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MOMENT INEQUALITIES FOR THE
MAXIMUM CUMULATIVE SUM!'

By R. J. SERFLING

Florida State University

0. Summary. Assume E(X;)=0. For v =2, bounds on the vth moment of
max; <, < |Y otk X;| are deduced from assumed bounds on the vth moment of
|>a+% X;|. The inequality due to Rademacher-Mensov for v = 2 and orthogonal
X;’s is generalized to v = 2 and other types of dependent rv’s. In the case v > 2,
a second result is obtained which is considerably stronger than the first for asymp-
totic applications.

1. Introduction. Let {X;}®_ be a sequence of rv’s having finite variances
{0:*}. Assume throughout (without loss of generality) that E(X;) = 0. For each
vector X, , = (X, 1, ", Xg4,) Of n consecutive X;’s, let F, , denote the joint df
and let

(1.1) Sem=Dat" X, and
(1.2) Mg, =max{|S, |, |Sa}-

Thus M, , is the largest magnitude for the » consecutive partial sums formed from
the n consecutive X;’s commencing with X,,,. The concern of this paper is to
provide bounds on E(M},) in terms of given bounds on E|S, ,|", where v = 2.

It is not assumed that the X;’s are independent. The only restrictions on the
dependence will be those, if any, imposed by the assumed bounds on E|S, ,|". Such
bounds may or may not refiect the presence of a dependence restriction. For
example, in the case that E|X,| < K, all i, Minkowski’s inequality implies that
E|S, |’ = O(n*) uniformly in a, as n — oo, regardless of the dependence of the X;s.
However, under a suitable dependence restriction (e.g., mutual independence,
martingale differences, strong mixing, or the like), the quantity O(n”) may be replaced
by O(n*"), a stronger conclusion that need not hold without such a further
assumption.

Bounds on E(M;,) are of use in deriving convergence properties of S,, as
n— oo (see [7] [8]), probability inequalities for M, ,, and tightness criteria for
certain sequences of random functions (see [1]). For development of such results
under various dependence restrictions, the theorems of this paper reduce the
problem of placing appropriate bounds on E(M} ) to the typically easier problem
of placing appropriate bounds on E|S, ,|".

Two theorems are presented, whose comparison is as follows. In Theorem A
the bounds may involve parameters of the joint df of X,,, ", X,+,, a flexibility
particularly useful with non-identically distributed variables. In Theorem B the
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bounds are required to be functions of » alone, but are of lower order than those
of Theorem A, an advantage for asymptotic applications. In Theorem A bounds
on E|S,,|" are assumed for some v = 2, while in Theorem B it is required that
v > 2. In either case, however, bounds on E(Mj ,) may be concluded, by Holder’s
inequality, for all values of r < the v of the hypothesis.

2. Theorem A.: generalization of the Rademacher-Mensov inequality. In the
theory of sequences of orthogonal rv’s (i.e., E(X,X;) = 0if i # j), a basic lemma is

THEOREM. (Rademacher-Mensov). If X,., ", X 4, are mutually orthogonal
rv’s, then
(2.1) E(M:,) < (log, 4n)* Y it o/,
The result is given and used in Doob ([2] 156) and, more recently, in Révész

([5] 83). Concerning more general results, Billingsley ([1] 102) indicates how to
prove

THEOREM. (Billingsley). Let v = 1, a = 1. Suppose that there exist nonnegative
numbers {u;} such that

(2.2) E S,,‘,,|V < (ZZI'{ u;)" (alla,alln =z 1).
Then
(2.3) E(M},) < (log,4n)"(Q a1 u)* (alla,alln =z 1).

In the case of mutually orthogonal X;’s, (2.2) holds with u; = 6,2, v =2, a = | and
(2.3) reduces to (2.1). More generally, if E(SZ,) = O(n®) uniformly in a, then (2.2)
holds with v =2, o = 1 and u; = 4, where A4 is a constant suitably large. Indeed,
if E|S,,|" = O(n®), where v 2 1, « 2 1, then (2.2) holds for suitable choice of u; =
constant. However, if 1 £ v < 2, but & = 1, then the condition (2.2) is weaker than
in the case v = 2, « = 1, and accordingly the conclusion (2.3) is weaker than in the
case v =2, a = 1. Hence the case 1 £ v <2, a = | is interesting only when v is the
highest value for which an assumption of form (2.2) isavailable. On the other hand,
the case v = 2, a < v is somewhat restricted in applicability since, if condition
(2.2) were met in this case, we would have E(SZ,) < (attu)’ fora d<1, a
condition unrealistic in many applications.

Restricting attention, therefore, to situations in which (2.2) is assumed to hold
for some v =2 and « = 1v, the above theorem is a special case of Theorem A
below, which permits the quantity (3 51" u;) to be replaced by quantities of other
types. The result is obtained by an approach somewhat different from those
underlying the above theorems.

In the following, the function g(F,,) denotes a functional depending on the
joint df of X,,,"**, X,., Examples are g(F,,) =n or g(F,,) =Yt 6.2 The
value a, is arbitrary but fixed.

THEOREM A. Let v = 2. Suppose that there exists a function g(F, ) satisfying
(2.4) IF o )+ 9(Fain) S g(Fapern) (@lazag,1sk<k+)),
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such that

2.5) E|S,.|" < g*(F,.,) (allazag, alln = 1).
Then

2.6) E(M,) < (log, 2n)'¢*(F,,)  (all a2 ag, all n 2 1).

PrOOF. Let N > 1 be given and put m = [3(N+1)], where [-] denotes greatest
integer part. Then N = 2m or 2m—1. Let a = a,.
Now, for m < n < N, we have

Sin = (Sa,m+Sa+m,n—m)2 = S:,m+SZ+m,n—m+2‘sa,m Sa+m,n—m9
so that, form <n < N,
(27) S:,n § Mf,m"'M§+m,N—m+2|Sa,m|Ma+m,N—m'

Also, for 1 £n < m, we have S?, < M2, and hence (2.7) for 1 Sn < m.
Therefore,

(2.8) Mf,N = Mlim+M§+m,N—m+2ISa,m|Ma+m,N-m

and, by Minkowski’s inequality,

2.9 [EM NI < [EM )] +[EMi sy -m) ]
+2[E(|Sam Mot my-m|" D]

Suppose now that the conclusion (2.6) of the theorem is true for n < N. Then,
defining

(2.10) f(k) = (log, 2k)? (kz 1),
we have, using (2.6) and Schwarz’ inequality,
[EM )T < f(m)G(F o) +f (N = m)G(F gty -m)
.11 +2{[E|Sum| T LEM: oy -m) '}
< f(M)G(F o) +f (N = m)g(F gty - m)
+2(E|Sg ") fHN = m)gH(F gt - m)-

Then, by (2.4), (2.5), the inequality 24B < A%+ B?, and the fact that f(N—m) £
f(m), it follows that

(2.12) [EME NI < [f(m)+f*(m)]g(Fon)-

Now note that
(2.13) £(2k) = [(log, 2K)+ 112 2 f (k) +274(k), k21,

and, since 2*(2k—1) = 2k if k = 2,
(2.149) fQk—1) = [log, 2*2k—1)+11* = f(k) +/*(k), k=2.
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Hence, whether N = 2m or N =2m—1,

(2.15) JN) 2 f(m)+f*(m), N>1,
so that (2.12) yields
(2.16) E(M; y) < (log; 2N)'g*'(F, y)-

Therefore, since the conclusion of the theorem is true for N = 1 by the hypothesis
(2.5), it follows by induction forall N=1,2,---.

REMARKS. (i) The result (as well as its corollaries stated below) may be applied
to obtain strong laws of large numbers, and convergence rates thereof, under
restrictions merely on the moments of sums S, ,. This treatment is given in [7].
(ii) Better asymptotic results are given by Theorem B, when v may be taken > 2.
Thus the corollaries below shall, for simplicity, confine attention to the case v = 2.
(iii) As concerns the factor (log, 27)" in (2.6), note that it is a slight improvement
over the corresponding factor in (2.3). A slight further improvement could be
obtained since (log, 2r)* may be replaced by f*'(n), for any f(n) satisfying f(1) = 1
and the inequalities in (2.13) and (2.14). No such f(n), however, may be smaller
than O(log,?n), so any possible improvement by the above method of proof is
trivial.

It is easily seen that the functional g(F,,) = Y41} o,* satisfies condition (2.4).
Moreover, in the case of orthogonal X;’s, this quantity is exactly E(S2,). Hence
we have

CoROLLARY Al. If {X,} is a sequence of mutually orthogonal tv’s, then
(2.17) E(M:,) < (logy2n)* Y it o2,
The fiexibility of conditions (2.4) and (2.5) is illustrated by the following result.

COROLLARY A2. Suppose that there exist nonnegative constants ri(j=0, 1,---)
such that

(2.18) EX, X1 ) <7y @l i, allj 2 0).
Then
(2.19) E(MZ,) < (logy 2n)*n(ro+231" ' r)).

Proor. The functional g(F,,) = n(ro+2Y 17 'r)) trivially satisfies (2.4) and it
is not difficult to see that '

(2.20) E(SZ2,) S n(ro+2Y17'r)

if (2.18) is satisfied.

It should be noted that the condition (2.20) is much broader than (2.2). More-
over, no dependence restriction whatsoever on the sequence {X;} is imposed by
condition (2.20) or condition (2.18). Rather, (2.18) is in the nature of a stationarity
restriction. In particular, we have
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COROLLARY A2.1. If {X;} is a weakly stationary sequence with |E(X,X;, )| =
r{j=0,1, --), then (2.19) holds.

In Corollary Al, the functional g(F,,) depends upon F,, through specific
parameters as well as through @ and »n. In Corollary A2.1, the dependence upon
F,,, is less specific but involves more than » alone. In the following, we consider
the implication (for v = 2) of Theorem A when the relevant functional is a function
of n alone.

COROLLARY A3. Suppose that

@21) E(S2,) < g(n) @lazagalnz1),
where g(k)+g(l) £ glk+1) for | £k <k+1. Then
(2.22) E(M?,) < (log,2n)g(n) (@lazagyalnz=1).

An important special case is

COROLLARY A3.1. Suppose that

(2.23) E(S2,) < An° (ala=ay, aln=1),
where 0 < A < oo and (without loss of generality) 1 £ 6 £ 2. Then
(2.24) E(M?,) £ A(log, 2n)*n’ (@laz=ayalnzl).

In particular, if (2.18) holds with Y ©r; convergent, then (2.23) holds with
d=land A=r,+2)7r;

3. Theorem B: asymptotically optimal inequality. This result provides a bound
for E(M;,) which is asymptotically optimal (as » — oo) in the sense that it is of
the same order of magnitude as the bound assumed for ElSa,,,lv. Roughly speaking,
the factor (log, 2n)” occurring in the bound given by Theorem A becomes elimin-
ated. As a consequence, the scope of useful asymptotic applications becomes
greatly enlarged. This gain over Theorem A is achieved at the expense of requiring
that the bound assumed on E IS,,,,,]“ be for a value of v > 2 and be a function depend-
ing upon F, , only through n. The crucial difference between the proofs of the two
theorems is that Minkowski’s inequality is exploited to obtain Theorem A but must
be avoided in the following.

THEOREM B. Let v > 2. Suppose that
(3.1) E|S,.|" < g¥(n) (alla 2 ag, alln 2 1),

where g(n) is nondecreasing, 2g(n) < g(2n), and g(n)/g(n+1)— 1 as n— co. Then
there exists a finite constant K (which may depend on v, g and the joint distributions of
the X;’s) such that

(3.2) E(M},) < Kg*'(n) (alla z ay, alln = 1).

Proor. Define k to be v— 1 if v is an integer and otherwise to be [v]. Lete = v—k.
Then 0 < ¢ £ 1. It follows that the function

(33) w(x) = Thb(xmUr 4 ThL (a
tends to 0 as x - o0.
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Since v > 2, § may be chosen such that 2/v < § < 1. Since w(x)|0 as x — oo,
3 x, such that
(3.4 X = xo=>w(x) £ 2802,

Also, since g(n) ~ g(n+1), 3 n, such that

(3.5) n2no=g(n) = 2'°g(n—1).
Now, by the hypothesis of the theorem, the quantity

(3.6) . n = SUPazao E(M;,)/g*'(n)

is finite. Define

(3.7 K =max{q, gz, """, duy» Xo}-

Thus, for K given by (3.7), the conclusion of the theorem holds for all » < n,. We
shall now show that it holds for any N > n, if it is assumed true for all » < N. By
induction, (3.2) will then hold forall N=1, 2, --.

Let N = n, be given and put m = [4(N+1)]. Let a = a,. Form < n < N, we have

Sanl” = (|Saml +Masmp-m)”
(3.8) S Sam” + M mn-mt 2520 D Saml “MeT iy -m
+ 251 O|Saml MaT i —m:
For 1 £ n < m, we have |S, ,|" < M} ,,. It follows that
(B9 My S Mt Mispyomt T528O)Saml M h v
+ 2521 D Saml MET 5N - me
Now, by Holder’s inequality, for r =0, s = 0 and r+s > 0,
(BA0)  E(Senl M3t m) S (ElSonl 1 AEMG L, ).

Suppose now that (3.2) holds for all » < N. Then, by (3.1) and (3.2), and by
(3.10) with r+s = v, we have

(3 1 1) E(Isa,mlrM:+m,N—m) é KS/vg%r(m)g%s(N - m)
< K’ (m)

since N—m < m and g is nondecreasing. Application of (3.11) in each term on the
right-hand side of (3.9) yields

(3.12) E(M; y) < Kg¥'(m)[2+w(K)]-
Since K = x, and 2m = n,, (3.4) and (3.5) and the assumptions on g( - ) imply
E(M; ) < K2¥°g¥(m) = K23~ D[2g(m)]*
(3.13) < K20~ DgP(om)
< Kg¥(2m-1)
< Kg¥(N),
i.e., (3.2) holds for n = N. This completes the proof.
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The application of Theorem B to obtain a law of the iterated logarithm, and
convergence rates thereof, is dealt with in [7].

COROLLARY Bl. Let v > 2. Suppose that
(3.14) EISMIV < Mn*”? (alla =z ag,alln = 1),

where 0 < M < oo and (without loss of generality) 1 £ 6 < 2. Then there exists a
finite constant K such that

(3.15) E(M},) < Kn*» (@lla=agy,alln=1).

PRrOOF. Since § = 1, the function g(n) = n° satisfies the hypothesis of Theorem B.

Condition (3.14) with § <2 < v is implied by various dependence restrictions
quite different in nature. For example, let us confine attention to sequences {X;}
satisfying

(3.16) E|X||" <M, (all i),
for some v > 2 and M, < o0, and
(3.17) E(S2,) ~ An uniformlyin a,n— oo,

for some positive finite constant 4. Then, under certain additional restrictions,
(3.14) may hold with ¢ < 2. In particular, Ibragimov [4] shows that (3.14) holds
with 6 = 1 if {X;} is strictly stationary and obeys a certain dependence restriction
(I). (We shall not define (I) here but merely comment that it includes the cases of
independent rv’s, m-dependent rv’s and Markov processes satisfying Doeblin’s
condition.) In [8], it is shown that if the v in (3.16) is an even integer, then (3.14)
holds with 6 = 1 in the case of X,’s which are multiplicative of order v:

(3.18) E(X,--X,)=0 if 1<j<v and i, <-<i,

This condition is stronger than mutual orthogonality (if v > 2) but includes the
cases of independent rv’s and sequences of martingale differences. In [6], it is shown
that (3.14) holds with § = 2(v—1)/v if the X;’s are uniformly bounded. Therefore,
we may conclude the following corollaries.

CoROLLARY B2. Let {X;} be a strictly stationary sequence satisfying (3.16) for
some v > 2 and (3.17). If dependence restriction (1) is satisfied, then 3K < co such
that

(3.19) E(M;,) < Kn¥ (alla,alln = 1).

CorOLLARY B3. Let {X,} satisfy (3.16) for an even integer v > 2 and suppose
that {X;} is multiplicative of order v. Then 3K < o such that (3.19) holds.

COROLLARY B4. Let {X;} be a bounded sequence: |X;| < C (all i) for some C < 0.
Suppose that (3.17) is satisfied. Then, for each v > 2, 3K, < oo such that

(3.20) E(M.,) < K,n*"! (alla,all n = 1).
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REMARK. It must be emphasized that only the assumptions in Theorem B need
involve a moment of |S, ,| of order higher than 2. Under the appropriate assump-
tions, the conclusion of the theorem yields, by Holder’s inequality, bounds on the
moments of M, , of all orders < the v assumed in (3.1). That is, conclusion (3.2)
implies

3.2 E(M?,) < K*"g*(n) (alla = ay, alln =1),
for any a < v.
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