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CONTINUITY OF THE BAYES RISK!

By ROBERT A. WIISMAN
University of lllinois

In the theory of statistical decision functions it is sometimes desired to prove that
the Bayes risk as a function of the prior distribution is concave and continuous on
its domain. The property of concavity is immediate and this implies continuity on
the interior of the domain if the parameter space is finite. This has been used e.g. by
Lehmann [3], Lemma 3.12.5 and by Ferguson [2], Lemma 7.6.1. Continuity on the
whole domain does not follow immediately. A proof applicable to a rather specidl
sequential problem (finite parameter space, i.i.d. observations and constant cost
per observation) has been given by Blackwell and Girgshick [1], Theorem 9.4.2.
Another continuity theorem, valid under certain restrictive conditions, can be
found in Wald [4], Theorem 4.6. It is desirable to find conditions implying con-
tinuity that are both simpler and more widely applicable. The hope is to make strong
use of the concavity of the Bayes risk. It should be realized, however, that even on
a convex Euclidean domain a concave function is not necessarily continuous on
the boundary. On the other hand, it will be shown in this note that continuity is
implied by the combination of concavity and a very simple property of the geometry
of the domain. This property is satisfied, for instance, by a polyhedron in finite
dimensional space. Thus, it can be concluded that in any statistical problem with
finite parameter space (plus a mild assumption on the risk functions) the Bayes risk
is continuous. :

In any given statistical problem let ® denote the parameter space, whose points 0
index the distributions on the sample space; and let D be any class of decision
functions 6. We assume that to each é e D there corresponds a risk function R; on
O satisfying 0 < R,(0) < oo for all e ®, é € D (the uniform lower bound 0 could be
replaced by any other). We further assume that there is given a sigma-field B on ®
such that every R; is B-measurable. Let A be a class of probability distributions 1
on (®, B). The only requirement on A is that it be convex (e.g. A could be all
probability distributions). Let r,(1) = | R,(6) A(d6) be the average risk of § when the
prior A is used. Clearly, r, is linear on A. Define the Bayes risk p(A) = inf;. p, r5(1).
p is concave on A since it is the infimum of a family of concave functions.

Suppose A carries a topology in which all r; are upper semicontinuous (often it
will be possible to assert that the r; are continuous by virtue of their linearity). Then
p, being the infimum of the r;, is also upper semicontinuous on A. We would also
like to be able to conclude lower semicontinuity of p, but this seems impossible
without further assumptions. Indeed, it is easy to give an example of a concave
function fon a convex set in the plane that is not lower semicontinuous: let f'equal
1 on the interior of a disk and in one point x of the boundary, and 0 elsewhere on
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the boundary. Then lim inf,,, f(y) = 0 < f(x). However, such a counter-example
fails if instead of a disk we take a polygon. This points to a certain assumption on
the domain of the function, and we shall make the following

DEFINITION. A subset S of a linear metric space is said to be polyhedral if for every
x €S there is &(x) > 0 such that for every ray r emanating from x the set {y: yer,
0 < |y—x| = &(x)} lies entirely either in S or outside S.

In other words, S is polyhedral if a ray from x lies entirely in S for a distance at
least &(x) or leaves S for at least a distance &(x). A polyhedron in n-space furnishes
an example. We shall be concerned only with convex S. Clearly, a halfspace in
n-space is polyhedral. If § = /=, S;, and each S;is polyhedral, then S is polyhedral
with &(x) = min; <;<,,&,(x). Thus, the intersection of a finite number of halfspaces
in n-space, i.e., a convex polyhedron, is polyhedral.

THEOREM 1. Let an extended real-valued function f on a’subset S of a linear metric
space be concave and bounded below. If S is polyhedral then f is lower semicontinuous.

PrOOF. Let xeS. In taking liminf,.,f(y) we may restrict y to |y—x|| < &(x),
where &(x) is given by the definition. Let y€.S, 0 < ||y —x| < &(x), and consider the
ray from x through y. Since S is polyhedral, there exists z on this ray and in S such
that ||z—x| = &(x). Putting ||y—x]/e(x) = @, we may write y = az+(1—a)x. Let
f be bounded below by b, say. Since f is concave, f(¥) = af (z)+(1 —a) f(x) =
ab+(1—a) f(x). As y = x, « = 0 so that liminf,_,, f(¥) = f(x) and hence fis lower
semicontinuous.

An immediate application to statistics is

THEOREM 2. In a statistical decision problem with 0 < R;(0) < oo for every €O,
o€ D, suppose © is finite and A consists of all probability distributions on ® (with
the obvious topology). Then the Bayes risk p is a concave and continuous function
onA.

PROOF. Only continuity remains to be shown. Let ® = {6, ' -, 6,}. A prior 1 =
(A4, -+, A) puts probability 4; on ;. Thus, A is the simplex {1:1; = 0,i=1,---,k,
Y'A; = 1}, which is a (k—1) dimensional convex polyhedron. Every r; is bounded
on A, therefore continuous, so that p is upper semicontinuous. An application of
Theorem 1, with A = S, shows that p is also lower semicontinuous.

REMARK. In any problem where the r; are upper semicontinuous (e.g. when the
risk functions also have a uniform upper bound) the conclusion of Theorem 2
applies to any A that is polyhedral, using Theorem 1. Here is an example of a A
that is polyhedral but not a polyhedron in finite dimensional space (unfortunately,
the example does not seem to have much statistical interest). Let u be a sigma-finite
measure on (®, B). Consider the normed linear space L® of all essentially bounded,
B-measurable functions on ®, with identification of functions equal a.e. u, and
norm equal to the essential supremum. Let A< L® consist of all those functions p
that are probability densities with respect to g, i.e., [pdp = 1, and have the further
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property that there exists ¢ (depending on p) such that u[0 < p < ¢&] = 0. In other
words, in almost all points 8, either p(6) = 0 or p(0) = .
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