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SEQUENTIAL CONFIDENCE INTERVALS BASED ON RANK
TESTS!

By J. C. GEERTSEMA

Potchefstroom University

1. Introduction. In this paper the problem of finding a bounded length confidence
interval for the mean of a statistical population will be considered. In the case of
a normal population, Stein [13] gave what is now a well-known two-stage pro-
cedure. Recently Chow and Robbins [4] proposed a truly sequential procedure
for the mean of a population with finite variance. They considered properties of this
procedure when the prescribed bound on the length of the confidence interval
tends to zero and proved that the procedure can be chosen in such a way that
asymptotically a prescribed coverage probability is obtained. Furthermore, they
found an asymptotic expression for the expected sample size. Starr [12] investi-
gated the behavior of this procedure and modifications of it in the case of a normal
population for various values of the prescribed bound on the length of the interval.
He presented numerical evidence to show that the coverage probability of such a
procedure in these cases differs very little from the asymptotic coverage probability
(if the latter is .95 or .99). He also compared the Stein procedure with that of Chow
and Robbins and found that the latter is usually more efficient.

The methods used by Chow and Robbins to construct a sequential confidence
interval procedure and to investigate its asymptotic properties, can be applied
quite generally. This is discussed in the next section.

In Sections 3 and 4 these methods are used to construct and investigate two
procedures which are derived from the sign test and the Wilcoxon one-sample test
respectively. It may be noted that the asymptotic theory derived by Chow and
Robbins is under the assumption of a finite second moment. No such assumption
will be needed in the procedures discussed in this paper.

An asymptotic comparison between the three procedures is carried out in Section
5 with respect to asymptotic expected sample sizes. It is shown that when the
prescribed bound on the length of the confidence interval tends to zero the asymp-
totic ratio of expected sample sizes of two procedures is the same as the Pitman
efficiency between the corresponding tests (if the procedure of Chow and Robbins
is thought of as corresponding to the #-test). The main results of some Monte
Carlo studies are mentioned in Section 6.

2. A method for constructing bounded length confidence intervals. Denote by
X1, Xy, 000, X, a sample of fixed size n from a population with cdf F and let
be a parameter of the population.
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In this paper, sequential procedures for finding a confidence interval of length
not larger than 2d are constructed in the following way: For each positive integer »,
consider two statistics L, and U, (not depending on d) based on the first » observa-
tions, such that L, < U, a.s. and lim,_,, P(L, £ 0 < U,) = 1 —2a (so that, for n
large, (L,, U,) is a confidence interval for 6 with coverage probability approxi-
mately 1—2a). Define a stopping variable N to be the first integer » = n, such
that U,—L, < 2d, where n, is a positive integer. Take as confidence interval
(LN’ UN)

The procedure of Chow and Robbins [4] is of this type. In the two procedures to
be considered in this paper, the statistics L, and U, are the lower and upper con-
fidence bounds, respectively, of fixed sample size confidence intervals based on
families of rank tests for the one-sample problem.

Having defined a sequential procedure in the above way, two questions immedi-
ately arise: (1) What is the coverage probability of the procedure? (2) What is the
expected sample size?

These questions can, under certain assumptions, be answered asymptotically as
d — 0. This forms the content of the remainder of this section, for which purpose a
set of assumptions will now be introduced. In Sections 3 and 4 it is shown that the
procedures defined there satisfy these assumptions.

ASSUMPTION 2.1.

(i) L, < U,as. (L, and U, independent of d).

(i) n*(U,—L,) —>2K,/Aas. as n— oo where 4 >0 and ®K,) =1-a and
where O is the standard normal cdf.

(i) n*(L,—06) = Z,JA—K,JA+0(1) as. as n— oo where Z, is a standardized
average of i.i.d. random variables with finite second moment. ‘

(iv) The set {Nd?},., is uniformly integrable.

THEOREM 2.1. Under the Assumptions 2.1

(1) N is well defined, EN < oo for all d > 0, N( = N(d)) is a function of d which
is non decreasing as d decreases, lim,_, o N = o a.s. and lim,_,y EN = 0.

(2) limy_ o Nd* = K,?|A? a.s. and lim,_,o ENd® = K,?|A>.

3) limy, o PLy S0 Uy) =1-20.

PROOF.

(1) That N is well defined, i.e. finite a.s. for all & > 0 follows from (ii), while
EN < o for all d > 0 follows from (iv). The definition of N and the Monotone
Convergence Theorem imply the remaining statements.

(2) By definition of N, one gets Uy—Ly <2d and Uy_,—Ly_; > 2d. Using
the fact that N — oo a.s. as d — 0 together with (ii), we obtain:

llm infd_.o 2dN% g lim infd_,o N%(UN_LN) = 2Ka/A a.s.
limsup,_,o2d(N—1)* < limsup,_ o (N—D*(Uy_;—Ly-,) = 2K, /A as.

These together yield the first statement. The second statement follows immediately
from (iv). See Loéve [10] page 163.
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(3) A theorem of Anscombe [1] together with the first statement of part (2) of
the present theorem implies that Z, has asymptotically a N(0, 1) distribution as
d—0. From (iii) it follows that the asymptotic distribution of N*(Ly—0) is
N(—K,/A,1/4*) as d—0 so that lim,,oP(0 < N¥(0—Ly) <2K,/4A) =1-2a.
But N*(Uy—Ly) = 2K,/A+0p(1) as d— 0 by (ii) and the first part of (2), so that
the statement follows.

3. A procedure based on the sign test. Suppose that X, X,, -+, X, are observa-
tions from a population with unique median y. For testing the hypothesis y =0,
the sign test may be used. It is based on the statistic ) 7 I(X; > 0) (where I(B) is
the indicator function of the set B).

In the case of a sample of fixed size n, a confidence interval for y can be derived
from the sign test in a standard way. This confidence interval is of the form
(Xu.b(ny» Xnaemy) Where X, | £ X, , <+ £ X, , are the ordered X’s and where a(n)
and b(n) are integers depending on #. The limiting coverage probability as n — oo
of such a confidence interval is 1 — 2o if

a(n) ~ n[2+K,n*/2
b(n) ~ n/2—K, n*/2.
From this confidence interval one can thus obtain a sequential procedure as
indicated in Section 2.

DEFINITION 3.1. Procedure based on the sign test. Let N be the first integer
n 2 ny for which X, ;) — X, v = 2d and choose as resulting confidence interval
(Xy, 58y Xn,avy)) Where {a(n)} and {b(n)} are sequences of positive integers satisfy-
ing Assumptions 3.1 below and n, is some integer.

A similar sequential procedure was introduced by Farrell [S].

The following assumptions will be used throughout the present section.

AssumPTIONS 3.1. X, X,, -+- is a sequence of independent random variables
with common cdf F(x—y), where F(x) is symmetric about 0. F has two derivatives
in a neighborhood if 0 and the second derivative is bounded in the neighborhood,
so that also y is the unique median of the X’s. The sequences a(n) and b(n) are
defined by

b(n) = max {1,[n/2—K,n*/2]}
a(n) =n—-b(n)+1
where [x] is the largest integer less than or equal to x.

We now show that the above procedure satisfies the Assumptions 2.1. Assume
without loss of generality that y = 0.

In what follows strong use is made of the following result of Bahadur [2].
Under the Assumptions 3.1

(ERY) Xokon = [k(m)/n=F,(O)]If ©)+0(n"*logn) a.s.

where {k(n)} is a sequence of positive integers satisfying k(n) = np + o(n* logn),
0<p<l, F(&) =p, F'(&) =f(&) and F, is the empirical cdf of the X’s.
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LEmMMmA 3.1.

(X, oo = Xnsm) = Ko/ f(0)as. as n— 0.

Proor. It follows immediately from (3.1) that

a(n)—b(n) ~1~
nt  f(0)

- K,/f(0) as n—->o0 as.

n%(Xn,a(n) - Xn,b(n)) = +0 n—_‘L lOg n) a.s.

LemMa 3.2.
X,y = ZJA—K,JA+o0(1)as. as n—oo

where A = —2f(0) Z, = 2n*(F,(0)—1).
This follows immediately from (3.1).

LEMMA 3.3. The set {Nd*},., is uniformly integrable.

PRrROOF. According to a result of Bickel and Yahav ([3] Lemma 3.2) it is sufficient
to prove that Y »_, supo<y<q, PIN(d)d* > m] < o for some d,. Now

P[N(d)d* > m] = P[N(d) > m(d)] where m(d)=[m/d*]
= P[Xniay.atm@) = Xmtay.biomiay > 2d]
< P[Snw(d) < a(m(d)] + P[Spa(—d) Z b(m(d))]
where S, () =>7_ I(X;<1)
= 2P[B(m(d), F(—d)) Z b(m(d))]

where B(n, p) denotes a binomial random variable with parameters » and p. Then
(see Hoeffding [9] Theorem 1)

P[N(d)d* > m] < 2exp { —2m(d)13 s} where
tuay = {b(m(d)) — m(d)F(— d)}[m(d)
=do

for some 6 > 0 for d < d, and m = M, where d, > 0 and M is sufficiently large.
Hence for d £ d, and m = M, and a constant A4

P[N(d)d* > m] £ Aexp {—2md?}

which proves the uniform integrability since Y e po€Xp { —2md?} < 0.
The following theorem is now a direct consequence of Theorem 2.1 and the
above lemmas:

THEOREM 3.1. The confidence interval procedure based on the sign test (as defined
in Definition 3.1) has asymptotic coverage probability 1 —2u as d — 0. The stopping
variable N satisfies lim,_, o ENd* = 1K,/ f*(0).
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4. A procedure based on the Wilcoxon one-sample test. The Wilcoxon one-sample
test is based on the statistic

Z’i’=12’}=51(‘%(xi+xj) > 0)

where X, ---, X, is a sample from a symmetric distribution with center of sym-
metry y. The test is used to test the hypothesis y = 0 against shift alternatives.

A confidence interval for y in the case of a sample of fixed size n, derived from
the above test in the standard way, is of the form (Z, ;) Z,4m) Where
Z,122,, S "= Z,um+1)2 are ordered averages H(X;+X)) for i,j=1,"--,n
and i <.

The limiting coverage probability of such an interval is 1 —2« if

4.1) a(n) ~ n(n+1)/4+K,[n(n+1)(2n+1)/24]*
b(n) ~ n(n+1)/4—K,[n(n+1)(2n+1)j24]%.
We can now define a sequential procedure from such a confidence interval.

DEFINITION 4.1. Procedure based on the Wilcoxon one-sample test: let N be the
first integer n = n, for which Z, ,,y—Z, y»y < 2d and choose as resulting confidence
interval (Zy vy Znavy)- 1@(m)} and {b(n)} are sequences of positive integers
satisfying (4.1) and n, is some positive integer.

The asymptotic analysis of this procedure is much more complicated than the
analysis in Section 3, because the present procedure is based on ordered dependent
random variables, namely the ordered 4(X;+X;) fori<j, i,j=1,--,n

Fortunately the theory of U-statistics can be applied. See Hoeffding [8] and [9].

The statistic

4.2) D7 Y1 =i [EH(X+ X)) > 0)

is a one-sample U-statistic and the test based on it is asymptotically equivalent to
the Wilcoxon one-sample test. For these reasons a procedure based on (4.2) will
be considered first. It is defined as follows:

DEFINITION 4.2. Procedure based on a test which is asymptotically equivalent to
the Wilcoxon one-sample test: let N be the first integer n = n, for which
W oamy— Wa sy = 2d and choose as resulting confidence inerval (Wy vy Wi any)-
{a(n)} and {b(n)} are sequences of integers satisfying (4.1), n, is some positive
integer and W, S W, , <+ < W, ,u-1y2 are the ordered averages 3(X;+ X))
fori<jandi,j=1,--, n

Except for the last remark of this section, the procedure to which reference will
be made in this section is that of Definition 4.2.

The following assumptions will be used throughout the present section.

ASSUMPTIONS 4.1. X, X,, -+ is a sequence of independent random variables
with common cdf F(x—y), where F is symmetric about 0. F has a density f which
satisfies [ /(x)dx < 00. G(x—7) denotes the cdf of (X, + X,) and G has a second
derivative in some neighborhood of 0 with G’ bounded in the neighborhood. G’
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is sometimes denoted by g where it exists. {a(n)} and {b(n)} are sequences of positive
integers defined by

b(n) = max {1, [n(n+1)/4— K (n(n+1)(2n +1/24)*]}
a(n) = n(n+1)/2-b(n)+1
where [x] is the largest integer less than or equal to x.

REMARKS. The following facts can be established without difficulty (for details
here and elsewhere in this paper, refer to [6]).

(1) The above assumptions on F guarantee the existence of a derivative for G.

(2) If fhas a Radon-Nikodym derivative f/* satisfying | | ' | < oo and [ (f”)? < oo,
then the assumptions on G are satisfied.

(3) Assumptions 4.1 imply that G’(0) > 0, since

(4.3) G'(0) = 2 [f3*(x)dx.

In the rest of this section it will be assumed without loss of generality that y = 0.
The next lemma states two inequalities derived by Hoeffding [9] for one-sample
U-statistics.

LEMMA 4.1. Denote by U the statistic

(:)_IZC'/’(X;'”’ o aXi,.)

where X, X, -+, X, are i.i.d. random variables, y is a function symmetric in its r
variables and C denotes summation over all (") combinations of rX’s. Then

(4.4) P(U-EU 2 1) < exp { —2kt?}

FOSY(xy,  +,x) £ 1,120, and k = [n/r], the largest integer less than or equal
to nfr. Also

(4.5) P(U-EU|21t)<2e7"

where
b= kt?
" 2(6®+4tmax(z,1—2))

if [x, o, x)|£1,620,z=EY(X,, -+, X,), 6> = Vary(X,, -, X,) and k is
as above.

(4.5) is an extension of the so-called Bernstein inequality (stated by Hoeffding
[9] for sums of independent random variables) using the methods indicated by
Hoeffding.

In the following lemma it is proved that Bahadur’s result [2] can be extended to
apply also to the ordered averages of pairs of observations that are being con-
sidered. The proof follows closely the method of proof of Bahadur.
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Lemma 4.2. If {k(n)} is any sequence of integers satisfying k(n)/(3) =
Y+o(n~*logn) as n — o then, with probability one,

_ k(m/(3)—G.(0)

4.6 W,k = +0(n"*logn
( ) ,k(n) g(o) ( g )

where
G,(x) = (g)—IZiq‘I(%(Xi"'Xj) < x).

ProoF. Let B,(x) = [G,(x)— G,(0)] — [G(x)— G(0)]. {c,} is a sequence of constants
with ¢, ~ logn/n* as n— o. I, = (—c,, ¢,), H, = sup {|B,(x)|: xe1,}. First prove
that
4.7 H,=0(n *logn) as.

Let {d,} be a sequence of positive integers with d, ~*n?. Put 1, , = rc,/d, where
r is an integer

Jr,n = [nr,m N+ l,n] Gpn = G("r+ l,n)_ G("r,n)'
Then, for xeJ, ,, since G, and G are nondecreasing,
B,(x) £ G,(,+1,0) — G,(0) — G(n,.,,) + G(0)
= n(nr+ l,n) + ar,n'
Similarly B,(x) 2 B,(#,,,)—%,,, for x in J,, ,. Therefore
H, < max{|B,»n,,)|: —d, < r £d,} +max{«,,: —d,<r<d,—1}
= Kn+ﬁn say.
Now
ﬂn = max, [G("r+ l,n) - G(nr,n)]
= max, ("r+ 1,n— nr,n)G’(Cr,n)

where
e é Cr,n é L/ 1n= (cn/dn) max, GI(Cr,n)
= 0(n"*logn)

because G’ is continuous, hence bounded in a neighborhood of 0.

By the Borel-Cantelli Lemma it is now sufficient, in order to complete the proof
of (4.7) to prove that for some constant p, Y P(K, = £,) < co where¢, =p,n~ *logn.
First consider P(|B,(,,,)| = &,). |B,(1,.,)| can be written in the form |U,—EU,|
where

Un = |Gn(17r,n) - Gn(O)I
=7 L IGX i+ X)) £ 1) - IGX+ X)) £0),
a one-sample U-statistic with EU, = |G(3,, ) — G(0)| = z, ,, say. Applying inequality

(4.5)and noting that 4 2 3k?/(z,, ,+1), one obtains P(|B,(1,, )| = &) < 2exp {—6,}
where 6, = 4[n/2]¢,2/(z,, ,+¢,). Fix p, such that G'(0) <p,. Then since
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lim, ., {G(c,)—G(0)}/c, = G'(0), there is an integer n; such that for n>n,

G(c,)—G(0) < p,c, and also G(0)—G(—c,) <p,c,. From n, ,=r(c/d)=c,

and 7, , = —c, then follows that z, , < p, c, because G is monotone nondecreasing.

One now finds &, = iné,%/(p,c,+&,) =9, say, for n large. Then P(K, = ¢,) <
i 4, P(B,(1y, )| Z &) £ 2(2d,+1)exp {—0,'} and

logP(Kn g gn) < 1 p12
logn =4 16p,
< —1-6 forsome 0>0 andfor p, largeenough.

for n large

This proves Y P(K, = &,) < oo and so (4.7) has been established.
The second part of the proof consists in proving that

(4.8) W,k is in I, with probability one for n large enough.
Now
4.9) P(Wypmy S =€) = P[G\(—c,) Z k(n)/m] with m =(3)
<exp{—nt,’/2} by (44),
provided ¢, = k(n)/m—G(—c,) = 0. But
G(—cy) = G(0)—¢,G'(0)+¢,’G"((,)/2 where —c,<(, <0
= G(0)—¢, G'(0)+o(c,)

because G” is bounded in a neighborhood of 0. Therefore ¢, ~ n~*log nG'(0) as
n— oo which is positive, since G’(0) > 0. The right-hand side of (4.9) becomes
exp {—1(G'(0)logn)?} so that Y P(W, ym < —¢,) < co. Similarly Y} P(W, ym >
¢,) < oo. This proves (4.8).

The proof of (4.6) can now be completed. By (4.8), with probability one, there
is an n, such that W, ,, is in I, for n > n,. Also, n, can be chosen such that for
n > n, G"'(0) is defined and bounded on I,. Let p; be such that

3|G"(x)|Sps for x in I, and n>n,.
Now G,(W,, km) = k,/(3) so that, by definition of B,,
(4.10) k(n)/(3) = G,(0)+ G(W, 1n)—G(0)+6,H, with |6,] < 1.
But
GC(Wyieimy) = G(O)+ W, 1 G'(0) + WG ()2

with {, between 0 and W,
= G(0)+ Wy 4yG'(0)+p3s Puc,” With |o,| < L.

Substitute in (4.10). Then one obtains

knl(3) = Gy(0)+ W, 4y9(0)+O0(n”* logn) a.s.
This completes the proof.
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COROLLARY 4.1.

K

Zgj_fz(ax—)dxa's' as n— oo.

n*( Wa.atm— Wn,b(n)) i

PRrOOF. The result follows at once from Lemma 4.2. in conjunction with (4.1) and
4.3).

LeMMA 4.3.
W, o = Z,JA—K,JA+0(1)as. as n— oo

where A = 3%g(0), Z, = 12*n*[n~ 1Y 7. F(X))—1%].

This result follows from Lemma 4.2 together with the following lemma and its
corollary (which were kindly supplied by the referee) and on noting that G,(0) is
a U-statistic.

LeEMMA 4.4,
Let V,y, Vi1, -+ + be a reverse martingale with EV,, = 0. Suppose for some r = 1

and some s > 0 that E|V,’| = o(n™%). Then
V,=o(n"*" (logn)®) a.s. forany &> 1/r.

PROOF.
For / = m we have

P(|V,|> 4 forsome n2D)<A7'E|V|" (A>0).
(See [10], page 391), and hence, by assumption,
P(|V,| >4 forsome n=1)<A7"0(I7%).

Letting n > 0 be arbitrary and 1 = y(2/)"*"(log/)* we see there is an M >0
such that for />m, P(|V,| > nn~*"(logn)* for some n=1, I+1, -+, 2I-1) £
n~"M(logl)~*®.

Since Y., 4.5 ...(logl)"" < oo for ¢r>1 and 7 arbitrary, the Borel-Cantelli
lemma implies V, = o(n~*/"(logn)®)a.s. for any & > 1/r.

COROLLARY 4.2. Let U,,, U, {, - - (m = 1) be a sequence of U-statistics generated
by the i.i.d. random variables X, X,, -+ -. If EU,*> < oo, then there exists a function
h(x) with E(h(X,))* < oo such that

Uy=n"'Y"_h(X)+o(n 'logn) as.

PrOOF. Let A(x) = mE(U,,,[X1 = x)—(m—1)EU,;; then Eh(X,)= EU, and
E(h(X,))* £ m*EU,* < 0. Now V,=U,—n"'Y"_ k(X)) n=m,m+1,--- is a
reverse martingale, and from Hoeffding [8], EV,? = O(n~?). Letting r =s =2 in
Lemma 4.4, we obtain a slightly stronger conclusion than the required.

LEMMA 4.5. {Nd?},., is uniformly integrable.
The proof is similar to that given in Lemma 3.3.
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REMARK. From the fact that
G,(x) = G,(x)+0(1/n),

2 Xo+X,
Gn(x) = n(n+]3[§j1< P é )‘)

where

one can prove that all the results of this section have exact analogues for the

procedure of Definition 4.1.
The following theorem now follows at once from Theorem 2.1 and the above

results and remarks.

THEOREM 4.1. Both confidence interval procedures based on the Wilcoxon one-
sample test (as defined in Definitions 4.1 and 4.2) have asymptotic coverage probability
1 —2a as d — 0. The stopping variables N satisfy:

K 2
lim ENd* = ————, .
-0 12( [ *(x) dx)*
ExTENSION. The theory of this section can be extended immediately to a procedure
based on the Wilcoxon two-sample test where observations are then taken in pairs.

5. Asymptotic efficiencies of the procedures. Consider two bounded length
confidence interval procedures, T and S, for estimating the mean of symmetric
population by means of an interval of prescribed length 2d. Denote by Ny and Ng
the stopping variables of the two procedures T and S respectively, and by P, and
Py the respective coverage probabilities.

DErINITION 5.1. The asymptotic efficiency as d — 0 of procedure T relative to
procedure S'is e(7, S) = lim,_, o ENg/ENy provided lim,_, o Py = lim,_, o Pg and that
all the limits exist.

Denote by M the procedure of Chow and Robbins mentioned in Section 1 and
by S and W the procedures of Definitions 3.1 and 4.1.

Then it follows from [4] and Theorems 3.1 and 4.1 that the asymptotic efficiencies
of the above procedures relative to each other in the sense of Definition 5.1 are
(under the Assumptions 3.1, 4.1 and 62 < o)

e(S, M) = 46%f*(0)

e(W, M)= 126°( [ *(x) dx)*
RO

3(ff2(x)dx)*”

If one regards the procedures M, S and W as based on the #-test, sign test and
the Wilcoxon one-sample test respectively, one sees that the above efficiencies are
the same as the Pitman-efficiencies of the respective tests relative to each other.

e(S, W)=
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6. Monte Carlo studies. A series of Monte Carlo studies were performed for
different values of d and for a few symmetric populations (normal, ‘“‘contaminated
normal,” uniform and double exponential) to compare the behavior of the
procedures with the asymptotic results. These results are fully discussed in [7].

The studies seem to indicate that the actual coverage probability is quite close
to the asymptotic coverage probability and that the actual coverage probability
for the two procedures which are based on rank tests is higher than that of the
procedure based on the #-test.

The results also suggest that
K 2
ENE —2>— +C
= 3[6@—11 "

in the case of the procedure based on the Wilcoxon test, where C is a constant. The
results illustrate the upper bound. :

EN £ K, %6?|d? +n,
for the procedure based on the ¢-test (see Simons [11]).
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