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1. Summary. We are motivated by Stein’s proof (Stein (1946), Wald (1947),
pages 157-158) of the termination of a sequential probability ratio test in the case
of independent and identically distributed random variables. Extending his ideas
to take certain ‘‘dependencies” into account we examine the rank-order sequential
probability ratio test based on a Lehmann alternative studied in a paper with the
above title by I. R. Savage and the author (1966) (referred to as SS I in the rest of
this paper). We prove that this test terminates with probability one and that the
stopping time has a finite moment generating function under a very mild condition
on the bivariate random variables which resembles the Stein-condition, namely that
a certain random variable V(X,, Y,), defined in (32), is not identically equal to 0.
Finally the asymptotic normality of the logarithm of the likelihood ratio of the
rank order is established using the well-known Chernoff-Savage Theorem.

2. Notation, test procedure and preliminaries. (X, Y,), -+, (X,, Y,), ' are in-
dependently and identically distributed bivariate random variables with a joint
distribution function H(-, ) which has marginal distribution functions F(-) and
G(-). All distribution functions are taken to be right continuous in this paper. We
wish to test the null hypothesis Hy: (X, Y,) are independent, and G = F continuous
against the alternative hypothesis H,: (X, Y,) are independent, and G = F*, with F
continuous where 4 > 0, A # 1 is a known constant. The nth stage of experimenta-
tion yields Z(n) = ((X;, Y,), ", (X,, Y,)), though only the ordered ranks
(sg,°,8,) of (Y{,*-+,Y,) in the pooled sample (X, ', X,, Y,' -+, Y,) are
available for testing. We use the sequential probability ratio test based on
(84, ", s,) which is described later in (2). This test has been studied in our earlier
paper, SS 1.

Let F,(*), F, ("), G,(*) and G, (-) be the (right-continuous) empirical dis-
tribution functions of (Xy, ", X,), (Xps1o' "> Xusr), (Y1, oo, Y) and (Y,upq, 0,
Y,.,), respectively. Let I(x;z) =1 if x £ z, = 0 if x > z. The above empirical dis-
tribution functions may be written in terms of I(x; z) as follows:

F2)=YiI(X;32)in,  F,(z)= Y2 I(X,; 2)fr  ete.

Let W(z) = F(z)+ AG(z), W,(z) = F(2)+ AG,(z) and W, (z) = F, (2)+ AG, (2).
Again, if W(x, y; z) = I(x; z)+ AI(y; z) then W,(z) = Y} W(X,, Y;; z)/n, etc.
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STOPPING TIME OF A RANK-ORDER SPRT 1323

Let L(A4, F,, G,) = Py, (sy,"**,5,)/ Py (81, *,58,). From relation (2) in SST or
directly from Savage (1956, Corollary 7.a.1) we have the basic relation

&) L(4, F,, G,) = A"2n)!|[n*" T[T (W XD W,(Y))].

Let I(n) = log L(4, F,, G,). The rank-order sequential probability ratio test based
on a Lehmann alternative may be described as follows:

‘Take one more observation if a < I(n) < b, accept H,
2) if I(n)<a, reject H, if n)=Zb;n=1,2,""",
where a <0< b are suitable constants.’
The number of states before termination, N, is defined to be
r if a<ln)<b,n=1,"--,r—1 and Kn)=<a or
3) In)=zb for n=r
oo if a<l(n)<b forall n.

Our final aim is to prove that P(N < o0) = 1 and E(e"™") < oo for some positive ¢
under the condition that V(X,, Y,) (defined in (32) and (33)) is not equal to zero
with probability one. The proof is rather long and it runs into several sections. In
Section 3 we describe our generalizations of Stein’s proof (Stein (1946), Wald
(1947) page 157) of the termination of a sequential test. Section 4 and Section £ are
devoted to obtain several inequalities and to estimate several probabilities. Section 6
gathers all these results and proves the main theorem. Section 7 presents a discussion
and a comparison with the result in SS I and contains our best result in the form of
Theorem 6. Section 8 proves the asymptotic normality of /(n), the logarithm of the
likelihood ratio of the ranks.

3. General theorems on the termination of a sequential test. We are familiar
with Stein’s proof (Stein (1946), Wald (1947) page 157) of the termination of the
Wald sequential test based on sums of independent random variables. We give
here three theorems which apply to more general cases of sequential tests.

Let Z(n) be the vector of variables observed up to the nth stage of experimenta-
tion. Let /(n) be a statistic based on Z(n), n = 1, 2, - -. The general sequential test,
ST(; a, b), we are referring to is of the form:

“Take one more observation if a < /(n) < b; stop and decide for or against the
hypothesis if I(n) < a or I(n)=b; n=1,2,--+,” where a <0 < b are fixed con-
stants. The number of stages before termination, N, is r if a < I(n) < b for n =
l,--:,r—land l(n)<aorl(n) = b forn=randis oo if a < I(n) < b for all n.

We shall say that the sequential test terminates and has a finite moment generating
function under P if P(N < c0) = 1 and E(e"™) < oo for some ¢ > 0. (Here E stands
for expectation under P.)

THEOREM 1. Let K = b—a. Suppose that there exists a 0 > 0 and positive integers
mq and k such that

(4) P{l(mk)—I((m—1)k) £ —K|Z((m—1)k)} 2 6
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with probability one for all m = my then the sequential test ST(l; a, b) terminates
and has a moment generating function under P. (Here P(* | *) denotes conditional
probability.)

{(N>@m+nk}={a<ln)<b,n=1,,(m; +r)k}
) < {I[(mk)—I((m—1Dk)> =K, m=m;+1, -, m;+r}
=E(—K;m,r) say.
E(—K; my, 0) will stand for the whole sample space of Z(m k). Let I, denote the
indicator function of E. Now, .
6) P{E(—K; my, 1)} = E{Ig—gm,.r- 1) P{I((my +1)k)=1((m, +r—1)k)
> — K| Z((my+r—1k)}}
< (1—O)P{E(~K; my, r—1)}
from (4). Applying (6) repeatedly and using (5) we have

PROOF. Let m; and r be positive integers with m, = m.

(7 P{N > (m +r)k} < (1-0)
if m; = m,. Putting r = m,; we have, for m; = m,,
8) P{N = 2m k} < (1-6)".

This implies that P(N < o) =1 and E(e'™™) < oo for some positive ¢ > 0. This
completes the proof of Theorem 1.

THEOREM 2. Let K = b—a. Let there exist positive integers mg and k, a number
0 > 0 and events A(mk) and B(mk) defined on the random variables Z(mk) for m =
mqy—1 such that, for m = my,

(9) P{l(mk)—I((m—1Dk) £ —K|Z((m—1)k)} = 0 — P{B(mk)| Z((m —1)k)}
almost everywhere for Z((m— k) in A(m—1)k). Further let there be numbers A,,
Ay, py, py With0Z Ay, A, < 0 and 0 £ py, p, < 1 such that, for m = my,

(10) P{A(mk)} < 4, p,™,  P{B(mK)} < A, p,™

where for any event A, A denotes its complement.
Then, the sequential test ST(l; a, b) terminates and has a finite moment generating
function under P.

PROOF. As in the previous theorem let m,, r be positive integers with m; = m,,.
With the same notation as in Theorem 1
P{E(—K; my, r)} '
= E{Ig—k;my, r- 1)U agmy +r— 10y  Lagomy 40— 1y0)-
“P{i((m,+1)k)—=I((my+r—1k) > —K|Z((m, +r—1Dk)} }
(1) = E{Ig—g;my,r—1)[1 =0+ P{B((m; +1)k)| Z((m, +r—Dk)}1}
+ P(A((my+r—1)k))
S (1=0)P{E(—K; my, r—1)}+P{B((m,+1r)k)} + P{A((m,+r— Dk)}
SU=0P{E(—K;my, r—=1)}+A,p,m* k4 4, p mtr= Dk
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Applying (11) repeatedly,

. r Aszmlk
PIE(=Kimy n} = (1-07+ 537
—P2

+k mik
A !

il —.
1-p,

Putting r = m,, we have for all m; = m,,

mik+k myk
Az p, Aip™

(12) P{N >2km} < (1-0)" + o
—F2

l—p*"

Inequality (12) establishes the theorem.

We:state the following theorem without proof since it is now immediate. The
reason for not stating the previous theorems in this form is that our application
(see Section 6) does not utilize this form of the result.

THEOREM 3. Theorem 1 and Theorem 2 remain valid if in (4) and (9), respectively, the
event {{(mk)—1((m—1)k) < — K} is replaced by the event {|/(mk)—I((m — Dk)| =K}
4. Preliminary inequalities. Going back to the definition of I(n) and (1) and
applying Stirling’s formula we have
(13) I(n) =Y [—log(W(X)W,(Y,))+log4A —2]+(logn)/2+ (log4m)/2+O(1/n).
Let k be a positive integer which we shall choose later, see (43). For any integer
mz2,
I(mk)—I((m—1)k)
= Z;"r:f— e+ [— log (W, (X)W,u(Y))+1og 44 —2]
(14) + Z(lm— Dk [- log (W, X)W, (Y))/ Wom- 1yl X3) Wom- 1Y) )]
+ [log(m/(m—1))/12+0(1/(m—1)k)]
= A+ B +C,i  say.

Let 6>0. Let r be a positive integer. Let A(-, ‘) be any function with
E(h(Xy, Y})) < c0. We now define three events:

(15) A(3; n) = {sup, |[W,(x)— W(x)| < 8}
(16) B(@;n,r)={W(X)) >, W(Y)>0d,i=n+1,-,n+r}, and
(17) C@; h(+,), n) = { Y1 (X, Y)/n—E(h(X,, Y})) < 5}.

Now, on A(6; mk)nB(S; (m—1)k, k)
A=Y - 1yee1 [—log (W XD W,(Y))) +1log 44 —2]
= D tm= 1)kt 1 [—log(W(X)W(Y)))+logdAd—2
—log (W X)W, Y/ W(X )W ( 9]
(18) =2 tm- i+ 1 (—1og (W(X)W(Y))) +log4A -2
—log (1 +(W,u(X;) — W(X,))/W(X)))
A+ (Wu(Y)— W(Y))/W(Y))]
= Z;"n’:—l)k-kl Vi(0; X, Y)
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where
(19) Vi(9; X, Y)) = —log (W(X)W(Y)) +log4A—2
—log (1—(6/W(X)))1—-(8/W(Y))))
if WX;)>96, W({)>é
= —log(W(X)W(Y)))+logdA—2 otherwise.
We now proceed to obtain an inequality for B,,. Note that
(20) log(1+x) = x/(1+x) if x>-—1.
Let x* =x if x20and =0 if x<0; x~ =0 if x<0 and = x if x<0. Let
—1<f<0<oa IfB<x=Za, then
log(14+x) = x"/(1—a)+x~ /(1 +p)

(2 = x/(1+p)+x"[1/(1+a)—1/(1+p)]

= x/(1+B)—x"(a—B)/[(1+a)(1+B)]

2 x/(1+ p)—alo— B)/[(1 +o)(1 + )]
Let ¢ > 0. On A(¢; (m—1)k)

Woid(X) Wom = 10(%) = ((m = D)W= 136(%) + W 131, k(X)) MW 5~ 1(%)
(22) = 1=(1/m)+ Wm- 1y, (XMW _ 13(x))
Z 1=(1/m)+ (W - 1y, l(X)[m(W(x) + $)).
Also  —1/m = =1/m+(W - 1y (X)/m(W(x)+ $)) < —1/m+(1+ A)/m¢. Using
inequality (21) in (22) we have
108 (Wok(X)/ Wi 13(X)) Z = 1(m = 1)+ (Wi - 1) (m = YW () +))
~[(1+ A= $)1+A)(m—1)((m— g+ 1+ A)$]
(23) = (10 = D)= W)= $+ Wi 11, W () + )
—((+A4=¢)1+A/(m =1+ 1+ A)¢)].
Thus on A(¢; (m—1)k)

By = _Z(lm_ D*log [ Wi X)W, ( YD Wm— 16X D) Wom - 16 9]

S Um=1) Y OIW(X )+ b= Wm0 XD (WX )+ ¢)
W (YD) + &= Won— 1y (YD) (W (Y) + )
+2((I+A-9)1+A)/((m=1)d+1+A)¢)]

(24) = (l/k(m_1))Z§ZI1)"Z;”£(m—1)k+l
WX +d—W(X;, Y X))(W(X)+¢)
+(W(Y)+o—W(X;, Y5 Y)(W(Y)+ )
+2((1+A-9)1+A)/((m—1)¢p+ 1+ A)¢)]

= (l/k(m_l))2§zfl)k ;‘ni(m—l)k+1 [V, X, Y X, X))

21+ A-@)1+A)/((m=1)p+ 1+ A)¢)]
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where
(25) V2(¢’ X, Y52, W)
=(W(2)+¢—Wl(x, y; 2))[(W(2)+ )+ (W(w)+ ¢ —W(x, y; w))(W(Ww)+ ¢).

(W(x, y; z) is defined in Section 2). We also put

(26) Vi(¢, x, y; 2) = (W(2)+d—W(x, y; 2))[(W(2)+ ¢)
so that V,(¢, x, y; z, w) = Vi(¢, x, y; 2)+ V3(¢, x, y; w).

Let ¢ > 0 and
(27) C(B9 ¢9 (m_ l)k) = nx,y C(E, V2(¢’ X, Vst ')’ (m_ l)k)

(See (17) for the definition of the elements of the r.h.s.). Thus on A(¢; (m—1)k)N
C(e; ¢, (m—1)k) we have, from (24), that

(28) B, = Z] m-y+1 [J Va(@, X;, Y;; 2)(dF(z)+dG(z))
+e+2((1+A— )1+ A)/((m—=1)p+1+A)p)].

We can now give the final inequality of this section. (14), (18) and (28) yield the
following: on A(¢; (m— Dk)NC(e; ¢, (m—1)k)NA(S; mk)NB(G; (m—1)k, k)

(29) mk)—I((m—1)k) < 3 7E - 1yes1 [V, 65 X, Y))
+e+2(1+A— )1+ A)/((m=1)p+1+A)p)]+ C,u

where ‘

(30)  V(,¢; X, Y)=Vi(0; X, Y)+[Via(e, X, Y} 2)(dF(2) +dG(2)).

Inequality (29) cannot be used directly in our later calculations since we have not
demonstrated that C(e; ¢, (m—1)k) is an event (a measurable set), though it seems
that this would not be difficult to prove this. However, as will be seen in Section 5
(40), we can choose a measurable subset D(e; ¢, (im—1)k) of C(e; ¢, (m—1)k)
which contains a large probability and this result will suffice for our purposes.

Finally we note that as § and ¢ tend to 0

(€2)) Vo, ;X Y) - V(X;, Y))
almost everywhere, where
(32) V(X Y)

W(z)-W(X,Y;; 2)
W(z)

= —log W(X))W(Y;)+logd4A -2+ (dF(z)+dG(z)).
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We can simplify the r.h.s. further:
W(2)-W(X,, Y3 2)

e (dF(2)+dG(z))
_ f(F(z)—I(X,.; D +HAGE = IG2) e o
W(z)
_|F(@)—I(X;; 2)+ G(2) - I(Y}; 2)
—J W) dW(z)
6(2)~1(Y;; 2) F(z2)—I(X}; 2)

= (F(2)+ G(z))log W(z) |°_°oo - _[ log W(z)(dF(z)+dG(z))
—logW(2) |, —log W(2) ¥,

ra-| [FOTIEED

F(z)—-I1(X;; 2)
o O T e

= log W(X )W (Y;)— [ log W(z)(dF(z) +dG(z))
D B f(;(z)—l(yj; z) dF(2)— jF(z)—I(X i 2) dG(z)T .

dG(z)—

W(z) W(z) i
Thus
(33) V(X;, Y)=(A- 1)[J %ﬁdﬂz)
F(z)—-I(X;; z)
where
(34) S(A4, F, G) = —jlog W(z)(dF(z)+dG(z))+logdA—2

= E(—log(W(X)W(Y,))+log4A-2).

5. Exponentially converging estimates of certain probabilities. In this section P
stands for the probability measure induced by the distribution function H(-, -)
Relation (7) of SS I states that for each 6 > 0, there exists a p;(6) < 1 such that

(35) P{A(S; n)} < p5"
for large n. This can also be directly deduced from Sethuraman (1964, Theorem 1)

and can be seen to hold for general distributions Fand G, not necessarily continuous.
Next, for fixed r,

(36) P{B(S;n, 1)} = 1—P{W(X,)> 3, W(Y;) >3} >0 as 8-0.

We now proceed to obtain an estimate of the outer probability measure of
C(e; ¢, n), much on the same lines as Sethuraman (1964). Let

—0 =Xy <X; < <X, = 00, —0 =Y <Y < <Yy, =®©
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be partitions of the real line. For each (x, y) there exist integers p, ¢ such that
Xpo1 <X E Xy Vgo1 <y Sy, Note that

W(Xps g5 2) S W(x, ;2) £ WX, 1+, Y +4-15 2)-
From the definition of V5 in (26)
(37 Va(d, Xp— 1+, Yg-1+52) S Va(d, x, y5 2) S Va9, x5 Vg5 2)
and hence V,(¢, x, y; Xi, Y1) SV (@, X, ¥gs Xiy Y)). Again,
[TVs($s Xps g5 2)=Va($, x, 5 2)]dF(2)
= [(W(x, y; 2)=W(x,, yg5 2))(W(2) + $) dF(2)
< (HY)(F(x, =)= F(x,- 1))+ AG(r,—) = G(rg-1))]-

This last expression and the similar one with F replaced by G can be made smaller
than ¢/4 for all p, g by choosing the partitions suitably. Thus

(33) E(Vy($, x, y; X, ) Z E(Va(, X, yg5 Xis Y)) —¢/2-
Using this and (37)
(39) Ce; Vol %, 3050 ), )= C(el2, Va(@, X ¥ 75 7)s 1)

Let D(e, ¢, n) = ,,, C(e/2, Vo, X, Y45+ )5 1) D(e, ¢, n) is measurable and from
(39) it follows that

(40) C(e, ¢, n)=D(e, ¢, n).

Further, V,(¢, x, y; z, w) is bounded and hence possesses a moment generating
function. From Chernoff ((1952), Theorem 1 and Lemma 6)

(41) P(C(e)2, V3(, Xps yg5 757 ) 1) = p4”

for all p, g for some p, < 1 for all large n. D(¢; ¢, n) is the union of a finite number
of sets as in the left-hand side of (41) and hence
(42) P(D(e, ¢, 1)) < rsps"

for large n.

6. Main theorem. Assume now, that P(V(X;, Y;) <0) where V(Xj, Y;) is as
defined in (32). Given K > 0, there exist an integer k and numbers ¢’ > 0and 0," > 0
such that

(43) POAV(X,, Y)+3ke < —K) 20, .

This follows from the fact V(X,, Y,), V(X,, Y,), " - - are independently and identically
distributed, from that ¢ > 0 can be chosen such that P(V(X,, Y,)+3¢ <0) >0
and from the argument in Stein’s proof (Stein (1946), Wald (1947) page 157) already
referred to. Further since V(8, ¢; X, Y;) tends to V(X;, Y;) almost everywhere,
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we can find d,, ¢, &, 6, with 0 <e < ¢, 0 < 0, < 0, such that for all 0 < § < §,,
0<¢= 9o
(44) P(YY V5, 63 X), Y)+3ke S —K) 2 0,.

For our purposes it is enough if we fix 6 and ¢. Let us put ¢ = ¢,. We shall choose
0 =90, with §; £, and

(45) 0,—P(B(6,;(m—1)k,k))=606>0

which is possible in view of (36). With this choice of k, ¢, §; and ¢,, we choose m,,
such that, for m = m,

(46) 214+ A—o)(1+A)/((m—1)po+1+A)po <e and C,y < ke.

(For the definition of C,,, see (14).)
For m =2 my—1, put

47) A(mk) = A(¢pq; mk)(\D(e; ¢y, mk) and B(mk) = A(S,; mk).
We redefine m, to be larger if necessary, so that
(48) P(A(mk)) < p3™ (o) +4rsps™,  P(B(mk)) < p3"(3,)

for m = m,, which is possible as can be seen from (35) and (42). We can now state
the following lemma.

LemMA 1. Let P(V(X,, Y,) <0) > 0. With the above choice of the number 6 > 0
and integers k, mq and with the events A(mk), B(mk) defined on the random variables
Z(mk) for m = my—1 by (47) we have, for m = my,

P(I(mk)—I(m—1)k) £ —K|Z((m—1)k)) = 6 — P(B(mk) ‘ Z((m— 1k))

almost everywhere for Z((m—1)k) in A((m— 1)k). Further the probabilities of A(mk)
and B(mk) satisfy (48).

PrOOF. From (29), I(mk)—I(m—1)k) £ Y im_1yr1 (V(Oy, do; X, Y;)+3¢) on
A((m—1)k)nB(mk)nB(6,; (m— 1)k, k), in view of (46). Also, B(d,; (m— 1)k, k) is
independent of Z((m — 1)k). Thus, almost everywhere for Z((m — 1)k) in A((m— 1)k),

P(I(mk)—I((m— k) £ = K| Z((m—1)k))
> P{{I(mk)—((m—1)k) < — K}ABOKINB(G, 3 (m— Dk, k)| Z((m— Dk)
2 P(ST 1yes 1 (V(81, dos X, ¥))+36) < K| Z((m— 1))
— P(B(mk) | Z((m—1)k))— P(B(3,; (m—1)k, k)| Z((m—1)k))
> 0— P(B(mk)| Z((m— 1K)

in which we note the first and third probabilities of the penultimate expression are
independent of Z((m—1)k) and use (45). This completes the proof.
The following is an immediate consequence of Lemma 1 and Theorem 2.
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THEOREM 4. Let P(V(X, Y,) < 0) > 0. Then the rank-order sequential probability
ratio test based on a Lehmann alternative as described in (2) terminates and has a
moment generating function.

7. Comparison with the result of SSI and discussion. In SSI (Theorem 3) the
conclusion of our Theorem 4 was established under the condition of F and G
continuous and E(—log W(X,) W(Y,)+log44—2) # 0. The condition that F and
G are continuous can be dropped because it is not necessary to establish (8) and
(17) of SST which are the crucial steps in the proof. Hence we may re-state the
main result of SST as follows:

THEOREM 5. If
(49) E(—log W(X)W(Y,)+1logdA—-2) #0

then the rank-order SPRT based on a Lehmann alternative terminates and has a
moment generating function.

Now,

E JW(Z)— WXy, Y52
W(z)

Referring to (33) for the expression for V(X,, Y,), we see that condition (49) is
equivalent to E(V(X,, Y;)) # 0. Thus the case not covered by Theorem 5 is when
E(V(X,, Y,)) = 0. Comparing this uncovered case with the condition of Theorem 4
we have our final theorem.

(dF(2) +dG(z))> =0.

THEOREM 6. Let
(50) P(V(X,, Y;)=0)%# 1.

Then the rank-order SPRT based on a Lehmann alternative terminates and has a
moment generating function.

Theorem 6 represents the best result we have been able to establish. The condi-
tion it imposes namely P(V(X,, Y;) = 0) # 1 is analogous to the condition in Wald
((1947) page 157). We feel that for all joint distributions H(x, y), P(V(X,, Y;) = 0)

< 1 so that the condition of Theorem 6 is automatically satisfied and unnecessary.
However, we have not been able to establish this conjecture. The following parti-
cular case is immediate.

LEMMA 2. Let X, Y, be independently distributed. Then P(V(Xy, Y;) = 0) < 1.

We can therefore assert that if we start with independent bivariate random
variables then our sequential test terminates and has a moment generating function.

We now wish to add a few remarks regarding our allowing general distributions
H(x, y) when using a sequential test based on ranks. A standard assumption under
which the ranks are well defined is that the distributions are continuous. However,
the expression L(4, F,, G,) in (1) is one representation of the probability ratio of
the ranks. It turns out that this representation is always well defined since it is
given through the empirical distribution functions F,(x) and G,(x). Thus the
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sequential test described in this paper can be applied to samples from any distribu-
tion. A few more remarks on this may be found in the next section.

8. Asymptotic normality of /(n).

THEOREM 7. For any joint distribution H(-, *), (I(n)—S(A, F, G))/n* converges in
distribution to the normal distribution with mean 0 and variance ¢*, given by

(51 2= 2(A=1)[[f. <, [GC)A=G(»))/W(x)W (y)] dF(x) dF (y)
+[fx<y [FO)(1L = F(»)/W(x)W ()] dG(x) dG(y)
~ [y [(H(x, )= F(x)G(»))/W (x)W ()] dF(y) dG(x)].
Proor. This is an elementary consequence of the well-known limit theorem of

Chernoff and Savage (1958), Theorem 1). We now list the necessary modifications

in their theorem using their own notation instead of evolving a new extension to
their theorem.

(i) Hy which is a linear combination of F,, and G, could be any linear combina-
tion, say (F,,+ AG,)/(1 + A).
(i) The assumption that X and Y are independent is used only in a minor way

in disposing of the remainder term C,y. This can be done in exactly their way even
if X and Y are dependent.

(iii) The assumption about the continuity of F and G was imposed to make the
remarks (s;,***,s,) well defined. It is not used elsewhere. Therefore it can be
dispensed with. See also the remarks in the previous section. After this preamble,
we expand n~1/(n) as usual and obtain

n~!l(n) = — [log W,(x)(dF,(x)+dG,(x))+1og4A—2+O(logn/n)
— [log W(x)(dF(x)+dG(x))+1log44~2
— [log W(x)(d(F,(x) = F(x)) +d(G,(x)— G(x)))
= [ LW, ()= W(x))/ W (x)J(dF(x) +dG(x)) +0,(n"*)
= S(4, F, G)— (A= D[[ [(G,(x)— G(x))/W(x)] dF(x)
= J[(Fu(x) = F(x))/W(x)]dG(x)] +0,(n"?).

The standard computation shows that (I(n) — S(4, F, G))/n* has a limiting normal
distribution with mean 0 and variance ¢? as given in (51).

Recently, Govindarajulu (1968) has demonstrated Theorem 7 assuming X, Y,
to be independent.

(52)
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