b) Clearly every function in Fis in L,(%), so let us show the converse. Suppose
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feLy (L) then [f=—n+i/2"|le¥ VUn, i=1,2,---,n2""1, so that [;;5 _,;2m€EF.
By Lemmas 2.1 and 2.2 and the properties of scale invariance,

o=V 2" ps — gy —n  mustbelongto F.

However, it can be shown that f, —» fin L, as n — oo, so that fe F by Remark 2.1.
Let us now show that Tf = E(f | &) if we add two other restrictions.

THEOREM 2.1. If T is an expectation invariant, scale invariant, monotone, idem-
potent, distance reducing transformation such that [f*du 2 [(f—Tf)*du for all
feL,, then T is a conditional expectation w.r.t. a o-lattice operator.

Proor. First we will show that [(f—Tf)hdu<0 VW feL,, WheF. We may
assume that 0 < [(f—Tf)*du, since otherwise the result is obvious. Suppose
3heF> [(f—Tf)hdu>0. Then )

0 < [(f=Tf)du=[f?du+[(Tf)? du—2[f Tfdu < 2](f~ T)f dp

since 0e F and T is distance reducing. Thus
W* = [[(f=TNSdull§ (f~Tfhdu] ' heF.
Then Th* = h*, so that »
S(Th*=Tf)?dp = [(Th*—f+f=Tf)* dp
= J*=f)? du+ [ (f= T dp+ 2] (f— TH* ~f) d.

However, the last term is

2[[(f~THS ] (f~ THhdu] ™ [(f~THhdu~2[ (f~Tf)f du = 0.

Thus [(Th*—Tf)*du > [ (h*—f)? du which contradicts the fact that T is distance
reducing.

Observe now that since & = {[f= a], feF, a real} is a o-lattice containing ¢
and X, E(- | %) is a well defined operator whose range is F. Moreover, since T is
idempotent, Tfe FV feL,. Suppose now that f is such that E(f | &£)=0. Then
since TfeF,0 = [[f—E(f | £)ITfdu = [fTfdu,and because | f>du [ (f—Tf)*du,
we may say 0 = =2 [fTfdu+[(Tf)*du, so that Tf=0.

Now let us show that (i) [ E(f | £)*du < [(Tf)* du, and that (ii) equality holds
iff E(f | %) = Tf. The result is clear by the previous paragraph if E(f | £)=0.
Thus let us assume that that is not the case.

(i) By the Schwarz inequality

@) [[ TFE(f | £)du]? < [(Tf)?du- [ E(f | £)? d.

However, since E(fIZ)eF, J(f- Tf)E(fI,SP)d,u < 0 by the first part of the
theorem, and hence

0<[E(f|®)Vdu=[fEf|L)du< [T E(f | L)du
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so that
22) [JE(f| 2 du]* < [[ TAE(S | £) du].

Combining (2.1) and (2.2) and dividing by [ E(f]| £)*du gives us (i).

The “if” part of (ii) is clear, so let us show the “only if” part. If equality is
actually the case, then we have equality in the Schwarz inequality, so that E(f | &)
is proportional to Tf, i.e. E(f | &) =aTf. However, a = +1 by assumption. If
a = — 1, then from the statement just prior t0 2.2, 0 < [E(f | £)*du< — [ E(f | £)%dp,
which is a contradiction.

Since g = 0 is such that

[~E(f|£)~g)gdu=0 and [(f~E(f|£)—~g)hdu SOV heLy(£)

we have that E[[f—E(f | £)]| £] =0, and hence that T(j‘”—E(f| Z)) = 0. More-
over, T is distance reducing so that

[E(f| 2y du = [[f~(F~E(f| 2))] dp 2 [[Tf~ T(f~ E(f | £))] du
= [(Tf)? dp.

Thus [(Tf)*du = [E(f | £)*du, so that Tf = E(f | £).

One can obtain the same result if the property of expectation invariance is
weakened to require only that there exist constant functions ¢; >0 and ¢, <0
such that [T(c)du = [c;du, i =1,2. Examples can be found to show that the
conditions are independent.
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