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THE ASYMPTOTIC BEHAVIOR OF BAYES’ ESTIMATORS!
By M. T. CHAO
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1. Introduction. Schwartz [9] wrote in 1964 that “until quite recently, very little
was published with regard to the asymptotic behavior of Bayes’ procedure.” The
phrase “very little”, in the author’s opinion, is with respect to the amount of
literature concerning maximum likelihood estimator (MLE). In fact, many out-
standing works have already been done by various authors. Doob [4], by using a
martingale argument and under very weak conditions, established the consistency
of Bayes’ estimator for almost all parameter points. LeCam [5], [6], under a set of
conditions which is stronger than those for consistency of the MLE, proved the
consistency of Bayes’ estimator for every parameter point.

It remained for Schwartz [9], [10] to take the major steps. Initiated by Blackwell
and stimulated by LeCam, the result she presented can be roughly stated as
follows. The Bayes’ estimator is consistent if there exists a consistent estimator.

The purpose of this memorandum is to establish some of the. asymptotic
properties of Bayes’ estimators by showing that the MLE and the Bayes’ estimator
are asymptotically equivalent. This fact was noticed and informally established by
Wolfowitz [11] and Lindley [7]. A complete argument for the case of estimating a
one-dimensional parameter was given by Bickel and Yahav [2]. The present
memorandum is an extension of their works, the same result for the case of esti-
mating an A-dimensional (A = 1) parameter will be proved.

Our result can be used to compute the asymptotic Bayes’ posterior risk for the
point estimation situation. Once the posterior risk can be computed, it is well
known [2], [3] how to find the asymptotically optimal stopping times for the usual
sequential setup of the estimation problem.

2. The main theorem. In this section, it is shown that for the point estimation
situation, the Bayes’ estimator 6, and the maximum likelihood estimator 0, are
asymptotically equivalent, namely

@.n n*[0,—0,]-0
a.s. Py, forall 0,€ 0.

A direct consequence of (2.1) is that all the asymptotic properties of MLE also
hold for the Bayes’ estimators. Also, since the determination of the MLE is inde-
pendent of the loss function and the prior measure, the asymptotic properties of
Bayes’ estimator hold for all priors and loss functions in a certain class. This can
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be explained as follows: The knowledge of 0 contributed by the large sample plays
a much more important role than the prior knowledge, and the risk function of the
consistent estimator, for the large sample result, goes to zero for any reasonable
loss structure.

Given a Wald type (nonsequential) decision problem: The observations z,,z,,- -
are independent with a common distribution Py, 0 ©®. A set D of all terminal
decisions is given and is identified with a subset of ®. The loss function L(-,") is
a nonnegative convex function defined on ® x D. An estimator 6, based on a
sample of size » is a function defined for all possible (z,, z,, - -, z,) with values in
D (since convex loss function is used, we may, by Blackwell-Rao inequality and
sufficiency consideration, restrict our attention to all nonrandomized solutions).

To avoid tedious repetitions, we should keep in mind that (a) all functions are
measureable, (b) a measure y on a set A means that p is defined on a certain o-field
of subsets of A, and (c) a fixed point 6,€® will be considered; all a.s. relations,
unless otherwise specified, are referred to the probability measure Py, ; the phrase
a.s. Py, will be omitted if it is clear from the context.

Some assumptions are needed. The first set of them is about the nature of the
observables.

(A1) z,, z,, * * - take values in a space & . The parameter space © is an open subset
of a k-dimensional Euclidean space R* with respect to the usual topology. For each
0 in O, P, is a probability measure on some o-field of subsets of % .

(A2) The distribution of the sequence {z,:nel} is the product measure corres-
ponding to one of the measures Py, 0€©.

(A3) Py, = Py, implies 0, = 0, .

(A4) For each 0, P, is absolutely continuous with respect to a o-finite measure y on
the measurable subsets of X .

It will be assumed that for each 8 e ® a particular version f{(z, 8) of the Radon-
Nikodym derivative dP,/du has been selected.

(A5) The function ®(z, 0) = logf(z, 0) is, for each z€ &, a finite continuous function
of 0.

The differentiability requirement on @ is crucial and classical. For 8e®, let
0=(0,,""", 0.

od(z,0)  0°0(z,0)
a0, > 00,00,

(A6)

exist and are continuous in 0 for all 1 < i, j < k and almost all z.

(A7) E, [sup{

Sor some &(0), and all i, j, 0 where || - ||, denotes the Euclidean norm in R™ (the subscript
m will be omitted when it is clear from the context), and E, denotes that computation
is carried out when 0 is true.

0*®(z, 5)

0s;0s;

s =6 <a(0),se®}]< )
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Assumption 6 and Assumption 7 imply that

00(z, 0
E, 00(z,6) =0 forall 1<i<k, and
00,
0*d(z,0) 090(z,0) 00(z,0)
A. K == = . — 1.
i) ‘E°[ 00,00, ] ‘E”[ 80, 60, ]

(A8) The matrix — A(0) is positive definite for all 6.
(A9) Eg(sup{[D(z,5)—D(z,0)]:||s—0], 2 ¢,5€O}) <0

forall0e® and e > 0.

A general problem to be considered is the estimation of (g,(8), -, g,(0)),
1 < h =< k. Without loss of too much generality, we may assume g,(0) =0,
1 < i < h, where 6, is the ith coordinate of 6. Thus we identify D with R". For each
0e O, with or without subscript, hat (A), tilde ("), etc., denote 0 = (', 0’") where
0" stands for the first h-coordinates of 6 and 0" stands for the remaining co-
ordinates.

Let the loss function L(6, d) = B(0)/(||6’ —d||*), and let R* = (0, 00), we assume

(A10) I(+) is a function from R* to R* such that

(a) ! has a derivative I’ on R*.

(b) there exist y, € R and s = 1 such that I(t) = ytS/s for all 0 £ t < 4.
(c) lim,, ,, sup I'(¢)/t" < oo for some r = 0.

(d) I(2) is bounded away from 0 for t outside some neighborhood of 0.

Let A be the prior measure on ®. We need
(A11) A has a continuous density A(0) with respect to the k-dimensional Lebesgue
measure such that 0 < M(0) < M < oo for all 0€ ©. Further

(@) J]|6]|"4(6)d6 < co.
(b) [B@)(1+1|6]|")4(6) d6 < co.

Jor some m = max {2s—1, 2r+2}.
Finally,
(A12) B(0) is continuous in 6 and B()e R™ for 0 ©.

Let A0;m) = A ] [1=1f (o O [[[]i=1f(z;,5)A(s)ds]™ " if the denominator is
positive, and zero otherwise. We define

2.2) Y, = min [ B(O)I(||0'—d||)A(0; n) d6: d e R"],

where we suppose for each z,,z,, -+, z,, the minimum is achieved and we can
choose a version 6, of the minimizing decision which is measurable in z,," -, z,.
For h =k, 6, equals 6, the Bayes’ estimator of 6.

For eachn, z, -, z,, define §,(z,, - * -, z,) to be a value of 6 such that

(2.3) Yro19(z;,0,) = max [Y 1., O(z;,0): 0 O].
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Under assumptions (A1)-(A9) it can be shown that a measureable version of 8,
can be chosen and 8, - 0a.s. P, for all e ®. The random variable 8, is called the
maximum likelihood estimator (MLE) of 6.

Write v,(t) = exp {d 1, [®(z;, tn~¥+0,)—D(z;,0,)]}. Under assumptions (A1)~
(A9), it has been proved in [2] that for all § > 0, there exists &(6) > 0 and M(z) < oo
such that

(2.4) sup [v,(1): {|t|| 2 6n*] < exp[ — ne(5)]
foralln > M.

By (2.4) and Assumption 11, it is easy to establish, for all §, xe R*,
(2.5) Jtio=a,1251(L+B0))]|60—8,||" 2(0; n) d6 = o(n™*)

where §, is any estimator of § such that §, — 0,a.s. Relation (2.5) will be used
extensively. .

LEMMA 2.1. Under assumptions (A1)-(A9), (A11), there exists a § > 0 such that
2.6) Serient <amtray (L4 ||| Bn ™% +8,)4(tn % +0,)H(t, n) dt — 0

as n— oo, where H(t,n) = |v,()—¢[—A™'(0,),1](2n)*'* det [ — A(0)]"¥|, ¢(B, 1)
is the density of the multivariate normal distribution with mean 0 (an 1 x k vector)
and covariance matrix B.

PROOF. By (2.40) of [2], there exist a §, > 0 and a positive definite matrix W such
that

2.7) V() Sexp[—tWt']

for all ||t]| <8, n*. From the consistency of §, and the continuity of B, for n
sufficiently large, we can find a 8, > 0 such that if ||¢]| < &, n* then

{2.8) B[tn™*+0,] < 1+ B(0,).

Let 6 = min(d,, 6,). For this § and §,, the left-hand side of (2.6) is bounded
above by

(2.9) K (L+B00)) [ (1 +]||t]|H(, n) - Iy  <omiay” dt

where K; = sup A(f) < oo, I, is the indicator function of the set 4. The integrand
of (2.9) is bounded by an integrable function; namely, by

(2.10) (L+([f]")[exp (= tW1) + Ky (= A7 ($0), )]

where K, = (2n)**det [~ 4(0,) ] *. By an application of the strong law of large
numbers, H(¢, n) - 0 as n — co. It follows from the bounded convergence theorem
(2.9) tends to zero. []

We next state our main theorem:

THEOREM 2.1. Under assumpticns (A1)-(A12)
(2.11) n'6,—0,)>0 as. P,
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where 0, is as defined in (2.2), 0, is the first h coordinates of 0, and 0 is the zero
vector in R".

Up to this point we have established in this section only a finite number of
relations which hold a.s. P, . Most of these relations will be used in the proof of
Theorem 2.1. For simplicity, let N be the Py -null subset of Q such that for we N¢,
all these relations hold. To prove Theorem 2.1, it suffices to show that for all
weN°¢, n*(0, (w)—0,'(»)) — 0. In the following, a fixed we N° will be considered.
For any random variable Y defined on (Q, #, P,,), we shall denote Y = Y(w)
and therefore the random variables under consideration are understood to be their
evaluation at the point .

A lemma is needed before we can prove Theorem 2.1.

LEMMA 2.2. If assumptions (A1)-(A12) are satisfied then9,’ —0,’ — 0a.s. asn — 0.

Proor. By Equation (2.2),
(2.12) Y, < fuio-su11<a1 BOI(0'=0,'[|)A(6; n) d6
+fti1o-a1201 BOI([0" = 0,'[[)A(0; m) 0.

It follows from the continuity of B and / that the first term on the right-hand side
of (2.12) can be made arbitrarily small by suitable selection of §. The second term
is, by (2.5), of the order o(n~%) for any é >0, « > 0. Hence Y, 0. Suppose
0, — c*eR" for some subsequence {n,} of {n}. Let 4p = min(||c*—0,'||, 1). If
p>0,c*¢[||0"—0o'|| < p; for large n,, ||0;,—c*|| < p. It follows that, on the set
[16'—00"|| < o1, ||04.—0’|| = 2p > 0. Hence, by (3.2) and assumption (A10d)

(2.13) Yoo = Ju10-00711<p1 BO(]|0, — 0'||)A(0; ) d6
2 I(4p%) [1110 - 0011 < p1 BOA(O; m,) d0 — (4p*)B(6,) > 0.

The last convergence is due to the consistency of 8,, (2.5) and the fact that A(6; n)
is a probability density. Relation (2.13) contradicts the fact that Y, — 0, hence
p=0.

It remains to prove the case ||c*|| = co. On the set [||0'—0,'|| < p], ||65, —00']| —
0. Hence there exists a K > 0 such that for n, large enough, ||0;,—0,'|| = K. It
is easy to see that relation (2.13) holds with 4p? replaced by K2.

Thus, it has been shown that every convergent subsequence {6, } of {6,’}
converges to 0,’. It follows that 0,’(w) — 0, and therefore [w: 0,/ (@)+ 0,1 N. []

PRrOOF OF THEOREM 2.1. The Bayes’ estimator 6, satisfies
(2.14) I BO)(| |9’—8,,’| [*)(6:— 6;,)A(0; n) d6 = O

where for 1 £i< h, §; and 6;, are the ith components of § and 6, respectively.
Equation (2.14) follows from assumption (A10) and a standard application of
the bounded convergence theorem, for example, ( [8] page 126).
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By assumption (A10), Lemma 2.2 and repeatedly applying (2.5), it is not difficult
to establish

(2.15) IB®)]]6'—0,'|[>*~2(0;— 0;,)A(0; ) dO = o(n™%)

foralla > 0,1 i h.

We shall prove that every convergent subsequence of n*(d,’—6,’) tends to 0.
Suppose without loss of generality, n*@,'—0,) - c* #0.

(@) ||e*]] = 00, ¢* =(cy, 5,7, ¢). It suffices to consider a typical case, say

¢, = — 0.
(2160)  fio,50,11° HBO)]0'—6,]|* %60, ~ 61,)(0; ) dO
Z (172001 - 01 > 017201 — 01,01 B(O) (0 H(0, = 01,)|** ™1 A(6; m) 6.
Let t = n*(0—0,) and let ¢, denote the first coordina}e of t; the right-hand side
of (2.16) becomes
f[zl>n1/2(oln'—a,n] B(tn —%+0n) |t1 - n%(olln_' 91)1)‘ 251 ¢*(t;n) dt

which tends to co as n— oo, and Y* is the posterior density of n*(0—0,). By
Lemma 2.2, when n is sufficiently large, a 6, € R* may be found such that if
[[6—8,]| <&, then ||6’—6,’|| is less than the & in assumption (A10). For this &,
the left-hand side of (2.16) is bounded above by

Sttto-aui1 <o n* " *BO)||0=0,] > %10, —01,| 05 n) dO
+f0-ou1 260 1 EBO) [0 = 60,'][]6, — 04, A0 m) do.

Using Assumption 10 and repeated application of (2.5), the first term can be
shown to be bounded by

s-%

0'—0, > i8;n)d0+o(n"*)

SUP c1jjo~s,1 <51 B(0) [ 1

while the second term is bounded, according to (2.5), by o(n~%). The sum of these
bounds is a finite constant. This is a contradiction. We thus assume

(i) ||| < co.
Using Lemmas 2.1 and 2.2, it is not difficult to verify that

Q.17) [n* " B0)]|0'—0,'||>*~ > (0,— 0;,)2(0; n) d6
- E(||X —c*||*72 (X;—¢))B(8,),

where X = (X, X5, -, X)) is a normal vector with mean 0 and covariance
matrix — A, (6,), which consists of the first # rows and /4 columns of — A4~ '(6,).
By relation (2.15)

(2.18) E(j|X = c*[|* *(X;—c)) =0
forall1 £igh.

We complete the proof of the theorem by establishing the following assertion.
If (2.18) holds and ||c*|| < oo, then c* = 0.
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The density of X is of the form C, exp [—4XTX’] where I" is an 4 x h positive
definite symmetrical matrix, X' is the transpose (4 x 1) vector of X, and C, is a
normalizing constant. It is well known, (for example, [1] pages 338-339) that there
exists an orthogonal non-singular matrix 7 such that

d, 0
d,
TIT = . , d>0, 1Z£igh
0 d,
Let Y = (X—c*)T™1, (2.18) becomes
(2.19) JYTT'Y' Y™ Yiexp[—3 Y h_, d{(Y;+e;)*]1dY=0
where 1 Si<h, e* = (e, e, ", )= c*T ™. Since T is non-singular, e* = 0 if

and only if ¢* = 0. We may, without loss of generality, assume e, > 0. Since T is
orthogonal, TT' is a diagonal matrix, say

a, 0
a
TT = .
0 'a,,
For i = 1, (2.19) becomes
fiow o .jo—ooo ISO(Z?=1 a; Yiz)s_l Y, CXP[—%ZLl dj(Yj+ej)2] dY;dY, --dY,
= ,‘.?oo . 'je—ooo_[go(zglﬂ a; Y)Y exp [—3d,(Y; _61)2_%Z?=2 dj(YJ'+ej)2]
'lede"'th.
This is a contradiction since the integrand on the right-hand side is strictly greater
than that of the left-hand side. []

As an application, we try to estimate the Bayes’ posterior risk of the point
estimation problem we just considered when # is large.

COROLLARY 2.1. If assumptions (A1)-(A12) are satisfied then
1Y, - BO)GIE||X||*
a.s. Py, as n— oo ; where X is an h x 1 normal vector as defined in (2.17)
PROOF.
(2.20) 1%, = n*[( 100,11 <a1 BOI|0' = 6,'||})A0; n) dO
+1° 110~ 0,11 201 BO [0 - 6,'][2)4(6; n) dO.

By (2.5), the second term on the right-hand side of (2.20) is of order o(n~%) for all
aeR™. For small §, the first term can be written as

JB(n = +0,)(y/9) ||t' —c,| | Atn ™2 +0,)v,(1) - dt - [[ Axn™* +0,)v,(x) dx] ™"
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where ¢, = n*(0,'—0,’) >0 by Theorem 2.1. Now the corollary follows from
Lemma 2.1 and Lemma 2.2. []
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