FLUCTUATIONS WHEN $E(|X_1|) = \infty^1$

By John A. Williamson

University of Colorado

1. Introduction. Let $\{X_n\}$ be a sequence of independent identically distributed random variables. Set $S_n = \sum_{k=1}^n X_k$ and $S_0 \equiv 0$. We define the two random variables, $N(\omega)$ and $M(\omega)$, by $N(\omega) = \sum_{n=0}^{\infty} I_{\{\omega: S_n(\omega) \ge 0\}}$ and $M(\omega) = \sup_{n \ge 0} \{S_n(\omega)\}$.

It is the purpose of this paper to study the problem of the finiteness of N, M, E(N), and E(M) in the case when $E(|X_1|) = \infty$. We obtain results which parallel known results for the case when $E(X_1)$ is finite and negative. In [7] it is shown that if $O > E(X_1) > -\infty$ and if k is a positive integer that $E(M^k) < \infty$ if and only if $E((X_1^+)^{k+1}) < \infty$. This difference of unity between the order of these moments appears as the difference between α and $\alpha+1$ in our results. If $0 > E(X_1) > -\infty$ then it can be deduced from [3] and [6] and a truncation argument that $E((X_1^+)^2) < \infty$ if and only if $E(N) = \sum_{n=0}^{\infty} P(S_n \ge 0) < \infty$. The fact that $E(N) < \infty$ implies $E((X_1^+)^2) < \infty$ when $E(\overline{X_1})$ is finite and negative, can also be obtained from Theorem 7 of [8] by setting l = 2. This ratio of 1 to 2 in the order of these moments appears as the ratio of α to 2α in our results and suggests conjectures concerning the existence of higher moments of N and ${X_1}^+$. In all that follows, $F(x) = P(X_1 \le x)$. All slowly varying functions, L, are assumed to have been defined so that L(x) = L(-x).

PROPOSITION 1. Assume there exists $x_0 < 0$, a constant α satisfying $0 < \alpha < 1$, and a function L slowly varying at ∞ , such that for all $x \leq x_0$, $L(x)/|x|^{\alpha}$ is monotone and $F(x) \ge L(x)/|x|^{\alpha}$. Then:

- (i) $E((X_1^+)^{\alpha}/L(X_1^+)) < \infty$ implies both N and M finite a.s.;
- (ii) If $\alpha \neq \frac{1}{2}$, $E((X_1^+)^{2\alpha}/L^2(X_1^+)) < \infty$ implies $E(N) < \infty$; (iii) $E((X_1^+)^{1+\alpha}/L(X_1^+)) < \infty$ implies $E(M) < \infty$.

Proposition 2. Assume there exists $x_0 < 0$, a constant α satisfying $0 < \alpha < 1$, and a function L slowly varying at ∞ , such that for all $x \leq x_0$, $L(x)/|x|^{\alpha}$ is monotone and $F(x) \leq L(x)/|x|^{\alpha}$. Then:

- (i) Either N or M finite a.s. (hence both) implies $E((X_1^+)^{\alpha}/L(X_1^+)) < \infty$;
- (ii) $E(N) < \infty$ implies $E((X_1^+)^{2\alpha}/L^2(X_1^+)) < \infty$;
- (iii) $E(M) < \infty$ implies $E((X_1^+)^{\alpha+1}/L(X_1^+)) < \infty$.

REMARK 1. If F and G are probability distribution functions with $F \subseteq G$ for all x then by induction $F^{n*} \leq G^{n*}$ for all x and all n. $L(x)/|x|^{\alpha}$ which is assumed monotone for $x \le x_0 < 0$ can be pieced together with F to form a probability

Received May 5, 1969.

¹ Research supported in part by NSF grant GP8890.

distribution function G, satisfying $G \subseteq F$ in Proposition 1 and $G \supseteq F$ in Proposition 2. Forming the key series

$$\sum_{k=1}^{\infty} k^{-1} P(S_k > 0), \qquad \sum_{k=1}^{\infty} P(S_k > 0), \qquad \text{and}$$

$$\sum_{k=1}^{\infty} k^{-1} \int_0^{\infty} x \, dP(S_k \le x) = \sum_{k=1}^{\infty} k^{-1} \int_0^{\infty} P(S_k > x) \, dx$$

first with F and then with G shows that the corresponding series satisfy an inequality opposite to that satisfied by F and G. Hence to prove the previous propositions it is enough to prove the following:

THEOREM. If for x < 0, $F(x) = L(x)/|x|^{\alpha}$ where $0 < \alpha < 1$ and L varies slowly at ∞ , then:

- (i) Either N or M finite a.s. (hence both) if and only if $E((X_1^+)^{\alpha}/L(X_1^+) < \infty$;
- (ii) $E(N) < \infty$ if and only if $E((X_1^+)^{2\alpha}/L^2(X_1^+)) < \infty$ provided that $\alpha \neq 1/2$.
- (iii) $E(M) < \infty$ if and only if $E(X_1^+)^{\alpha+1}/L(X_1^+) < \infty$.

Since L is positive, (a part of the definition of slow variation) and since $L(x)/|x|^{\alpha}$ is monotone $\int_{(X_1^+ \le b)} (X_1^+)^{\gamma}/L(X_1^+) dP$ is finite for each real b and $\gamma = \alpha$, 2α , and $\alpha + 1$. The conditions in (i), (ii), and (iii) involving X_1^+ and $L(X_1^+)$ are, therefore, only conditions on the behavior of 1 - F at $+\infty$. On the other hand, our basic assumption in the theorem is a restriction on the behavior of F only at $-\infty$.

The proof of this theorem, which is found in Section 3, contains the proof of (ii) of Proposition 2 for the case $\alpha=\frac{1}{2}$. The fact that this $\alpha=\frac{1}{2}$ singularity is not removable is made clear in Example 4.1 of Section 4. For this example $F(x)=|x|^{-\frac{1}{2}}$ for x<-4, and $E((X_1^+)^{2/2})<\infty$, but $E(N)=\infty$. Example 4.2 shows it is possible to have both $\lim_{n\to\infty} P(S_n\geq 0)=0$ and $P(\limsup_{n\to\infty} S_n=+\infty)=1$. In fact it shows that for arbitrarily large Γ there exists an example depending on Γ for which both $\lim_{n\to\infty} P(S_n\geq -n^{\Gamma})=0$ and $P(\limsup_{n\to\infty} S_n=+\infty)=1$.

We mention briefly some application. First, let $H(x) = \sum_{n=0}^{\infty} P[S_n \leq x)$. In the case when $E(|X_1|) = \infty$, our results applied to the reversed random walk give a solution to the problem, when is the renewal function, H(x), finite for all x, or equivalently, for the random walk, $\{S_n, n \geq 0\}$, when is the expected time spent in the half-line, $(-\infty, x]$, finite for all x. Second, in the case $F(x) = L(x)/|x|^{\alpha}$ for x < 0, $0 < \alpha < 1$, and L slowly varying at ∞ , (i) of the theorem gives a necessary and sufficient condition for $P\{\limsup_{n\to\infty} S_n = -\infty\} = 1$. In [2] a condition on $E(\exp\{itX_1\})$ is shown to be necessary and sufficient for this type of strong law. However, interpreting the result of [2] in terms of a condition on F appears difficult. Our result would seem to lead to the conjecture; $P(\limsup_{n\to\infty} S_n = -\infty) = 1$ if and only if $E(1/F(-X_1^+)) < \infty$. Third, if $\tau(\omega)$ is defined by $\tau(\omega) = \min\{n: S_n(\omega) = M(\omega)\}$ then $E(N) = E(\tau)$. To see this, apply the monotone convergence theorem to the conclusion of Problem 7 of Chapter 4 [9]. For queuing theory quantities related to M the reader should look at Problem 11 of Chapter 4 [9].

We make several references to [4] and to [9], even though in most cases, these books are not the primary sources for the results referred to. However, these books do contain a complete bibliography. Actually [9] only discusses the lattice case, but

as is pointed out in Problem 13 of Chapter 4 [9], the results we need here are true in the non-lattice case as well. In proving the implications of parts (ii) and (iii) of Proposition 2 we have made use of techniques first developed in [1] and [3].

2. Preliminary notation and lemmas. In the case when $E(X_1^+) = \infty$ we define characteristic functions $\varphi^+(t)$ and $\varphi^-(t)$ by

(2.1)
$$\varphi^{+}(t) = \int_{0^{+}}^{\infty} e^{itx} dF(x) + F(0),$$

$$\varphi^{-}(t) = \int_{-\infty}^{0^{+}} e^{itx} dF(x) + 1 - F(0).$$

If $E(X_1^+) < \infty$ then we define $\varphi^+(t)$ in a way which gives a 0 mean for the probability distribution associated with φ^+ . Let $a = \inf\{y: \int_{y^+}^\infty x \, dF(x) \ge 0\}$. $a > -\infty$ because $E[X_1^-] = \infty$. If $F(a) > F(a^-)$, choose c, $F(a) - F(a^-) \ge c \ge 0$, such that $\int_{a^+}^\infty x \, dF(x) + ca = 0$. Then define φ^+ and φ^- by

(2.2)
$$\varphi^{+}(t) = \int_{a^{+}}^{\infty} e^{itx} dF(x) + C e^{ita} + F(a) - c,$$
$$\varphi^{-}(t) = \int_{-\infty}^{a^{-}} e^{itx} dF(x) + (F(a) - F(a^{-}) - c) e^{ita} + 1 - F(a) + c$$

throughout the rest of this paper, whenever $E(X_1^+) < \infty$ is part of what is being assumed, the definition in (2.2) is the one which is to be used. Otherwise (2.1) is to be used. In either case, $\varphi^+(t) + \varphi^-(t) = E(e^{itX_1}) + 1 = \varphi(t) + 1$. F^+ and F^- will always be defined by $\varphi^+(t) = \int e^{itx} dF^+(x)$ and $\varphi^-(t) = \int e^{itx} dF^-(x)$. The two cases are treated separately, because in what follows it will be necessary when $E(X_1^+) < \infty$ to write $1 - \varphi^+(t)$ as $\int (1 + itx - e^{itx}) dF^+(x)$ in order that certain standard estimates can be made. The reader should note that when $E(X_1^+) < \infty$, $P(X_1^+ \le x)$ is not the same as $F^+(x)$. Next define $\tilde{\varphi}(t)$ by

(2.3)
$$\tilde{\varphi}(t) = \varphi^{+}(-t) + \varphi^{-}(t) - 1.$$

 $\tilde{\varphi}(t)$ is the characteristic function of a probability distribution, $\tilde{F}(x)$, with the property that there exists a finite positive constant, r, for which $\tilde{F}(r) = 1$. Consequently we have:

LEMMA 1. If $E(|X_1^-|) = \infty$, if \tilde{F} is defined by $\int e^{itx} d\tilde{F}(x) = \tilde{\varphi}(t)$ as in (2.3), and if \tilde{N} and \tilde{M} are defined for \tilde{F} as in Section 1 then \tilde{N} and \tilde{M} are finite a.s. and $E(\tilde{N})$ and $E(\tilde{M})$ are both finite.

PROOF. If $P(\widetilde{X}_1 \leq x) = \widetilde{F}(x)$ then it is possible to truncate \widetilde{X}_1 from below in such a way that the truncated random variable, $\widetilde{X}_1{}^t$, has a negative mean. For the truncated process we have $E(\widetilde{N}^t) < \infty$ and $E(\widetilde{M}^t) < \infty$ and $\widetilde{N}^t \geq \widetilde{N}$ a.s. and $\widetilde{M}^t \geq \widetilde{M}$ a.s., and this proves the lemma.

REMARK 2. Given any probability distribution, F, there exist probability distributions, D(x) and U(x), with the following properties:

- (i) $D(x) \le F(x) \le U(x)$ for all x;
- (ii) D(x) = F(x) = U(x) for all x such that |x| is sufficiently large;
- (iii) D(x) and U(x) each have an absolutely continuous component.

It is clear from looking at the graph of F that such D and U exist. This fact when combined with the contents of Remark 1 makes it possible to assume from this point on that F has an absolutely continuous component. Therefore, $\varphi(t)$ and $\tilde{\varphi}(t)$ will always be bounded away from 1 on all sets where |t| is bounded away from 0.

LEMMA 2. Let $F^+(x)$ be such that $\phi^+(t) = \int e^{itx} dF^+(x)$. Assume that

$$\int (|x|^{\gamma}/L(x)) dF^{+}(x) < \infty$$

where L is slowly varying and positive, where $L(x)/x^{\gamma}$ is nonincreasing on $(0, +\infty)$, and where $0 < \gamma < 1$ or $1 < \gamma < 2$. Then $|1-\phi^+(t)|/[L(1/t)|t|^{\gamma+1}]$ is integrable on every bounded interval, $[-\delta, \delta]$.

PROOF. It is enough to prove the lemma for $\delta = 1$. For $0 < \gamma < 1$ we have

$$\int_{0}^{1} \int_{a^{-}}^{\infty} \left[\frac{\left| 1 - e^{itx} \right| dF^{+}(x)}{L(1/t) \left| t \right|^{\gamma + 1}} \right] dt \le \int_{0}^{1} \int_{a^{-}}^{1} \left[\frac{\left| x \right| dF^{+}(x)}{L(1/t) \left| t \right|^{\gamma}} \right] dt + \int_{1}^{\infty} \int_{0}^{1/x} \left[\frac{(dt)x dF^{+}(x)}{L(1/t)t^{\gamma}} \right] + \int_{1}^{\infty} \int_{1/x}^{1} \left[\frac{2dt dF^{+}(x)}{L(1/t)t^{\gamma + 1}} \right].$$

The first integral on the right in this inequality is finite because $\gamma < 1$ and L is slowly varying. In the second and third integrals let v = 1/t. $x \int_x^\infty (v^{\gamma-2} dv/L(v))$ and $\int_1^x (v^{\gamma-1} dv/L(v))$ are both asymptotic to a constant times $x^{\gamma}/L(x)$ by Theorem 9.1 of Chapter 8 [4]. This completes the proof for $\gamma < 1$. If $1 < \gamma < 2$, write $1 - \varphi^+(t) = \int (1 + itx - e^{itx}) dF^+(x)$. Break up the integral as before, bounding $|1 + itx - e^{itx}|$ by a constant times t^2x^2 over the region $0 \le t \le 1/x$ and by 2tx over the region $1/x \le t < \infty$.

The next lemma we require appears as 3.23 in [5].

Garsia–Lamperti Lemma. Let G(x) be a probability distribution with G(0) = 1 and $G(x) = |x|^{-\alpha}L(x)$ where L is slowly varying and $0 < \alpha < 1$. Then

$$\lim_{t \downarrow 0} \left[\frac{1 - \int e^{itx} \, dG(x)}{L(1/t) \, |t|^{\alpha}} \right] = (i) \int_{-\infty}^{0} e^{iy} \, |y|^{-\alpha} \, dy \quad and \quad \lim_{t \uparrow 0} \left[\frac{1 - \int e^{itx} \, dG(x)}{L(1/t) \, |t|^{\alpha}} \right] = \bar{I}$$

where \bar{I} is the conjugate of $(i)\int_{-\infty}^{0} e^{iy} |y|^{-\alpha} dF(x)$.

LEMMA 3. Let $F(x) = L(x)/|x|^{\alpha}$ for x < 0 as defined in the statement of the theorem and let $F^+(x)$ be defined by $\varphi^+(t) = \int e^{itx} dF^+(x)$. If $\int (|x|^{\alpha}/L(x)) dF^+(x) < \infty$ then $\lim_{t\to 0} [1-\varphi^+(t)]/[t|^{\alpha}L(1/t)] = 0$.

PROOF. We consider only $\int_0^\infty (1 - e^{itx}) dF^+(x)$. If a < 0 the integral over [a, 0] is cared for by $|1 - e^{itx}| \le |tx|$. If $M(\alpha) = \int_0^\infty (|x|^\alpha / L(x)) dF^+(x)$ then for every y > 0 and $t \ne 0$

(2.4)
$$M(\alpha) \ge \int_{y/|t|}^{\infty} (|x|^{\alpha}/L(x)) dF^{+}(x)$$
$$\ge \left[(y/|t|)^{\alpha}/L(y/|t|) \right] \left[1 - F^{+}(y/|t|) \right].$$

Combining (2.4) with an integration by parts and the fact that L is slowly varying gives for fixed $\varepsilon > 0$

$$|\limsup_{t\to 0} \left| \int_0^{\varepsilon/|t|} \frac{(1-e^{itx}) dF^+(x)}{|t|^{\alpha} L(1/t)} \right| \leq \limsup_{t\to 0} \frac{\left|1-e^{i\varepsilon t/|t|}\right| L(\varepsilon/t) M(\alpha)}{\varepsilon^{\alpha} L(1/t)}$$

$$+ \limsup_{t\to 0} \left|t\right| \int_0^{\varepsilon/|t|} \frac{(1-F^+(x)) dx}{|t|^{\alpha} L(1/t)}$$

$$\leq \varepsilon^{1-\alpha} M(\alpha) + \limsup_{t\to 0} \int_0^{\varepsilon} \frac{M(\alpha) L(y/t) dy}{y^{\alpha} L(1/t)}$$

$$= \varepsilon^{1-\alpha} M(\alpha) (1+1/(1-\alpha)).$$

The justification for taking the limit under the integral can be found in the proof of 3.23, [5]. Choose and fix $\varepsilon > 0$ so that the extreme right side of (2.5) is small. For arbitrarily small $\delta > 0$ we have for all sufficiently small |t|, $\delta \ge \int_{\varepsilon/|t|}^{\infty} (x^{\alpha}/L(x)) dF^{+}(x)$ and hence

$$\limsup_{t\to 0} \left| \int_{\varepsilon/|t|}^{\infty} \frac{(1-e^{itx}) dF^{+}(x)}{|t|^{\alpha} L(1/t)} \right| \leq \limsup_{t\to 0} \left[\delta L(\varepsilon/t) / (\varepsilon^{\alpha} L(1/t)) \right] = \delta \varepsilon^{-\alpha}$$

This completes the proof of the lemma.

In the proof of the theorem, approximations to $\int_0^b dP(S_n \le x)$ and $\int_0^b x \, dP(S_n \le x)$ will be required. They will take the form $\int g_b(x) \, dP(S_n \le x)$ and $\int m_b(x) \, dP(S_n \le x)$ where g_b and m_b are defined in the following way, $g_b = 1$ on [0, b] and $g_b \equiv 0$ on $(-\infty, -1] \cup [b+1, +\infty)$. g_b goes monotonically to 0 on [-1, 0] and [b, b+1] in such a way that both g_b' and g_b'' are continuous for all x. $m_b(x)$ is most easily defined in terms of $m_b'(x)$.

$$m_b'(x) = 1$$
 for $1 \le x \le b$
 $= -(3b/8)(x-b)^2 + 1$ for $b \le x \le b + 1$
 $= (3b/8)(x-b-2)^2 + 1 - 3b/4$ for $b+1 \le x \le b+3$
 $= -(3b/8)(x-b-4)^2 + 1$ for $b+3 \le x \le b+4$
 $= 0$ for $x \le \frac{1}{2}$ and $x \ge b+5$.

 $m_b{'}$ goes continuously from 0 to 1 (respectively 1 to 0) on $[\frac{1}{2}, 1]$ and [b+4, b+5] in such a way that $m_b{''}$ is continuous for all x and in such a way that $\int_{\frac{1}{2}}^1 m_b{'}(x) \, dx = 1$, $\int_{b+4}^{b+4} m_b{'}(x) \, dx \ge -4$ for all $4 \le y \le 5$, and $\int_{b+4}^{b+5} m_b{'}(x) \, dx = -4$. Let $m_b(x) = \int_{-\infty}^x m_b{'}(y) \, dy$. Then $\int_0^b dP(S_n \le x) \le \int g_b(x) \, dP(S_n \le x)$ and $\int_1^b x \, dP(S_n \le x) \le \int m_b(x) \, dP(S_n \le x)$. The m_b approximation does not necessarily overestimate if we include the integral from 0 to 1. However, in all that follows $\sum_{n=1}^\infty P(S_n \in [0,1]) < \infty$ so that it does not matter.

Next let $\gamma_b(t) = \int e^{itx} g_b(x) dx$, $\mu_b(t) = \int e^{itx} m_b(x) dx$, and $\bar{\mu}_b(t) = \int [e^{itx} m_b(x)/(ix)] dx$. Integrating by parts once gives:

There exists \overline{C} independent of b such that for all t,

(2.6)
$$|\gamma_b(-t)| \le \overline{C} |t|^{-1}$$
 and $|\bar{\mu}_b(-t)| \le \overline{C} |t|^{-1}$.

Two integrations by parts gives:

There exists C independent of b such that for all t,

$$(2.7) \quad |\gamma_b(-t)| \le C|t|^{-2}, \qquad |\bar{\mu}_b(-t)| \le C|t|^{-2}, \quad \text{and} \quad |\mu_b(-t)| \le Cb|t|^{-2}.$$

If $\{V_k\}$ is a sequence of independent identically distributed random variables with $\int e^{itx} dP(V_k \leq x) = \varphi^-(t)$ and if $\{B(n)\}$ is chosen so that $\lim_{n\to\infty} (nF(-B(n))) = 1$, then $(B(n))^{-1}\sum_{k=1}^n V_k$ converges in distribution to a non-degenerate stable law supported on $(-\infty, 0]$ and with index α . (See Section 8, Chapter 9 of [4]). From the Karamata characterization of slowly varying functions, L, (See the corollary in Section 9, Chapter 8, [4]), we have $L(x) = A(x) \exp\{\int_0^x (\varepsilon(y)/y) \, dy\}$ where $\varepsilon(x) \to 0$ and $A(x) \to C$, $0 < C < \infty$, as $x \to +\infty$. Let $W(x) = C |x|^{-\alpha} \exp\{\int_0^{|x|} (\varepsilon(y)/y) \, dy\}$; then for all sufficiently large |x|, W(x) is strictly monotone. In the following pages B(n) will always be chosen by the formula $B(n) = W^{-1}(1/n)$ where the positive branch of W^{-1} is to be used.

LEMMA 4. If X is a random variable and A any positive constant then:

$$(2.8) \qquad \sum_{n=1}^{\infty} nP(X \ge AB(n)) < \infty \quad implies \quad E((X^+)^{2\alpha}/L^2(X^+)) < \infty;$$

$$(2.9) \quad \sum_{n=1}^{\infty} B(n)P(X \ge AB(n)) < \infty \quad implies \quad E((X^+)^{1+\alpha}/L(X^+)) < \infty.$$

PROOF. For all sufficiently large n, $P(X \ge AB(n)) = P(W(X^+/A) \le 1/n) = P(1/W(X^+/A) \ge n)$. Therefore

$$\sum_{n=1}^{\infty} nP(X \ge AB(n)) < \infty \quad \text{implies} \quad E((1/W(X^+/A))^2) < \infty$$

which proves (2.8). From Lemma 2-A, [11], $B(x) = W^{-1}(1/x) = x^{1/\alpha}J(x)$ where J is slowly varying at $+\infty$. From Theorem 9.1, Chapter 8, [4], $f(x) = \int_1^x y^{1/\alpha}J(y)\,dy$ is asymptotic to $\alpha(1+\alpha)^{-1}x^{1+1/\alpha}J(x)$. Hence $\sum_{n=1}^{\infty}B(n)P(X\geq AB(n))<\infty$ implies $\int_1^\infty x^{1/\alpha}J(x)P(1/W(X^+/A)\geq x)\,dx<\infty$ which implies $\int_1^\infty x^{1+1/\alpha}J(x)\,dP(1/W(X^+/A)\leq x)<\infty$ which finally implies $E(W^{-1}(W(X^+/A))/W(X^+/A))<\infty$. This proves (2.9).

3. Proof of the theorem. From P19.2, [9], (i) is equivalent to the statement that $\sum_{k=1}^{\infty} k^{-1} P(S_k > 0) < \infty$ if and only if $E((X_1^+)^{\alpha}/L(X_1^+)) < \infty$. We first assume that the moment is finite. The probability distribution associated with $\tilde{\varphi}$ has support $(-\infty, 0]$ and hence we clearly have

$$\begin{split} \lim_{b \to +\infty} \sum_{k=1}^{\infty} k^{-1} \int g_b(x) dP(\tilde{S}_k \leq x) \\ &= \lim_{b \to +\infty} \lim_{r \uparrow 1} \sum_{k=1}^{\infty} (2\pi)^{-1} \int \gamma_b(-t) r^k \tilde{\varphi}^k(t) k^{-1} dt \\ &= \lim_{b \to +\infty} \lim_{r \uparrow 1} (2\pi)^{-1} \int [-\gamma_b(-t) \ln(1 - r\tilde{\varphi}(t))] dt \\ &= \lim_{b \to +\infty} (2\pi)^{-1} \int [-\gamma_b(-t) \ln(1 - \tilde{\varphi}(t))] dt < \infty. \end{split}$$

In the above expression, and in the remainder of this paper, to justify taking the limit on r under the integral, write

$$\left|\ln\left(1-r\varphi(t)\right)\right| = \left|1-r\varphi(t)\right| \left|\ln\left(1-r\varphi(t)\right)\right| \left|1-r\varphi(t)\right|^{-1}.$$

yln y is bounded near 0;

$$\left|1-r\varphi(t)\right|^{-1} \leq 1/\Re(1-\varphi^-(t)); \qquad \Re(1-\varphi^-(t)) \sim \Re(I)L(1/t)|t|^{\alpha}$$

by the Garsia-Lamperti lemma; $|\gamma_b(-t)| \le C|t|^{-2}$ by (2.7); $\alpha < 1$ and L is slowly varying. Hence the dominated convergence theorem is applicable. Therefore, to show that the series converges, we need only show that

$$\lim_{h \to +\infty} |(2\pi)^{-1} [\gamma_h(-t) [\ln(1-\tilde{\varphi}(t)) - \ln(1-\varphi(t))] dt| < \infty.$$

From Lemma 3, the identity $1-\varphi(t)=1-\varphi^+(t)+1-\varphi^-(t)$, and the Garsia-Lamperti lemma we have that there exist positive constants, C and h, such that

$$\left| \int_{-h}^{h} \gamma_{b}(-t) \ln \left(\frac{1 - \tilde{\varphi}(t)}{1 - \varphi(t)} \right) dt \right| \leq \left| \int_{-h}^{h} \gamma_{b}(-t) \ln \left(1 + \frac{2\mathscr{I}(\varphi^{+}(t))}{1 - \varphi(t)} \right) dt \right|$$

$$\leq c \int_{-h}^{h} \left| \gamma_{b}(-t) \right| |\mathscr{I}(\varphi^{+}(t))| |1 - \varphi(t)|^{-1} dt.$$

The integrability of $|\mathscr{I}(\varphi^+(t))|/[L(1/t)|t|^{1+\alpha}]$ on [-h, h] which is guaranteed by Lemma 2 together with the estimate $|\gamma_h(t)| \leq \overline{C}|t|^{-1}$ of (2.6) then gives

$$\lim \sup_{n \to +\infty} \left| \int_{-h}^{h} \gamma_b(-t) \ln \left(\frac{1 - \tilde{\varphi}(t)}{1 - \varphi(t)} \right) dt \right| < \infty.$$

The estimate $|\gamma_b(-t)| \le C|t|^{-2}$ of (2.7) takes care of the integration on $\{t: |t| \ge h\}$ and completes the proof of the fact that the existence of the moment implies the convergence of the series.

Next assume $\sum_{k=1}^{\infty} k^{-1} P(S_k > 0) < \infty$. Then

$$\lim_{b\to\infty} (2\pi)^{-1} \int [-\gamma_b(-t) \ln(1-\varphi(t))] dt < \infty.$$

We can write

$$\ln(1-\varphi^+(t)\varphi^-(t)) - \ln(1-\varphi(t)) = \ln(1-(1-\varphi^+(t))(1-\varphi^-(t))/(1-\varphi(t)))$$

so that if it can be shown that

$$(3.1) \qquad \lim \sup_{b \to \infty} \left| \int \gamma_b(-t) \ln \left(1 - \frac{(1 - \varphi^+(t))(1 - \varphi^-(t))}{1 - \varphi(t)} \right) dt \right| < \infty$$

then it will be possible to conclude that

(3.2)
$$\sum_{k=1}^{\infty} k^{-1} P(\sum_{n=1}^{k} (U_n + V_n) > 0) < \infty$$

where $U_1, V_1, U_2, V_2, \cdots$ are mutually independent with $E(e^{itU_n}) = \varphi^+(t)$ and $E(e^{itV_n}) = \varphi^-(t)$ for all n. The fact that $\left| (1 - \varphi^+(t))(1 - \varphi^-(t))/(1 - \varphi(t)) \right| \le \left| (1 - \varphi^+(t))(1 - \varphi^-(t))/(\Re(1 - \varphi^-(t))) \right|$ means all we need actually look at is

$$\limsup_{b\to\infty} \int_{-h}^{h} |\gamma_b(-t)| |(1-\varphi^+(t))(1-\varphi^-(t))| (1-\varphi(t))| dt$$

where h > 0 is fixed. Before attacking this last expression we need to establish that

 $E(({X_1}^+)^{\alpha/2}) < \infty$. We have $E(|{X_1}^-|^{\alpha/2}) < \infty$ as a direct consequence of our main assumption. Hence from Theorem 1 of [1] for any $\varepsilon > 0$,

$$\sum_{k=1}^{\infty} k^{-1} P(\sum_{n=1}^{k} X_n^- > \varepsilon k^{2/\alpha}) < \infty.$$

Then $\sum_{k=1}^{\infty} k^{-1} P(|S_k| > \varepsilon k^{2/\alpha})$

$$\leq \sum_{k=1}^{\infty} k^{-1} [P(S_k > 0) + P(\sum_{n=1}^{k} X_n^- > \varepsilon k^{2/\alpha}/2)] < \infty,$$

and again applying Theorem 1 of [1] we get that $E(|X_1|^{\alpha/2}) < \infty$. In particular, Lemma 2 is now applicable and hence $|1-\varphi^+(t)|/|t|^{1+\alpha/2} \in \mathcal{L}_1(-h,h)$ and we have (3.1). From (3.2),

(3.3)
$$\infty > \sum_{k=1}^{\infty} k^{-1} P(\sum_{n=1}^{k} (U_n + V_n) > 0)$$

$$\geq \sum_{k=1}^{\infty} k^{-1} P(\sum_{n=1}^{k} V_n > -AB(k)) P(\sum_{k=1}^{n} U_n > AB(k))$$

where A is to be determined. The distribution of $(B(k))^{-1} \sum_{n=1}^{k} V_n$ converges to a stable law of index α and hence A > 0 can be chosen so that $P(\sum_{n=1}^{k} V_n > -AB(k)) \ge \frac{1}{2}$ for all k. Then (3.3) implies that

(3.4)
$$\sum_{k=1}^{\infty} k^{-1} P(\sum_{n=1}^{k} U_n > AB(k)) < \infty.$$

The fact that B(k) is regularly varying with exponent $1/\alpha$ allows us to use the techniques of Theorem 1 of [1]. It must be the case that $\lim_{k\to\infty} P(\left|\sum_{n=1}^k U_n^s\right| > AB(k)) = 0$ and hence that $\lim_{k\to\infty} kP(\left|U_1^s\right| > AB(k)) = 0$ where U_n^s is the symmetrized random variable obtained from U_n . This is enough to get from (3.4) that $\sum_{k=1}^\infty P(\left|U_1^s\right| > AB(k)) < \infty$ which implies $E((\left|U_1^s\right|)^\alpha/L(U_1^s)) < \infty$. Then $E(U_1^\alpha/L(U_1)) < \infty$ and the proof of (i) is complete.

Next we turn to (ii) of the theorem. (ii) is equivalent to the statement that $\sum_{k=0}^{\infty} P(S_k \ge 0) < \infty$ if and only if $E((X_1^+)^{2\alpha}/L^2(X_1^+)) < \infty$ where $\alpha \ne \frac{1}{2}$. First we assume that the series converges. Then

$$\infty > \sum_{k=1}^{\infty} P(S_k \ge 0) \ge \sum_{k=1}^{\infty} \sum_{n=1}^{k} P(X_n \ge AB(k), \qquad X_j < AB(k)$$
 for all $j \ne n, j \le k$,

$$\sum_{j=1, j \neq n}^{k} X_{j} \ge -AB(k) \ge \sum_{k=1}^{\infty} kP(X_{1} \ge AB(k)) \cdot [P(S_{k-1} \ge -AB(k)) - kP(X_{1} \ge AB(k))].$$

From (i) we have $E((X_1^+)^{\alpha}/L(X_1^+)) < \infty$ and hence $\lim_{k \to \infty} kP(X_1 > AB(k)) = 0$. By an argument like that used in the proof of (i), for any fixed large A, $P(S_{k-1} \ge -AB(k))$ is bounded away from 0 uniformly in k. Therefore $E(N) < \infty$ implies $\sum_{k=1}^{\infty} kP(X_1 \ge AB(k)) < \infty$, which in turn implies $E((X_1^+)^{2\alpha}/L^2(X_1^+)) < \infty$ by Lemma 4. The above argument is valid when $\alpha = \frac{1}{2}$, so that (ii) of Proposition 2 has now also been proven.

Now assume $E((X_1^+)^{2\alpha}/L^2(X_1^+)) < \infty$. From an argument like that used in (i) with 0 < r < 1 and $r \uparrow 1$ we find that we will have proven (ii) if we can show that

(3.5)
$$\lim_{b\to\infty} (2\pi)^{-1} \int \gamma_b(-t) (1-\varphi(t))^{-1} dt < \infty.$$

However (3.5) does hold if we replace $\varphi(t)$ by $\tilde{\varphi}(t)$, so that to establish (3.5) it is sufficient to show

(3.6)
$$\lim \sup_{b \to \infty} \left| \int \gamma_b(-t) [(1 - \varphi(t))^{-1} - (1 - \tilde{\varphi}(t))^{-1}] dt \right| < \infty.$$

From Lemma 3, (2.6), the Garsia–Lamperti lemma, and the identities $1-\varphi(t)=1-\varphi^+(t)+1-\varphi^-(t)$ and $1-\tilde{\varphi}(t)=1-\varphi^+(-t)+1-\varphi^-(t)$ we get that for some small h>0, $|\gamma_b(-t)||(1-\varphi(t))^{-1}-(1-\tilde{\varphi}(t))^{-1}| \le 4\bar{C}|\mathcal{I}(\varphi^+(t))|/[|I|^2L^2(1/t)|t|^{2\alpha+1}$ whenever $|t| \le h$. Lemma 2 with (2.7) then gives (3.6) provided $2\alpha \ne 1$. This gives (3.5) and completes the proof of (ii).

In (iii) we begin by assuming $E(M) < \infty$. From part B of P19.2 of [9] we then have $\sum_{k=1}^{\infty} k^{-1} \int_{0}^{\infty} x \, dP(S_k \le x) < \infty$. Therefore

where $A \ge 1$ is to be determined. $E(M) < \infty$ implies $M < \infty$ a.s. and hence by (i) $E((X_1^+)^\alpha/L(X_1^+)) < \infty$, which in turn implies $\lim_{k\to\infty} kP(X_1 \ge 2AB(k)) = 0$ for each fixed A > 0. An argument involving a limit law then gives $P(S_{k-1} \ge -AB(k))$ bounded away from 0 uniformly in k for some large fixed A > 0. Therefore $L(M) < \infty$ implies $\sum_{k=1}^{\infty} B(k)P(X_1 \ge 2AB(k)) < \infty$ and this together with Lemma 4 yields $E((X_1^+)^{\alpha+1}/L(X_1^+)) < \infty$.

Finally we assume that $E((X_1^+)^{\alpha+1}/L(X_1^+)) < \infty$. To show $\sum_{k=1}^{\infty} k^{-1} \cdot \int_0^{\infty} x \, dP(S_k \le x) < \infty$ it is enough to show that

(3.7)
$$\lim \sup_{b \to +\infty} \left| \lim_{r \to 1} \sum_{k=1}^{\infty} k^{-1} \left(\mu_b(-t) r^k(\varphi^k(t) - \tilde{\varphi}^k(t)) \right) dt \right| < \infty.$$

To accomplish this, an integration by parts is required. We will need that $(d/dt)\phi^-(t)$ exists for each $t \neq 0$ and that

(3.8)
$$\left| \frac{d}{dt} \varphi^{-}(t) \right| \leq \rho |t|^{\alpha - 1} L(1/t)$$

where ρ is a constant independent of t. Let $d(x) = c|x|^{-(1+\alpha)} \exp\left\{\int_0^{|x|} (\varepsilon(y)/y) \, dy\right\}$ where $L(x) = A(|x|) \exp\left\{\int_0^{|x|} (\varepsilon(y)/y) \, dy\right\}$ and $\lim_{|x| \to \infty} A(|x|) = C$, $0 < C < \infty$. By Theorem 9.1 of Chapter 8, [4], $\lim_{r \to -\infty} (\int_{-\infty}^r d(x) \, dx/F(r) = 1/\alpha$ so as a consequence of Remark 1 we can assume that for all x smaller than some r_0 , F(x) has a density, d(x), with the property that d(x) itself is absolutely continuous and monotone. Then

$$\begin{split} \left| \int_{-M}^{0} e^{itx} |x| dF(x) \right| &\leq \left| \int_{-M}^{0} e^{itx} \int_{-|x|}^{0} dy \, dF(x) \right| \leq \left| \int_{-|t|-1}^{0} e^{itx} |x| dF(x) \right| \\ &+ \left| \int_{-M}^{-|t|-1} e^{itx} \int_{-|t|-1}^{0} dy \, dF(x) \right| + \left| \int_{-M}^{-|t|-1} e^{itx} \int_{-|x|}^{-|t|-1} dy \, d(x) \, dx \right|. \end{split}$$

The first two terms on the extreme right in the above inequality can be easily

bounded in the manner required in (3.8). To handle the third term we observe that $\int_{-M}^{y} d'(x) dx \int_{x}^{y} e^{itv} dv = \int_{-M}^{y} e^{itv} \int_{-M}^{v} d'(x) dx dv = \int_{-M}^{y} e^{itv} (d(v) - d(M)) dv$ and hence

$$\left| \int_{-M}^{y} e^{itv} d(v) dv \right| \le 2 |t|^{-1} d(M) + 2 |t|^{-1} \int_{-M}^{y} d'(x) dx = 2 |t|^{-1} d(y).$$

Then

$$\left| \int_{-M}^{-|t|^{-1}} e^{itx} \int_{-|x|}^{-|t|^{-1}} dy \, d(x) \, dx \right| \le \int_{-M}^{-|t|^{-1}} \left| \int_{-M}^{y} e^{itx} \, d(x) \, dx \right| \, dy \le 2 \left| t \right|^{-1} \int_{-M}^{-|t|^{-1}} d(y) \, dy.$$

This last estimate shows that for fixed $\delta > 0$

$$\lim_{M\to\infty} \int_{-M}^{0} e^{itx} x \, dF(x) = \int_{-\infty}^{0} e^{itx} x \, dF(x)$$
 uniformly in t for $|t| \ge \delta$

and hence justifies the differentiation under the integral sign as well as proves (3.8). Integrating by parts in (3.7) shows that (3.7) will be satisfied if

$$\limsup_{b \to +\infty} \left| \lim_{r \uparrow 1} \sum_{k=1}^{\infty} \int \bar{\mu}_{b}(-t) r^{k}(\varphi^{k-1}(t)\varphi'(t) \dot{-} \tilde{\varphi}^{k-1}(t)\tilde{\varphi}'(t)) dt \right|$$

$$= \lim \sup_{b \to +\infty} \left| \lim_{r \uparrow 1} \int \bar{\mu}_{b}(-t) r(\varphi'(t)(1-r\varphi(t))^{-1} - \tilde{\varphi}'(t)(1-r\tilde{\varphi}(t))^{-1}) dt \right| < \infty$$

where $\bar{\mu}_b(-t)$ is such that $(d/dt)\bar{\mu}_b = \mu_b$. $\bar{\mu}_b$ is bounded in t for fixed b and

$$\begin{aligned} \left| \varphi' (1 - r\varphi)^{-1} - \tilde{\varphi}' (1 - r\tilde{\varphi})^{-1} \right| &= \left| \frac{2(\mathcal{J}(\varphi^+))' - r(\varphi'\tilde{\varphi} - \tilde{\varphi}'\varphi)}{(1 - r\varphi)(1 - r\tilde{\varphi})} \right| \\ &= 2 \left| \frac{(1 - r)(\mathcal{J}(\varphi^+))' + r[(\mathcal{J}(\varphi^+))'(1 - \varphi) + \mathcal{J}(\varphi^+)\varphi']}{(1 - r\varphi)(1 - r\varphi)} \right| \end{aligned}$$

so that we may take the limit on r under the integral. Applying (2.6) and the lemmas of Section 2 together with the estimate of (3.8) yields (3.7) and finishes the proof of the theorem.

4. Examples.

Example 4.1. We define a sequence of independent identically distributed random variables, $\{X_n\}$, by specifying $\varphi^+(t)$ and $\varphi^-(t)$. $2\varphi^-(t) = \int_{-\infty}^{-4} e^{itx} |x|^{-\frac{3}{2}} dx + 1$. $2\varphi^+(t) = \int_e^\infty e^{itx} d(1-1/x \ln^2 x) + (1-e^{-1}) \exp\left[-2 \, eit/(e-1)\right] + 1$. Then

$$\mathcal{J}(2\varphi^{+}(t)) = \int_{-|t|-1}^{|t|-1} (\sin(xt) - xt) dF^{+}(x) - \int_{|t|-1}^{\infty} xt \ d(1 - 1/x \ln^{2} x) dx + \int_{|t|-1}^{\infty} \sin(xt) d(1 - 1/x \ln^{2} x)$$

$$= h(t) + t/\ln t + O(t/\ln^2 t)$$

where 0 < t < 1 and $t^{-2}h(t) \in L_1(0, \varepsilon)$ for every $\varepsilon > 0$. Also for t > 0,

$$1 - \varphi^{-}(t) = (\frac{1}{2})t^{\frac{1}{2}} \left[\int_{-\infty}^{0} (1 - e^{ix}) \left| x \right|^{-\frac{3}{2}} dx - \int_{-rt}^{0} (1 - e^{ix}) \left| x \right|^{-\frac{3}{2}} dx \right] = t^{\frac{1}{2}} \left[K + O(t^{\frac{1}{2}}) \right].$$

Combining the above relations and (3.6) with the fact that for $0 < \varepsilon < 1$

$$\lim_{N\to\infty} \int_0^\varepsilon \frac{\cos Nt - 1}{t \ln t} dt = +\infty \quad \text{and} \quad \limsup_{N\to\infty} \left| \int_0^\varepsilon \frac{\sin Nt}{t \ln t} dt \right| < +\infty$$

gives, for this example $E(N) = +\infty$ despite the fact that for $x \le -4$,

$$F(x) = |x|^{-\alpha}$$
 and $E((X_1^+)^{2\alpha}) < \infty$ where $\alpha = \frac{1}{2}$.

Example 4.2. Let $\{X_n\}$ be a sequence of independent identically distributed random variables with $P(X_1 \leq x) = |x|^{-\alpha} \ln |x|$ for all sufficiently negative x and with $P(X_1 \leq x) = 1 - x^{-\alpha}$ for all sufficiently large x where $0 < \alpha < 1$. $E((X_1^+)^{\alpha}/L(X_1^+)) = E((X_1^+)^{\alpha}/\ln (X_1^+)) = +\infty$ so that $M = +\infty$ and $N = +\infty$ a.s. Hence $P(\limsup_{n \to \infty} S_n = +\infty) = 1$. However, $\lim_{n \to \infty} P(S_n \geq 0) = 0$. To see this let $B(n) = (n/\alpha)^{1/\alpha}(\ln (n))^{1/\alpha}$. $\lim_{x \to +\infty} P(X_1 \leq -x)/P(|X_1| \geq x) = 1$ while $\lim_{x \to +\infty} P(X_1 \geq x)/P(|X_1| \geq x) = 0$ and therefore by Theorem 1 of [10], $(B(n))^{-1} \sum_{k=1}^n X_k$ converges in distribution to a stable law of index α with support $(-\infty, 0]$. From this comes $\lim_{n \to \infty} P((B(n))^{-1} S_n \geq 0) = \lim_{n \to \infty} P(S_n \geq 0) = 0$.

REFERENCES

- [1] BAUM, L. E. and KATZ, M. (1965). Convergence rates in the law of large numbers. *Trans. Amer. Math. Soc.* 120 108–123.
- [2] BINMORE, K. G. and KATZ, M. (1968). A note on the strong law of large numbers. *Bull. Amer. Math. Soc.* 74 941–943.
- [3] ERDÖS, P. (1949). On a theorem of Hsu and Robbins. Ann. Math. Statist. 20 286-291.
- [4] FELLER, W. (1966). An Introduction to Probability Theory and its Applications, 2. Wiley, New York.
- [5] GARSIA, A. and LAMPERTI, J. (1963). A discrete renewal theorem with infinite mean. Comment. Math. Helv. 37 221–234.
- [6] HSU, P. L. and ROBBINS, H. (1947). Complete convergence and the law of large numbers. Proc. Nat. Acad. Sci. 33 25-31.
- [7] KIEFER, J. and WOLFOWITZ, J. (1956). On the characteristics of the general queueing process with applications to random walk. Ann. Math. Statist. 27 147-161.
- [8] SMITH, W. L. (1967). A theorem on functions of characteristic functions and its application to some renewal theoretic random walk problems. *Proc. Fifth Berkeley Symp. Math. Statist. Prob.* Univ. of California Press. 265–309.
- [9] Spitzer, F. (1964). Principles of Random Walk. Van Nostrand, Princeton.
- [10] TAYLOR, S. J. (1967). Sample path properties of a transient stable process. J. Math. Mech. 16 1229–1246.
- [11] WILLIAMSON, J. A. (1968). Random walks and Riesz kernels. Pacific J. Math. 25 393-415.