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JOINT DISTRIBUTION OF THE EXTREME ROOTS OF A
COVARIANCE MATRIX!

By T. Suclyama?

Purdue University
1. Introduction and result. The purpose of this note is to find the joint dis-
tribution and the distribution of the ratio of the largest root and the smallest
root of a sample covariance matrix when the population covariance matrix is a
scalar matrix, £ = ¢2I. The main result in this paper is the following

THEOREM. Let S be a (p x p) matrix having a Wishart distribution W(p, n, I), and
Aishyy ity Ay (0> A4y > Ay > "> A,>0) be the latent roots of the matrix S.
Then the distribution of x = 1— 1,/ is given by

fGx)=C(p) Y0 ) (C(pn/2+ k) p"k)
® Yo (((p=1D(p+2)[24k+s)/[sx P~ D+ D2 Hk+s=1

Vo5 e ((P+1=1)/2),((p+2)/2)5/(p+ Ds)Cs(,- 1)

where 1 > x > 0, the subscript « is usual partition of the integer k£ not more than
p parts, the subscript ¢ and 0 are the partitions of the integers s and k+s into
not more than p— 1 parts respectively, the summation ) , ; is over all combinations
of these partitions, and the constant

C(p) = 7B, 1y(p/2,(p+2)/2)/ P *T(p/2)T (n]2).
We notice that g-coefficients come from
CL)CL) = 35 9.0 Co(L)

tabulated up to the 7th degree in Khatri and Pillai [2].

Consider the sphericity test, H, : £ = oI, where o2 is unspecified. For the test
criteria, we may suggest the likelihood ratio criterion of the geometric mean and
the arithmetic mean, []4,'?/(3.4;/P), and also the ratio, A,/4; T = 1—X, of the
largest root A, and the smallest root 4,, identically (4, 4,)*/((4;+4,)/2). The
joint distribution of the roots 4, and 4, given by (8) is associated with the problems
of finding confidence bounds. (See Roy and Gnanadesican [3], and Anderson [1].)

2. Joint distribution and the distribution of the ratio of the largest root and the
smallest root. Let S be the same matrix as before. The joint distribution of the
latent roots 4,, ** -, 4, of the matrix S is written as follows

) fi@a, -+ 4p) = C|A|" P D exp (tr (= 4A)) [Ti<; (= 4)
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where the matrix A = diag(4,, ", 4,), 0 >4; > - > 1,>0, and the constant
C = n?*12[2" 2T (p[2)T (n/2).
Let li= Ay —=2)/ A, i=2,-",p.
Then we get the joint distribution of the largest root A, and /,, -+, [,
f2(Ais 15,000, 1) = C-exp(—3piy)
3) Yo Yo AP K N dAy A [T= AP V2CUA)
'Hi<j(li_lj)
where o0 > 4, > 0, the matrix A, = diag(/,, ", 0;),and 1 > 1, > > 1, >0.

To get the joint distribution of 4, and /,, we have to integrate (3) over the region
l,>1,_y>">1,>0. We use the fact that ’

[[=A|"7P7DRECLA) = Ti20 20 (p+1~1), Co(A)CAA)/s!
=220 20 2 (P+1=1)[2), 95 Cs(A)/s!

Let r;=1jl,, i=2,---, p—1. Integrating with respect to r,,-*-, r,_;, we can
express the part involving the subscript in the formula (3) as follows:

@) X0 Xe s (@hp+1=n)[2), 1,7 DD TEE L))
J.1 Srp1>c >r>0 lArl Ca(lAr)l—[f:—zl (1 _ri)Hi<j(ri_rj)H:p=—21 dr;.
Evaluating the above integration by the lemma due to Sugiyama [4], we get

I',p-1y((p—1)/2)
P12

&) Y020 2s (080 (p+1=1)[2), 1, P~ DETDIZFETS g1y
((p=D@+2)2+k+s)
"(Cip-1y((P+2)/2, )T (- 1)(P/2)/T (- 1P +1,6))Cs1 - 1)

Let (a); = [[/={ (a—(i—1)/2)s,, 6 =(6y, """, 6,—;) such that 6; = --- = 6,_, =0
and )72 6, = k+s. Since (a), =T (4, x)/T (a), we obtain from (5) and (3) the
following joint distribution of 4, and /,:

F3(h, 1) = C(2) - exp (= 4pAs) Tt o 2o (4727471241
©) o ((p=D(p+D[2-+k+ s, 7~ D DIk ey
Vo5 ra (((0+1=1)12)((p+2)/2)s/(p +1)5)Co(I,-1)
where 0 > 4, >0, 1>1/,>0, and
C(2) = 7”2 B, - 1)(p[2, (p+2)/2)[2"*T(p/2)T (n/2).

Now integrating (6) with respect to A, , we obtain the distribution of the statistic
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l,=1-2,/4; = x, namely the distribution fi (x) in the theorem. Since /,=
(44 —A,)[4; , from (6) we have the joint distribution of 4, and 4,

faGasdy) = C2)-exp(—$pA) Yo 2w (A 7272125k )
Y2 o ((p=1)(p+2)2+k+8)[sH(L— A,/ 2,) P~ DE+2/2xkEs=1
Y0590 ((p+1=n)[2)s/((p+1/2)5/(p+ 1)s)Cs(I,-1)

where oo > 1; > 1, > 0. We note that if (p+1—n)/2 is an integer, the summation
of s will be terminated in a finite number of terms.
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