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FLUCTUATIONS WHEN E(|X,|) = o'

By JoHN A. WILLIAMSON

University of Colorado

1. Introduction. Let {X,} be a sequence of independent identically distributed
random variables. Set S, = Y ;- X, and S, = 0. We define the two random variables,
N(w) and M(w), by N(w) = Z.‘i°= ol i:su(@)z 0y and M(®) = sup, 3 o{S,(@)}.

It is the purpose of this paper to study the problem of the finiteness of N, M, E(N),
and E(M) in the case when E(|X,|) = co. We obtain results which parallel known
results for the case when E(X)) is finite and negative. In [7] it is shown that if
O > E(X,) > —oo and if k is a positive integer that E(M*) < co if and only if
E((X,")**!) < co0. This difference of unity between the order of these moments
appears as the difference between « and a+1 in our results. If 0 > E(X;) > — o0
then it can be deduced from [3] and [6] and a truncation argument that
E((X,*)*) <o if and only if EN)=),"0P(S,20)<o. The fact that
E(N) < oo implies E((X;*)?) < oo when E(X,) is finite and negative, can also be
obtained from Theorem 7 of [8] by setting / = 2. This ratio of 1 to 2 in the order of
these moments appears as the ratio of a to 2« in our results and suggests con-
jectures concerning the existence of higher moments of N and X;*. In all that
follows, F(x) = P(X; = x). All slowly varying functions, L, are assumed to have
been defined so that L(x) = L(—x).

PROPOSITION 1. Assume there exists x, < 0, a constant « satisfying 0 < a < 1, and
a function L slowly varying at oo, such that for all x < x,, L(x)/ |x|"‘ is monotone and
F(x) 2 L(x)/|x|*. Then:

(1) E((X,Y)YL(X;*)) < o implies both N and M finite a.s.;
(i) Ifa # 4, E((X;1)*/L*(X, %)) < oo implies E(N) < o0;
(iil) E((X,)'L(X, ")) < oo implies E(M) < co.

PROPOSITION 2. Assume there exists x, <0, a constant o satisfying 0 < a < 1,
and a function L slowly varying at oo, such that for all x £ x,, L(x)/ |x|°‘ is monotone
and F(x) £ L(x)/|x|*. Then:

(i) Either N or M finite a.s. (hence both) implies E((X,;*)*/L(X,%)) < o0;
(ii) E(N) < oo implies E((X,1)**/L*(X,%)) < o0;
(iil) E(M) < oo implies E((X,T)**1/L(X,")) < 0.

ReEMARK 1. If F and G are probability distribution functions with F < G for
all x then by induction F"* £ G"* for all x and all n. L(x)/|x]"‘ which is assumed
monotone for x < x, <0 can be pieced together with F to form a probability
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distribution function G, satisfying G £ Fin Proposition 1 and G = Fin Proposition
2. Forming the key series

pya k='P(S, > 0), Yz P(S > 0), and
Yoo k7§ xdP(S, £ x) = Yoo kT P(S, > x)dx

first with F and then with G shows that the corresponding series satisfy an in-
equality opposite to that satisfied by F and G. Hence to prove the previous
propositions it is enough to prove the following:

THEOREM. If for x < 0, F(x) = L(x)/|x|* where 0 < a < 1 and L varies slowly at
00, then:

(i) Either N or M finite a.s. (hence both) if and only if E((X,*)*/L(X;") < c0;
(i) E(N) < oo if and only if E((X,")**/L*(X,*)) < op provided that o # 1/2.
(ili) E(M) < oo if and only if E(X;*)**!/L(X,")) < o0.

Since L is positive, (a part of the definition of slow variation) and since L(x)/ |x|"
is monotone [x,+<p(X;)’/L(X,*)dP is finite for each real b and y =a, 20,
and a+ 1. The conditions in (i), (ii), and (iii) involving X, * and L(X, ") are, there-
fore, only conditions on the behavior of 1 — F at + co. On the other hand, our basic
assumption in the theorem is a restriction on the behavior of F only at — co.

The proof of this theorem, which is found in Section 3, contains the proof of (ii)
of Proposition 2 for the case « = 1. The fact that this « = % singularity is not re-
movable is made clear in Example 4.1 of Section 4. For this example F(x) = |x|‘*
for x < —4, and E((X,;%)??) < oo, but E(N) = co. Example 4.2 shows it is possible
to have both lim,_ . P(S,=0) =0 and P(limsup,., S, = +o)= 1. In fact it
shows that for arbitrarily large I there exists an example depending on I' for which
both lim,_,,, P(S, = —n") = 0 and P(limsup,_,, S, = + ) = 1.

We mention briefly some application. First, let H(x) =) 2., P[S, < x). In the
case when E(|X;|) = oo, our results applied to the reversed random walk give a
solution to the problem, when is the renewal function, H(x), finite for all x, or
equivalently, for the random walk, {S,, n = 0}, when is the expected time spent in
the half-line, (— co, x], finite for all x. Second, in the case F(x) = L(x)/|x|°‘ for
x<0,0<a<1,and L slowly varying at oo, (i) of the theorem gives a necessary
and sufficient condition for P{limsup,., S, = —oo} = 1. In [2] a condition on
E(exp {itX,}) is shown to be necessary and sufficient for this type of strong law.
However, interpreting the result of [2] in terms of a condition on F appears difficult.
Our result would seem to lead to the conjecture; P(limsup,., S, = —o) =1 if
and only if E(1/F(—X,; %)) < co. Third, if 7(w) is defined by 1(w) = min {n: S,(w) =
M(w)} then E(N) = E(z). To see this, apply the monotone convergence theorem
to the conclusion of Problem 7 of Chapter 4 [9]. For queuing theory quantities
related to M the reader should look at Problem 11 of Chapter 4 [9].

We make several references to [4] and to [9], even though in most cases, these
books are not the primary sources for the results referred to. However, these books
do contain a complete bibliography. Actually [9] only discusses the lattice case, but
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as is pointed out in Problem 13 of Chapter 4 [9], the results we need here are true
in the non-lattice case as well. In proving the implications of parts (ii) and (iii) of
Proposition 2 we have made use of techniques first developed in [1] and [3].

2. Preliminary notation and lemmas. In the case when E(X;*) = co we define
characteristic functions ¢*(¢) and ¢ ~(¢) by

2.1 @* (1) = [& e dF(x)+ F(0),
o~ (1) = [°, ™ dF(x)+1—F(0).

If E(X,;*) < oo then we define ¢ *(¢) in a way which gives a 0 mean for the prob-
ability distribution associated with ¢*. Let a = inf {y: [% xdF(x) 2 0}. a> —
because E|X,”| = oo. If F(a) > F(a‘) choose ¢, F(@)—F(a™) = ¢ = 0, such that
{& xdF(x)+ca = 0. Then define ¢* and ¢~ by .
2.2) ot (t) = [2 e dF(x)+ C e+ F(a)—c,

o () = [, e dP(x)+(F(a)—F(a~)—c)e"™+1—F(a)+c
throughout the rest of this paper, whenever E(X;*) < oo is part of what is being
assumed, the definition in (2.2) is the one which is to be used. Otherwise (2.1) is to
be used. In either case, @*(¢)+¢ () = E(e*)+1=¢()+1. F* and F~ will
always be defined by ¢*(¢) = [e"*dF*(x) and ¢~ () = [e"*dF ~(x). The two cases
aretreated separately, because in what follows it will be necessary when E(X, %) <
to write 1 —¢*(¢) as [(1 +itx—e")dF*(x) in order that certain standard estimates
can be made. The reader should note that when E(X,") < o0, P(X;* £ x) is not
the same as F*(x). Next define ¢(¢) by

(2.3) ¢t =o " (=D+o (1.
@(t) is the characteristic function of a probability distribution, F(x), with the

property that there exists a finite positive constant, r, for which F(r)=1.
Consequently we have:

LemMmaA 1. If E(|X,"|) = oo, if F is defined by je""dF(x) @(t) as in (2.3), and if
N and M are defined for F as in Section 1 then N and M are finite a.s. and E(N)
and E(M) are both finite.

Proor. If P(X, < x) = F(x) then it is possible to truncate X, from below in such
a way that the truncated random variable, X,’, has a negative mean. For the
truncated process we have E(N') < oo and E(M') < oo and N*= N as. and
M = M a.s., and this proves the lemma.

REMARK 2. Given any probability distribution, F, there exist probability dis-
tributions, D(x) and U(x), with the following properties:

(i) D(x) £ F(x) £ U(x) for all x;
(ii) D(x) = F(x) = U(x) for all x such that |x| is sufficiently large;
(iii) D(x) and U(x) each have an absolutely continuous component.
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It is clear from looking at the graph of F that such D and U exist. This fact when
combined with the contents of Remark 1 makes it possible to assume from this
point on that F has an absolutely continuous component. Therefore, ¢() and ¢(z)
will always be bounded away from 1 on all sets where |¢ | | is bounded away from 0.

LEMMA 2. Let F+(x) be such that §D+(t) — je'txdF+(x). Assume that
J(x]"/L(x)) dF* (x) < 0

where L is slowly varying and positive, where L(x)/x” is nonincreasing on (0, + ),
and where 0 <y <1 or 1 <y <2. Then |L—@*(1)|/IL(1/2)|¢|"*'] is integrable on
every bounded interval, [— 6, J].

PrOOF. It is enough to prove the lemma for § = 1. For 0 <y < 1 we have
ll | dF+(x) Ix] dF*(x) it
L(l/t)l [+ L(1/t)|t|y
4 /= (dt)xdF*(x) 2dtdF*(x)
T L A Lt |

The first integral on the right in this 1nequallty is finite because y < 1 and L is
slowly varying. In the second and third integrals let v = 1/¢. x {3 ("~ % dv/L(v) ) and
J3 (™" dv/L(v)) are both asymptotic to a constant times x?/L(x) by Theorem 9.1
of Chapter 8 [4]. This completes the proof fory < 1. If 1 <y < 2, write 1 — ot =
[(1+itx—e"™)dF +(x) Break up the integral as before, bounding |1 +itx— e""l by a
constant times ¢2x> over the region 0 <t < 1/x and by 2¢x over the region
I/x £t < 0.
The next lemma we require appears as 3.23 in [5].

Garsia—Lamperti Lemma. Let G(x) be a probability distribution with G(0) = 1 and
G(x) = |x|‘“L(x) where L is slowly varying and 0 < a < 1. Then

) —fe* dG(x):l ‘[ - . [1 e dG(x)] ;
lim = e” *dy and lim| ———7— |=1
,w[ Laplr |~ @) L Zaml
where I is the conjugate of (i)f° ., €” |y|* dF(x).

LemMa 3. Let F(x) = L(x)/ |x|“ for x < 0 as defined in the statement of the theorem

and let F*(x) be defined by (p‘*(t) = [ dF*(x). If [(|x|*/L(x))dF*(x) < oo then
lim,—o[1 — @ (DY/[|7]*L(1/0)] =

Proor. We consider only [& (1—e")dF*(x). If a < 0 the integral over [a, 0] is
cared for by |1—e™| < |ix|. If M(2) = [§ (|x|*/L(x)) dF*(x) then for every y >0
and 1 #0

(2.4) M(e) 2 57 (|x[*/L(x)) dF* (x)
= [/ L/ I = F* e[
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Combining (2.4) with an integration by parts and the fact that L is slowly varying
gives for fixed e > 0

il (1 — %) dF* (x) |1—ei"/|'l| L(e/t)M (o)
im sup,.. 2l 00 0 < limsup,.,
limsup,., L ltI“L(l/t) < limsup, .o eL(1/1)
. (1= F*(x)) dx
@5) ““ns“p‘*"'tlfo lrzam

<M li R
<e (o) +limsup, ¢ LRI

=& T*M(@)(1+1/(1—a)).
The justification for taking the limit under the integral can be found in the proof of

3.23, [5]. Choose and fix & > 0 so that the extreme right side of (2.5) is small. For
arbitrarily small § > 0 we have for all sufficiently small |¢],8 = |2, (x*/L(x)) dF* (x)

and hence
foo (1 _eitx) dF+(X)I

” —W}W | < lim sup,o[6L(e/t)/(e*L(1/t))] = oe™*

limsup, ¢

This completes the proof of the lemma.

In the proof of the theorem, approximations to [5 dP(S, < x) and [ x dP(S, £ x)
will be required. They will take the form [g,(x) dP(S, < x) and [my(x)dP(S, £ x)
where g, and m, are defined in the following way, g, = 1 on [0, 4] and g, = 0 on
(=00, —1]ub+1, + ®). g, goes monotonically to 0 on [—1, 0] and [b, b+1] in
such a way that both g,’ and g,”’ are continuous for all x. m,(x) is most easily
defined in terms of m,’(x).

my'(x) =1 for 1<x=<b
= —(3b/8)(x—b)*+1 for b<x=<b+1
— (3b8)(x—b—22+1—3bj4 for b+1=<x<b+3
= — (3b/8)(x—b—4)*+1 for b+3<x<b+4

=0 for x£% and x=b+5.

m,’' goes continuously from O to 1 (respectively 1 to 0) on [4, 1] and [b+4, b+35]
in such a way that m,” is continuous for all x and in such a way that {} m,'(x)dx = 1,
btamy(x)dx = —4 for all 4<y<5, and [biim,(x)dx = —4. Let my(x) =
JZowmy(y)dy. Then [5dP(S, < x) < [gu(x)dP(S,<x) and [ixdP(S,<x) <
| my(x) dP(S, < x). The m, approximation does not necessarily overestimate if we
include the integral from 0 to 1. However, in all that follows Y 2, P(S,€[0,1]) < o
so that it does not matter.

Next let y,(1) = [e™g,(x) dx, uy(t) = [e"*my(x) dx, and fa,(t) = [[e"*my(x)/(ix)] dx.
Integrating by parts once gives:

There exists C independent of b such that for all ¢,

(2.6) [p(—B| <Clf|™* and |@(—1)|=Clf ™"



870 JOHN A. WILLIAMSON

Two integrations by parts gives:

There exists C independent of b such that for all 7,

Q@7 n(-dl=cl™%  |E(=n|sCl™? and |u(=0)| = Cblt7%

If {V,} is a sequence of independent identically distributed random variables with
fe'™*dP(V,, < x) = ¢~ (t) and if {B(n)} is chosen so that lim,. ,(nF(—B(n))) =1,
then (B(n))"*Y.s-; V, converges in distribution to a non-degenerate stable law
supported on (— oo, 0] and with index «. (See Section 8, Chapter 9 of [4]). From the
Karamata characterization of slowly varying functions, L, (See the corollary in
Section 9, Chapter 8, [4]), we have L(x) = A(x)exp {[5(e(y)/y) dy} where &(x) — 0
and A(x)— C, 0< C < o0, as x - + 0. Let W(x) = C|x|™*exp {J§ (c()/y) dy};
then for all sufficiently large |x|, W(x) is strictly monotone. In the following pages
B(n) will always be chosen by the formula B(n) = W ~'(1/n) where the positive
branch of W ™1 is to be used.

LemMA 4. If X is a random variable and A any positive constant then:
(2.8) © nP(X = AB(n)) < oo implies E((X*)**/L*(X™*)) < 0;
2.9) @  B(n)P(X = AB(n)) < o implies E((X*)'**/L(X™)) < 0.

Proor. For all sufficiently large n, P(X = AB(n)) = P(W(X*|A) £ 1/n) =

P(1/W(X™*|A) =n). Therefore

® nP(X Z AB(n)) < oo implies E((1/W(X*/4))*) < o0

which proves (2.8). From Lemma 2-A, [11], B(x) = W™ '(1/x) = x'/*J(x) where J
is slowly varying at + co. From Theorem 9.1, Chapter 8, [4], f(x) = f} y'/*J(y) dy
is asymptotic to a(1 + o)~ *x! +1/%J(x). Hence Y 2% ; B(n)P(X Z AB(n)) < oo implies
o x*J(x)P(1/W(X *|A) Z x)dx < oo which implies |7 x e g(x) dP(L/W(X ™"/
A) £ x) < oo which finally implies E(W ™ '(W(X*/A4))/W(X"|A)) < co. This
proves (2.9).

3. Proof of the theorem. From P19.2, [9], (i) is equivalent to the statement that
Yo k™P(S, > 0) < oo if and only if E((X;")*/L(X;")) < co. We first assume
that the moment is finite. The probability distribution associated with ¢ has
support (— o0, 0] and hence we clearly have

limb—>+ooZlch=1 k—ljgb(x)dP(gk < x)
= 1im, o 4 o lim, 11 Y 5% 1(21) ™ fyu( = PG 0K dt
= limy, 1 o, lim,1;(27) " f[—y,(— ) In (1 —r(¢))] dt
= limy_, ; ,(2m) [ = p,(— ) In (1= (#))] dt < co.

In the above expression, and in the remainder of this paper, to justify taking the
limit on r under the integral, write

Iln(l —rp®))| = |1=re@®)|In(1 —re(®))||1—re(®)| ™"
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yIny is bounded near O;
[1—ro@)| ™' 2121 -07(0);  Z(1—¢~ (1)) ~RDLA/D)|t]*

by the Garsia-Lamperti lemma; |y,(—#)| £ C|t|72 by (2.7); « < 1 and L is slowly
varying. Hence the dominated convergence theorem is applicable. Therefore, to
show that the series converges, we need only show that

lim, . |(27) ™ fpo(~)lIn (1= §(2)) ~In (1~ (1) ] | < co.

From Lemma 3, the identity 1—¢(¢f) =1—@*(£)+1—¢~(¢), and the Garsia—
Lamperti lemma we have that there exist positive constants, C and 4, such that

g 1-@()\ | " 24(p" (1))
f_,,yb(_t)ll1<1—¢(t)>dt‘é J_,,y"(—t)ln<.l+—l-qo(t) >dt
Seflylm(=0||F @ @)||1—o@)| " dt.

The integrability of | #(¢*(1))|/[L(1/¢)|¢|***] on [—h, ] which is guaranteed by
Lemma 2 together with the estimate |y,(r)] < C|t|™* of (2.6) then gives

\ .
limsup,, 4 ”_h y(—1) In G — ng dt

The estimate |y,(—1)| < C|¢|~? of (2.7) takes care of the integration on {r:|t| = 4}
and completes the proof of the fact that the existence of the moment implies the

convergence of the series.
Next assume Y ;2 ; k™ 'P(S, > 0) < co. Then

lim, ., ,(2m) ™ f[—p( = ) In (1 = (1))] dt < co0.

< 00.

We can write
In(l-¢* )~ ())—In(1—) =In(1-(1-*O))1—0 (D)1 —e1)))

so that if it can be shown that

1_(1—<p+(t))(1—rp‘(t))> '

3.1) limsup,., ”y,(—t)ln( = o) dt’ < ©

then it will be possible to conclude that
(3.2) S kT P(They (U4 V) > 0) < o0

where Uy, Vy, Uy, V5, +++ are mutually independent with E(e"") = ¢*(¢) and
E(™") =¢~(t) for all n. The fact that |(l -t 1 -0~ ()1 =) )] <
[(1=0*())1—¢~(1))/(#(1—¢~(1)))| means all we need actually look at is

lim sup, ., {24 [1(=]|(1 = @* (D)1= @™ (D)1= p(1)) | dt

where 4 > 0 is fixed. Before attacking this last expression we need to establish that
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E((X;1)*?) < 0. We have E(]X 1‘|"'/ %) < oo as a direct consequence of our main
assumption. Hence from Theorem 1 of [1] for any ¢ > O,

Yo kTP RS X, > k) < 0.
Then Y, k™P(S,| > ek?)
=< Z,‘f’:l k™[ P(S; > 0)+P(Z’,§=1 X,” > ek*"*2)] < oo,
and again applying Theorem 1 of [1] we get that E(|X,|*?) < co. In particular,
Lemma 2 is now applicable and hence |1 —¢*(1)|/|¢|* **/>*€ £ (—h, h) and we have
(3.1). From (3.2),
(3.3) o> fo’:l k™ IP(Z,’:= (U, +V)>0)
= fo’: 1 k_IP(ZLl v, > —AB(k))P(Z?=1 U, > AB(k))
where 4 is to be determined. The distribution of (B(k)) ™' Y *_, ¥, convergestoastable

law of index « and hence 4 > 0 can be chosen so that P(}k_, V, > —AB(k)) = %
for all k. Then (3.3) implies that

3.4) Yo kT'P(Y k- U, > AB(k)) < 0.

The fact that B(k) is regularly varying with exponent 1/a allows us to use the
techniques of Theorem 1 of [1]. It must be the case that Iimk_,(,oP(IZ’,‘,=1 U,,‘| >
AB(k)) =0 and hence that lim,.,kP(|U| > AB(k)) =0 where U,° is the
symmetrized random variable obtained from U,. This is enough to get from (3.4)
that Y72, P(|U,*| > AB(k)) < o which implies E(( U,*|)*/L(U,%)) < . Then
E(U*/L(U,)) < oo and the proof of (i) is complete.

Next we turn to (ii) of the theorem. (ii) is equivalent to the statement that
Y 0 P(S, 2 0) < o if and only if E((X,*)*/[*(X,*)) < oo where o # }. First
we assume that the series converges. Then

0> YR (S 202 Y2, Yo P(X, 2 AB(K), X, < AB(K)
forall j#n, j=<k,

Yot junX; 2 —AB(K) 2 Yo, kP(X, 2 AB(K))
[P(Se-1 2 —AB(k))—kP(X, = AB(K))].

From (i) we have E((X;*)*/L(X,")) < o and hence lim,_, , kP(X; > AB(k)) = 0.
By an argument like that used in the proof of (i), for any fixed large 4, P(S,-; =
—AB(k)) is bounded away from O uniformly in k. Therefore E(N) < co implies
Yo 1kP(X, = AB(k)) < oo, which in turn implies E((X,*)**/L*(X;")) < o by
Lemma 4. The above argument is valid when « = , so that (ii) of Proposition 2
has now also been proven.

Now assume E((X;*)?*/L*(X;*)) < . From an argument like that used in
(i) with 0 < r < 1 and r11 we find that we will have proven (ii) if we can show that

(3.5) iMoo (21) ™ 75(— (1 — (1))~ " dt < c0.
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However (3.5) does hold if we replace ¢(t) by @(¢), so that to establish (3.5) it is
sufficient to show

(3.6) Hmsupy- o | f15(= D[ — (1) "' = (1= 6(1))™ ] dt| < co.

From Lemma 3, (2.6), the Garsia—Lamperti lemma, and the identities 1 —¢(¢) =
1—p*(t)+1—¢(t) and 1—¢(t) = 1—@*(—1t)+1—¢@ (t) we get that for some
small > 0, [y,(~ 0)]|(1 = (1)) ™" = (1= 3(1)) "] < 4C|.# (0 * (N|IIIPL21 )12+
whenever |¢| < 4. Lemma 2 with (2.7) then gives (3.6) provided 2« # 1. This gives
(3.5) and completes the proof of (ii).

In (iii) we begin by assuming E(M) < oo. From part B of P19.2 of [9] we then
have Y 2, k™' [§ x dP(S, < x) < oo. Therefore

0 > Y k™ AB(k)P(S, 2 AB(K)) 2 Yy Ak™'B(k) Y k=, P(X, Z 24B(k),
X; <2A4B(k) forall j#n, j<k,
Yi=1,jenX;Z —AB(K) 2 Y%, BRP(X, 2 24B(k))
‘[P(Si-1 2 —AB(k))—kP(X, 2 24B(k))]

where 4 = 1 is to be determined. E(M) < oo implies M < oo a.s. and hence by (i)
E((X,*)*/L(X,*)) < oo, which in turn implies lim,_,, kP(X, = 24B(k)) = 0 for
each fixed 4 > 0. An argument involving a limit law then gives P(S,_; = — AB(k))
bounded away from O uniformly in k& for some large fixed 4 > 0. Therefore
L(M) < oo implies Y - B(k)P(X, = 2AB(k)) < oo and this together with Lemma 4
yields E((X;")**1/L(X; %)) < 0.

Finally we assume that E((X,*)**'/L(X,;%))<oo. To show Y, k™'
[& xdP(S, £ x) < oo it is enough to show that

(3.7)  limsup,., 4 |lim,,, Z,il k7 [ (= DX (@) — 34(n)) dit| < 0.
To accomplish this, an integration by parts is required. We will need that (d/df)e ~(¢)
exists for each ¢ # 0 and that

(38) d o) 5 ol LD

|
ldt
where p is a constant independent of ¢. Let d(x) = ¢|x|~ " *®exp { [I*! (e(y)/y) dy}
where  L(x) = A(|x])exp { [ (e(»)/y)dy} and lim},|, A(|x) =C, 0<C < 0.
By Theorem 9.1 of Chapter 8, [4], lim,_, _, ([~ d(x)dx/F(r) = 1/« so as a con-
sequence of Remark 1 we can assume that for all x smaller than some r,, F(x) has a
density, d(x), with the property that d(x) itself is absolutely continuous and mono-
tone. Then

|§% 0 €| x |dF(x)| < [[2 0 €™ [2 |y dy dF(x)| £ 211 -1 €| x|dF ()]
HI2M e[ - dy dF G+ |2 7 e [T dy d(x) dx|.

The first two terms on the extreme right in the above inequality can be easily
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bounded in the manner required in (3.8). To handle the third term we observe that
[ d (x)dx [he™do = [y e [y d'(x) dx do = J% 2 €™ (d(v)— d(M)) dvand hence
|2 €™ d(v)dv| £ 21|71 d(M)+2 |t| L d'(x)dx = 2]t| " d(p).

Then
[zl e 2] dy d(x) dx| < [} e d(x)dx|dy < 2]t 7" 2 T d(y) dy.
This last estimate shows that for fixed 6 > 0

limp e[Sy xdF(x) = [2 . e xdF(x) uniformlyin ¢ for 1] =6

and hence justifies the differentiation under the integral sign as well as proves (3.8).
Integrating by parts in (3.7) shows that (3.7) will be satisfied if

lim Supy-. 4 o | lim,; g Y i1 [ (= DF (0" (D' ()= ¢* ' ()@'(1)) dt|
(3.9) — 1 $UPy.. 4o [limy 1 (= (@' (N1 = ()"
—@'()(1—r@(®) 1) dt| < o0
where ji,(—t) is such that (d/dt)ii, = p,. [i, is bounded in ¢ for fixed b and
lo'(1—re)™ ' =¢'(1—r)~!| = ' 2(j(z+_) L—)(rl((f/f@; 7o)
(1=)(F(e")) +r[(F(@")) U =)+ F(0T)¢']]|
(1=re)(1—ro) ’

so that we may take the limit on  under the integral. Applying (2.6) and the lemmas
of Section 2 together with the estimate of (3.8) yields (3.7) and finishes the proof of
the theorem.

2|

4. Examples.

Example 4.1. We define a sequence of independent identically distributed random
variables, {X,}, by specifying ¢*(f) and @~ (t). 207 (r) = [Z%e™|x["Fdx+ 1.
20%(t) =[Te"d(1—1/xIn’* x)+(1—e” Yexp[—2 eit/(e—1)]+1. Then

I+ (1)) = [M- (sin (xt) — xt) dF * (x) = [ -1 xt d(1— 1/x In® x) dx
+ [ -ssin (xt) d(1 - 1/xIn*x)
= h(t)+t/lnt+0(t/In* t)
where 0 < t < 1 and ¢~ 2h(t)e L,(0, &) for every ¢ > 0. Also for ¢ > 0,
1=~ (1) = BP0, (1—®) |x| Fdx—[2, (1—e™) |x| Fdx] = K +0(H)].
Combining the above relations and (3.6) with the fact that for 0 <e <1

tcos Nt—1 [[esinNt |
lim | ———~dt=+c and limsup dt| < +
o tint Noow |Jo tInt !

N—-ow
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gives, for this example E(N) = + oo despite the fact that for x < —4,
F(x)=|x|™* and E((X,;*)*) <o where a=4%.

Example 4.2. Let {X,} be a sequence of independent identically distributed
random variables with P(X; £ x) = |x|*In|x| for all sufficiently negative x and
with P(X; £ x) = 1—x"* for all sufficiently large x where 0 <a <1. E((X;%)*/
LX;")) = E(X;Y)*In(X, %)) = + oo so that M = + o0 and N = + o0 a.s. Hence
P(limsup,_, , S, = +o0) = 1. However, lim,_, , P(S, = 0) = 0. Tosee thislet B(n) =
(nfo)"*(In () ) 1% lim, , 4 o P(X; £ —X)/P(|Xy| 2 x) = 1 while lim, _, , ,, P(X; 2 x)/
P(|X,| 2 x) = 0 and therefore by Theorem 1 of [10], (B(n))™' Y% X, converges
in distribution to a stable law of index o with support (— o0, 0]. From this comes
lim,,, P((B(n))™'S, 2 0) = lim, ., P(S, = 0) = 0.
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