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CAUCHY’S EQUATION AND SUFFICIENT STATISTICS
ON ARCWISE CONNECTED SPACES!

By J. L. DENNY

The University of Arizona
1. Summary. We show that a measure-theoretic extension of Cauchy’s functional
equation, namely, g(x,)+g(x,)=h(f(x;,x;)) a.e., for real-valued functions
defined on measure spaces equipped with a “‘reasonably compatible” arcwise con-
nected topology is equivalent to a theorem which characterizes one-parameter
exponential families on such measure spaces in terms of a real-valued sufficient
statistic.

2. Introduction. P. Erdds [6] raised the following question: when does the
functional equation g(x)+g(y) = g(x+y), for almost all pairs (x,y) in the plane
(Lebesgue measure), imply that g(x) = cx almost everywhere? W. B. Jurkat [7]
and N. G. de Bruijn [2] independently answered this and related problems. The
present author, at the time unaware of the results of Jurkat and de Bruijn, con-
sidered the same problem for Euclidean x and y in establishing conditions on a
Euclidean-valued sufficient statistic, defined on an arbitrary probability space,
which ensure that a family of probability distributions is a k-parameter exponential
family ([S], in particular, Lemma 2). In this paper we study further the relation
between an extension of Cauchy’s functional equation and sufficient statistics, in
Theorems 4.2 and 4.3. The results are in part “local” theorems.

From the point of view of sufficient statistics this paper may be regarded as
related to the work of L. Brown [1]. There it is shown that suitable measure-
theoretic conditions on a continuous real-valued sufficient statistic for » indepen-
dent identically distributed real observations ensure that the class of probability
distributions is a one-parameter exponential family. Here we work with a con-
tinuous real-valued sufficient statistic defined on set endowed with a topology
which is arcwise connected and locally arcwise connected. Theorem 4.1 is obtained
under the assumption that there is a continuous version of the densities. In Corollary
4.1, where it is assumed that “locally, lower-semicontinuous functions are measur-
able,” no continuity assumptions on the densities are employed. While this paper
contains no applications (see, however, Section 5), we note that some stochastic
processes are identified with measures on Banach spaces and Lie groups, and
Banach spaces and components of Lie groups are arcwise connected and locally
arcwise connected.

Each topology is assumed to be Hausdorff. We recall that a topological space
(X, ) is arcwise connected if with each x and y in X, x # y, there can be associated
a bicontinuous mapping (continuous, one-one, and with a continuous inverse)
¢:[0,1] - X so that ¢(0) = x and ¢(1) = y. Then the image ¢([0, 1]) of ¢ by [0, 1]
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402 J. L. DENNY

is called a simple arc, x and y are endpoints of ¢([0,1]), and ¢([0, 1]) joins x and y.
A topology I is locally arcwise connected if there is a base for J which consists
of arcwise connected sets (note: a different definition for local arcwise connected-
ness is sometimes used). Each locally convex linear topological space is clearly
arcwise connected and locally arcwise connected, and these properties are possessed
by each connected, locally connected, locally compact metrizable space (see
Corollary 4.11 on page 27 of [9] which also implies the local arcwise connectedness).

Given (X, 7,4/, n) where X is a set, 7 a topology for X, &/ is a sigma-algebra
for X, and u is a nonnegative measure on &7, the following assumptions will be in
force throughout this paper: (i) for each xeX, inf{u(4):desf,xecA} =0;
(ii) if u(4°) =0 and Ue J is not empty then ANU is not empty. The first assump-
tion is used in the density point arguments, e.g. Lemma 3.10, and the second
appears in Lemma 3.6.

3. Cauchy’s functional equation. In the next three lemmas we assume that
continuous f: X x X — R and continuous /: R — R satisfy for a fixed x,e X

(3.1 h(f(x1,%0) )+ h(f(x2,%0)) = h(f(x1,%7))

for each (x,,x,)e X x X.
The proof of Lemma 3.1 is taken from Lemma 4.1 and the proof of Lemma 3.2 is

taken from Lemmas 4.2 and 4.3 of [1]. We give the proof of Lemma 3.1 for
completeness.

LemMMA 3.1. Let h and f satisfy (3.1) and let X be arcwise connected. Fix x'e€ X
and let A, < X be a simple arc which has x' as an endpoint. Assume that for each
simple arc B = A, which has x' as an endpoint the restriction of h(f (-, x,)) to B is not
constant. If A, < X is an arbitrary simple arc and if the restriction of h(f (-, Xx,)) to
A, is constant then the restriction of f(*,x") and f(x',*) to A, is constant.

Proor. We argue to the contrary and suppose that f(-, x") is not constant while
h(f(-,x,)) is constant. Let ¢,:[0,1]— 4, and ¢,:[2,3] - A, be bicontinuous with
¢,(2) = x’. Define H:[0,1]u [2,3] = R by H(t,) = h(f($,(t,), xo)), 1, €[0,1], and
H(t,) = h(f(¢,(t2), x0)), t,€[2,3]. Define F:[0,1] x [2,3]—> R by F(t,,t,) =
f((»bl(tl)’ ¢2(t2))' Then fOI' (t15 tZ)E [0’ 1] X [2’ 3]

(3.2) H(t))+ H(t,) = h(F(11,15)).

Now f(-, x") is not constant on A, if and only if F(-,2) is not constant on [0, 1]. Let
D be the interior of {F(t,,2):¢,€[0,1]}. Since A(f(*, x,)) being constant on A, is
equivalent to H(-) being constant on [0, 1] it follows that A(-) is constant on D. By
continuity of F there is 0 > 0 so that for each ¢,, 1, —2 < 8, there is #,(¢,)€[0,1]
for which F(t,(t,),t,)eD and therefore H(t,(¢,))+ H(t,) = h(F(t,(t,),1,)) =
h(F(t,,2)) = H(t,)+ H(2) for all ¢, €[0,1]. Thus H(z,) = H(2) and the simple arc
B < 4, may be taken to be ¢,([2,2+45]).

LeEMMA 3.2. Assume the first three sentences of Lemma 3.1. Then, (i) if A, < X
is an arbitrary simple arc the restriction of h to {f(y,x'):yeA,} and to
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{f(x',y):ye A} is strictly monotone and, (ii) the restriction of h to {f(x',y):ye X}
is strictly monotone.

We omit the proof of

LEMMA 3.3. Let X be arcwise connected and let continuous g:X — R be not
constant. Then there exists x' € X and a simple arc A = X which has x' as an endpoint,
so that for each simple arc B = A which has x' as an endpoint, the restriction of g to
B is not constant.

A continuous real-valued function ¢ defined on an interval I is said to be piece-
wise strictly monotone if there is a decomposition I = [Jf-I; where 1 £k £ ©
and each I, is an interval so that the restriction of ¢ to each I; is strictly monotone.

THEOREM 3.1. Let X be arcwise connected and locally arcwise connected and let h
and f satisfy (3.1). Let U = X be an arcwise connected open set so that for each open
V < U the restriction of h(f(-,x,)) to V is not constant. Then h is strictly monotone
on the interval {f(x,y):xeU,ye X}.

PrROOF. {f(x,y):xeU,yeX} is an interval since U and X are connected. By
Lemma 3.3 and the local arcwise connectedness there is a set D = V which is dense
in U so that for each x’ € D the restriction of 4 to {f(x’,y):ye€ ¥} is strictly mono-
tone. We claim that 4 is strictly monotone on {f(x,):y€ X} for each xeU. It
suffices to prove that 4 is strictly monotone on each compact subinterval of the
interior of {f(x,y):ye€ X} and this follows from the denseness of D. Clearly 4 is
piecewise strictly monotone, and it remains to be shown that 4 is strictly mono-
tone. Now for each xe X, {h(f(x,y)):y€ X} = h(f(x,x0))+h(f(y,x0):y€ X} (the
algebraic sum) and thus 4 maps {f(x,y): ye X} onto an interval of positive length
whose length is independent of x. Suppose 4 is not strictly monotone. Then by the
preceding fact it easily follows that there exist two intervals I, and I, so that (i)
the right endpoint of 1, is the left endpoint of I, ; (ii) 4 is strictly increasing on I,
and strictly decreasing on I, (or else the opposite); (iii) 7, = {f(x;,y):y€ X} where
x;€ U, i = 1,2. The contradiction is seen to follow by joining x,; and x, by a simple
arc which lies in U and by invoking Lemma 3.2.

Clearly, for fixed (x,° -, x,%)eX"~!, n 2 2, the equation

Z?=lh(f(xi’x203 : ”9xn0)) = h(f(xl" : '9xn))

may be written as Y 1—, g(x;) = A(f(xy," ", X,)). Conversely, the latter equation
may be written as 37—y B(f(x;, %%+, %,%)) = h(f (%1, ", X,)) where h(z) =
hz)—(nfn—1) Y-, 9(x:;°) and g(x) = h(f(x, %, "+, %,°)) = Li=2 9(x,°)-

This fact together with Theorem 3.1. gives

THEOREM 3.2. Let X be arcwise connected and locally arcwise connected. Let
continuous g: X — R, continuous f: X" — R, and continuous h: R — R satisfy

(3.2 Yi=19(x) = h(f(x1," "5 %))

for (x,,**,x,)€X", n=2. Let U, = X be open arcwise connected sets so that the
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restriction of g to each open V; = U, is not constant, i=1,---,n—1. Then h is

strictly monotone on the interval {f(x,, -*,x,):x;€U;, i=1,---,n—1, x,€X}.
Consequently
(3.3) FOer %) = $Qh=1 9(x:)+¢o)

Sor (xy, -+, x,)e[[121 U; x X where ¢, is a constant and ¢ is continuous and strictly
monotone.

CoRrROLLARY 3.1. If, in addition, the restriction of g is not constant on each open
subset of X then (3.3) holds on X".

COROLLARY 3.2. Let Y7-1g(x)) = hi(f(xy, ", %)), j=1,2, where g;, hj, f,
and X satisfy the hypotheses of the first two sentences of Theorem 3.2. Let U = X be
an open arcwise connected set so that the restriction of g, to each V < U is not
constant. Then there are real numbers a, and b, so that'a,g,+b, = g, on X.

Proor. Define g(x) = g,(x)—g,(x,) where g,(x,) lies in the interior of g,(U).
Clearly Y-, g,(x;) = hy(f(xy,**,x,)) for continuous h on U""! x X and thus
Sxy, 0 ,x,) = QO F=1G1(x;)) since we clearly may choose ¢ so that ¢, = 0. Thus
Z,i'= 192(x) = h2(¢(2?= 191(x;))) and hence ZT: 192(x) = Ez(¢(2?= 1g1(x))) on
U ' x ¥ where g,(x)=g,(x)—g,(y,), for fixed y,eU. Thus for xeZX,
G2(x) = hy(¢(g,(x) +(n—1)3,(»0) ). Finally, for xe X, we have } i, ¥(g,(x;)+
(n—1)g,(yo)) = ¥(Q 71 g1(x;) where Y = h, o, and since the interval g,(X) con-
tains the origin in its interior, it follows that y/(¢) = at+ b. This gives the assertion.

We introduce a sigma-algebra &/ on X and a nonnegative measure u on &/ and
recall the assumption made in the introduction that if u(4°) =0 and Ue J is not
empty then ANU is not empty.

DeriNITION 3.1. A function f: X — R preserves ample sets (relative to p) it for
each pair of non-void U;e 7, i= 1,2, such that f(U,) =f(U,) it is true that
f(U;nA) has a non-empty intersection with f(U,nA4) whenever u(A4°) =0.

A substantial part of the argument used in the proofs of the next three lemmas and
the next theorem is borrowed from Lemmas 1 and 2 of [4]—however, inclusion of
the following proofs may be helpful. A referee suggested we point out the relation
between f preserving ample sets and f'satistying Lusin’s condition (N) when X < R
is an interval. In general the relations are not comparable. However, for a measure
4 on the Borel sets of the interval ¥ = R which dominates Lebesgue measure, if
continuous f satisfies Lusin’s condition (N) then f preserves ample sets. From
Lemma 3.3 through Theorem 3.3 it is assumed that X is arcwise connected and
locally arcwise connected.

LeMMA 3.4. Let f and g be continuous mappings of X into R and let f preserve
ample sets. Let h:f(X)— R be such that for a fixed Aesd where p(A°) =0,
g(x) = h(f(x)) for each xe A. If x,€ X and f(x,) = f(x,) and if the restriction of f
to each of two fixed neighborhoods of x, and x,, respectively, is constant, then

g(x;) = g(x,).
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Proor. This follows from the continuity of g and the assumption that Un4 is
not empty if U is not empty.

LEMMA 3.5. Under the assumptions of Lemma 3.4, if f(x,) =f(x,) and each
neighborhood U; of x; contains a y; such that f(y;) > f(x,), then g(x,) = g(x,).

Proor. Choose arcwise connected neighborhoods U; of x;, i = 1,2, such that
lg(z)—g(x)| is small for all z;e U;. Choose y;e U; such that f(y;) > f(x;) and let
o =min(f(y),f(»2)). Then U;nf~}(f(x,),x) = C; is a non-empty open set,
i=1,2, and moreover f(C,)=f(C,). Since f preserves ample sets, there is
t;€ C;n A such that f(¢,) = f(¢,). Then g(¢,) = g(¢,), which gives the assertion.

LEMMA 3.6. Under the assumptions of Lemma 3.4, if the restriction of f to a
neighborhood U of x; is constant and if z belongs to the frontier of f~ *(f(x,)), then

g(x1) = g(2).

Proor. This follows from the fact that for each neighborhood V of z, VnUnA
is not empty, the continuity of g, and Lemma 3.4.

THEOREM 3.3. Let fand g be continuous mappings of X into R and let f preserve
ample sets. Let h:f(X)— R be such that for a fixed Aef where u(A°)=0,
g(x) = h(f(x)) for each xeA. Then there is a function H:f(X)— R so that
g(x) = H(f(x)) for each xe X.

Proor. We assume f(x;) = f(x,) and we prove g(x,) = g(x,). By Lemmas 3.4
and 3.6 it follows that we may assume each neighborhood U; of x; contains a y;
such that f(y;,) #f(x;). By Lemma 3.5 we may assume f(z,)=f(x;) and
f(z,) = f(x,) for all z;e U, for sufficiently small U;. Let A be a simple arc joining
x; and x, where ¢(0) = x,, ¢ the homeomorphism. For the remainder of this proof
when we refer to an inequality and an infimum (or supremum) over a subset of 4
it is taken via the homeomorphism ¢; however, open sets are in X and not
relativized to A. Let z; = sup {z:ze 4, each neighborhood of z contains a point y
such that f(y) > f(x,)}, and let z, = inf {z:z€ 4,z = z,, each neighborhood of z
contains a point y such that f(y) < f(x,)}. Clearly x, < z3 £ z4 < x,, f(z3) 2 f(xy)
and f(z,) < f(x,), and a brief argument can establish that the latter inequalities are
equalities: f(z;) = f(x,) = f(x,) =f(z,). By Lemma 3.5 and its analogue with the
inequality sign reversed, it follows that g(z;) = g(x,) and g(z,) = g(x,). Since the
proof is finished if z; = z,, we assume z; < z,. If z; < ¢ < z,, then it tollows that
there is a neighborhood V of ¢ such that fis constant on V. Since ¢(s) lies in ¥ for
all s sufficiently close to ¢ ~1(¢), it follows that fo ¢ is constant on an open interval
containing ¢~ (¢). This implies fo ¢ is constant on the interval (¢~ 1(z3), ¢~ '(z4)).
Therefore, f is constant on {r:z; <?<z,} and by continuity f(¢)=f(x,),
zy <t <z, By Lemma 3.4, for z; <t <t, <z, we obtain g(¢,) = g(¢,). By con-
tinuity of g it follows that g(z;) = g(z4) and hence g(x,) = g(x,).

If (%, 7, o, 1) is given, then as usual (X", 7", /", u") denotes the product set-up
where 2 < n < 0.
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THEOREM 3.4. Let (X,T, o, 1) be given where I is an arcwise connected and
locally arcwise connected topology for X. Let continuous f: X" — R preserve ample
sets relative to u" and let continuous g: X — R. Let Aesd" be such that u(A°) =0
and let h: f(X") > R be such that

34 2i=19(x) = h(f(x1," "+, %,))

holds for each (xy,+,x,)€A. Then there is a continuous h:f(X") —» R so that (3.4)
holds for each (x,-++,x,)e X". Moreover, if for a non-void arcwise connected Ue T
the restriction of g to each open V < U is not constant then (i) if a function hy, a con-
tinuous function gy, and a Be s/ for which p(B)=0 satisfy ) i-19:(x;) =
hy(f(xy5°005x,)) for (x4, ,x,)EB then g,(x) = a, g(x)+ b, for fixed real numbers
a, and by and every xe X; (ii) f(xy, **,x,) = ¢Q1=19(x;)+ o) for (x4, *,x,)€
U"!x %

Proor. Theorem 3.3 implies (3.4) for some function A, for each (x,* -, x,)e X".
Choose distinct points x and y in X" and let 4 be a simple arc joining these points.
Then A is compact, (3.4) evidently holds on 4, and by Theorem 9 on page 95 of [8]
h is continuous on f(A4). Since the points are arbitrary it easily follows that % is
continuous on f(X"). The second assertion now follows from Theorem 3.2 and
Corollary 3.2. .

We provide a definition of the essential limit supremum of a real-valued measur-
able function. For non-empty UeJ and Aesf, P(A)=1, let g(U,4) =
sup {g(»):yeUnA}. Let g(U) = inf {g(U, A): P(4) = 1}. If xeX and %(x) is a
base for the neighborhood system of x then the essential limit supremum of g at x,
(esslim sup g)(x), is defined to be lim {g(U): Ue %(x)} where %(x) is regarded as
the directed set. It is routine to verify that (esslimsupg)(x) is well-defined in
[— 0, 00]. We define (essliminfg) analogously. Now, (esslimsupg) is upper-
semicontinuous and (essliminf g) and also I, the indicator function of an open set
U, are lower-semicontinuous and this is used in the next assertions which now
require a “local inclusion” of J in /.

DEerINITION 3.4. If for each xe X there is a base for the neighborhood system
%(x) of x such that %(x) < & then we say that enough local base sets are measur-
able and that %(x) is a measurable local base.

We require a condition on P which ensures that measurable g is equal to a con-
tinuous function almost everywhere if and only if the essential limits coincide.

DEerINITION 3.5. Given (X, 7, &, P) where enough local base sets are measur-
able we say that P has some local density if for each 4 € & such that P(4) >0
there is A’ = A with P(A4") = P(A) such that for each xe A’ there is a local base
AU(x) for which P(A'nU) > 0 for each Ue(x). The elements xe A’ are said to be
points with some density.

Lemma 3.7. Let (X, , o, P) be given and let Ue I n<f be such that each real-
valued lower-semicontinuous function defined on U is measurable with respect to the
relativized sigma-algebra. Let measurable g:X — R and let P have some local
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density. Then there is a continuous G: U — R such that G(x) = g(x) for almost every
xe U if and only if for every xe U, — oo < (essliminf g)(x) = (esslim sup g)(x) < oo.

PRrOOF. Let continuous G = g almost everywhere on U. Since ANV is not empty
whenever open V is not empty and P(4) =1 it follows that the essential limits
coincide on U. Conversely, if the (finite) two essential limits coincide on U then
they are continuous. A brief argument shows it suffices to prove that g(x) <
(ess lim sup)g(x) for almost every x e U. Suppose not. Then it follows that there is a
set 4 such that P(4) > 0 and each point of 4 has some local density and that there
are real constants M, and M, and a positive real § such that M <(ess lim sup g)(x) +
26 < g(x) < M, for every x€ A. Then for each xe A4 there is A(x) with P(4(x)) =1
and U(x)e%(x) so that g(x) > 5+ sup {g(y): ye U(x)nA(x)}. Since each point of 4
has some local density it follows by a simple argument that g is unbounded from
below on A. This is the contradiction.

From the identity arctan(ess lim sup g) = (ess lim sup arctan g) we obtain

LemMma 3.8. Let (X,7, o ,P) be given and let Ue T N be such that each
extended real-valued lower-semicontinuous function defined on U is measurable with
respect to the relativized sigma-algebra. Let measurable g: X — [— o0, o] and let P
have some local density. Then there is a continuous G:U — [— oo, oo] such that
G(x) = g(x) for almost every xe U if and only if for every xe U, (essliminfg)(x) =
(ess lim sup g)(x).

DEFINITION 3.6. Let (X, .7, o, P) satisfy the condition that enough local sets
are measurable. The subsets A;e.s/, i = 1,2, are said to have the point xe X as a
common point of some density if for each Ue%(x), the measurable local base,
P(A;nU)>0fori=1,2.

LemMA 3.9. Let (X, 7, o, P) satisfy the condition that enough local base sets are
measurable. Let % be a set and let h:% — R, f: X" - %, and measurable g: X — R
satisfy Y i1 9(x) = h(f(xy, . %)), (%1, +,x,) €A with P(A) = 1. If there exists
xo€ X such that (esslimsupg)(x,) > (essliminfg)(x,) then there are B;e,
i = 1,2, which have x, as a common point of density and Ce o with P(C) > 0 such
that the image by f of An(Byx -++x B, x C) is disjoint from the image of
ANn(B, X ++x B, x C).

ProOF. It is easy to verify that there are real constants ¢; and c, so that the
inequality (essliminf g)(x,) < ¢, < ¢, < (esslimsup g)(x,) is satisfied together with
X, being a common point of some density of B, = {y:g(y)< ¢y} and
B, = {y:g9(y) > c,}. The assertion follows upon choosing a Ces/ such that
sup {g(y):ye C}—inf {g(y): ye C} is sufficiently small.

DEFINITION 3.7. Let continuous f: X" — R. We say that f does not isolate sets
with a common density point if for each Ceo/ with P(C) > 0, each 4e/ with
P(4) = 1, and each pair B; with a common point of some density f(AN(B; X -
x B; x C)) has a non-void intersection with f(AN(B, X -+*x B, x C)).

The following theorem extends Cauchy’s functional equation.
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THEOREM 3.5. Let (X,T, o, P) be given where (i) I is an arcwise connected
and locally arcwise connected topology; (ii) P is a probability on the sigma-algebra
& ; (iii) for each x € X there is a local base U(x) for x such that U(x) < o and for each
Ue%(x) it is true that each extended real-valued lower-semicontinuous function
defined on U is measurable with respect to the relativized sigma-algebra; (iv) P has
some local density. Let (X", ", of", P") denote the product set-up. Let measurable
g: X > [— 00, 0], let the function h: R — [— o0, 0], and let continuous f> X" — R

satisfy
(3.5) 2i=19(x) = h(f(x1," -, x,))

Jor each (xy, - ,x,)eA with P(4) = 1, where g(x;) is finite on each coordinate of
each point of A. If f does not isolate sets with a common point of some density and if
[ preserves ample sets relative to P" then there is continuous G: X — [— o0, c0] such
that G = g almost everywhere P. Moreover, for each arcwise connected open measur-

able set U c {x: — o0 < G(x) < o}
(3:6) D=1 G(x) = h(f (x4, ", %,))

for each (xy,°*-,x,)eU" and continuous h:f(X") - R. Also, if the restriction of G
to each open subset of U is not constant then f(xy,**,x,) = ¢ 11 G(x;)+ o) for
each (x,,*,x,)eU" a real constant c,, and continuous strictly monotone ¢, and
consequently f is measurable in the relativized sigma-algebra when restricted to U".
G is unique in the sense that if continuous G, satisfies (3.5) then on U, Gy = a; G+ b,
for real constants a, and b,.

Proor. If U is a measurable open set such that each real-valued lower-semi-
continuous function defined on U is measurable, then each open subset V' < U is
measurable and each real-valued lower-semicontinuous function defined on V is
measurable. Choose the arcwise connected open measurable U. The proof of the
theorem follows from the hypotheses and conclusions of Lemma 3.8, Lemma 3.9,
Theorem 3.4, and Theorem 3.2, employed in that order.

4. Sufficient statistics. In this section we obtain consequences of Theorems 3.4
and 3.5 in terms of sufficient statistics. We continue the notation and definitions

of Section 3.

DErINITION 4.1. Let (¥, o, {Q,:te T}) be an experiment, that is, & is a sigma-
algebra of subsets of X and the Q, are probabilities on «. Let Q,, fixed t,€T,
dominate {Q,}. Let F, G, and H be functions so that for each te T the mapping
x = G(F(x), t) is measurable, the mapping x — H(x) is measurable, and for each
Aed, teT, Q(A) = [,G(F(-), )H(*)Q,,(dx). In this case we say that F is essen-
tially sufficient, but not necessarily measurable for {Q,}.

THEOREM 4.1. Let (X, T, o, {P,:teT}) be given where I is an arcwise connected
and locally arcwise connected topology for X, and (X, of,{P,:teT?}) is an experi-
ment where P(N) =0 if and only if P,(N) =0, (t,t')eT x T. For fixed n = 2, let
continuous f: X" — R satisfy (i) f preserves ample sets relative to Py, for a fixed t,,
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and (ii) f is essentially sufficient but not necessarily measurable for {P,'}. Assume
that there is a version of dP,/dP,, which is continuous and positive for each teT.
Then there is a function H: R x T — R which is continuous on R for each fixed te T
so that

l—_[;'=ldPt/dPto(xi)=H(f(x1"”’xn)’t) for eaCh (xla”'axn)ex”

for the continuous versions of dP,|dP,. Moreover, if there is t'e T and non-void
arcwise connected Ue T so that for each open V < U the restriction of the continuous
version of dP,|dP, to V is not constant, then there is a continuous measurable
g: X —> R so that (i) dP,/dP, () = c,(t)exp c,(t)g(*) almost everywhere P, for each
version of dP/dP,, and (ii) f(xy, -, %) = ¢Q i1 9(x)+co) for (xy,°*,%,)€
U""! x X for continuous strictly monotone ¢ and real c,, and thus for each such
U < X, f is measurable when restricted to U"™! x X with the relativized sigma-
algebra on U" ! x X.
To prove Theorem 4.1 it suffices to prove

THEOREM 4.2. The following assertions are equivalent:

(i) Theorem 3.4 with the additional assumptions that u is finite, g is measurable,
and [exp cg(-)u(dx) < oo for nonzero real c;

(ii) Theorem 4.1.

Proor. We first show that (ii) implies (i). Let {P,} be the family of probabilities
defined by dP,/dP, () = c,(t)exp c,(¢)g(-) where P, = c,(t;)u and the c; are the
normalizing constants. Since g is assumed to be related to f by (3.4) almost every-
where, it follows that f is essentially sufficient, but not necessarily measurable, for
{P,"}. It follows by Theorem 4.1 thatlog ¢, (r) + c,() 1= 1 g(x;) = H(f (x4, "+, X,), )5
(x4, *,x,)€ X", te T, and this implies (3.4). Let U be the set where g is not constant.
Then dP,/dP,, is also nonconstant. If Y 7_, g,(x;) = h,(f(x4," "+, x,)) almost every-
where Py, then fis essentially sufficient for {Q,"} where dQ,/dQ,, = d,(t) exp d,(t)g;-
Then, }7-; g,(x)) = hy($(3}= 1 g(x;) +¢o)) on X" and this implies that g, =a, g +b,.
That f(xy, -+, x,) = ¢(Qi=; g(x;)+¢c,) is true. Conversely, suppose (i) holds. Let
{gs: s€ S} be a basis for the smallest vector space containing the continuous versions
of logdP,/dP,,. If f satisfies the hypotheses of Theorem 4.1 then each g; and f
satisfy (3.4) except for a set of probability zero depending on g;. Since (i) holds
each g, and f satisfy (3.4) on X". This implies the existence of the function
H:R x T— R of Theorem 4.1. Let dP,./dP,, be nonconstant on U. Since we may
assume with no loss of generality that logdP,/dP,, is a member of {g,:s€S}, this
implies, by Theorem 3.4, that each g, is of the form a,(logdP,/dP,)+b, every-
where on X for real constants a, and b, and this leads directly to a completion of
the assertion.

Similarly, the next theorem is equivalent to Theorem 3.5.

THEOREM 4.3. Let (X,7,.o4,{P,:teT}) be given where (X, s,{P,:teT})
satisfies the hypotheses of Theorem 4.1. Assume that for some toeT, (X, T, A, P,)
satisfies the hypotheses of Theorem 3.5. Let continuous f: X" — R satisfy the hypo-
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theses of Theorem 3.5 and in addition be essentially sufficient but not necessarily
measurable for {P}. Then there is a version of extended real-valued dP,|dP, which
is everywhere continuous. Moreover, for each arcwise connected open measurable U
on which the continuous versions of dP,[dP, are positive and finite and for which
there is a t’ € T such that the restriction of the continuous version of dP,|dP,, to each
open subset V < U is not constant there is a continuous measurable g: U — R so that
dP,/dP, () = c,(i)expc,y(t)g(+) almost everywhere P, on U, for each te T. Then
SOy x) = ¢ 0= 1 g(x)+ o) for each (xy, - -+, x,) € U", continuous strictly mono-
tone ¢ and real c,, and consequently f is measurable when restricted to U".

PrOOF. Theorems 3.5 and 4.1 produce the assertion except for the continuity
everywhere. Define ¢,(x) = (esslimsuplogdP,/dP, )(x). Then dP,/dP,: X — [0, 0]
has a continuous version if and only if ¢,: ¥ - [— 00,.00] is continuous and the
continuity is therefore obtained by Lemma 3.8.

COROLLARY 4.1. In the hypotheses of Theorem 4.3 assume only that for a given
arcwise connected open measurable U there is (possibly only one) t' € T for which the
continuous version of dP,|dP,  is positive and finite on U and for which the restriction
of dP.[dP,, to each open subset V — U is not constant. Then the conclusions of
Theorem 4.3 hold on this U and in particular dP,[dP, () = c,(t)exp c,(t)g(+) almost
everywhere P, on U, for each teT.

Proor. This follows from the fact that f(xy," -, x,) = (3 1=, g(x;)+co) where
g(x) = logdP,./dP,(x), xe U.

5. Remarks. Theorem 4.3 is related to Theorem 2.1 of [1] where X = R is an
interval and where in addition the family of probabilities are assumed to be
dominated by Lebesgue measure A,. In this case, it is shown in [1], at least implicitly,
that the hypotheses on fin Theorem 4.3 of this paper will be satisfied if the following
condition is satisfied: there is a Borel set A = X with A,(4) > 0 such that if B < 4
and A,(B) > 0 then for each (x,, ", x,_,;)e X"~ ! the linear Lebesgue measure of
{f(xy,"*,x,—1,): y€ B} is positive.

Such a condition easily generalizes if X is a rectangle, say, in R™ and the family
of probabilities are dominated by Lebesgue measure. In another paper we will
discuss differentiability conditions on mappings f: X" — R, where X is a Banach
space and the family of probabilities is regular, which ensure that the conditions of
Theorem 4.3 are satisfied—for example, consider a family {P,} of probabilities
equivalent to Weiner measure, which we may regard as defined on the Borel sets of
L,([0,1]), and the L,-continuous mapping f(xy, ", X,) = 1= |6 x*(¢) dt.

Finally, for examples of continuous functions which are sufficient statistics,
which fail the hypotheses of the theorems of this paper, and for which the conclu-
sions of the theorems also fail, we mention page 1460 of [1], [3], and [5].
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