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A COMMENT ON THE COMPOUND DECISION THEORY

By ELSE SANDVED

University of Oslo

1. An example by Robbins. The Compound Decision Theory was introduced by
Robbins [1] and has been developed particularly by him and Ester Samuel in
several papers (see for instance [3]). To get an illustration of the concept, we shall
consider the following simple example, given by Robbins in [1].

Let x,, - *, X, be independent random variables, each normally distributed with
variance 1 and with means 0,, - -, 0,, respectively, where 0; = +1 or —1. On the
basis of x;, -, x, we are to decide, for every i, whether the true value of 6; is 1
or —1. Let Q denote the set of all 2" possible parameter points 6 = (0, -, 0,)
and let w(@’, ) = n~* (no. of i for which 6 # ;) be the loss involved when the
true parameter point is 6 and the decision (6 = ) is taken, 0€Q, 6'€Q.

A simple and reasonable decision rule, when the loss function is as above, seems
to be the rule

R: estimate 0, by sgn (x;); i=1,-,n.

The corresponding risk function L(R, 8) = Ew(6’, ) equals F(—1) = 0.1587 for
all @, where F is the cumulative standard normal distribution function. R is the
maximum likelihood estimator of 8, and Robbins shows that R is the unique
minimax decision rule.

2. The Bayes Case. Suppose that in the example above the 6;’s are independent
random variables taking the values 1 and —1 with probabilities p and 1—p,
respectively, where p is known. Let u(x;) be the conditional probability of esti-
mating 0; to be 1, given x;. The corresponding risk

pJf(x— D1 —u(x))dx+(L—p) [ f(x+ Du(x)dx,
where f is the standard normal density function, is minimized by the rule

R .

p*

estimate 6, by sgn(x;—iIn[(1—p)p ']); i=1,-",n
which has the risk
h(p) = pF(—1+3n[(1—p)p ' D+~ pF(=1-3In[(1—p)p~ D).

h(p) is less than F(—1) for p # 0.5 and equal to F(—1) for p=0.5, and R, will
therefore be preferable to R in this case, unless p = 0.5.

3. The Empirical Bayes Case. If in the Bayes Case above p is unknown, and the
n x;’s are used to estimate p, then a decision rule corresponding to R,, with p substi-
tuted by an estimate of p, could be used. This would be an example of an Empirical
Bayes Case. See Robbins [2].
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4. The Compound Decision Case. Let us denote the problem in Section 1 of the
present paper as a Compound Decision Problem if it satisfies the description of
Robbins in [1]: No relation whatever is assumed to hold amongst the unknown
parameters 0,. Then the frequency p of 0;’s equal to one is completely unknown,
but may be estimated by means of x,,- -, x,. The estimator v = $(1+X), where
x=n! Y x;, is unbiased for p. As v can take on values outside [0, 1], it is trun-
cated at 0 and 1, and the resulting estimator

v'=0 if v<0
=y if 0<v<l
= | if v=1

is substituted for p in R,. Hence one gets the decision rule

IIA

R*: estimate 6, by —1 if X
by sgn(x;—3In[(1-X)(1+%7']) if—l<x<l;

by 1 it xx1.

The risk function /i(p, n) for R*, the risk function 4(p) = lim,_, , h(p, n) for R,
in Section 2 and the risk function F(—1) = 0.1587 for R in Section 1 are compared
in Table 1 of [1]. For p = 0.5, h(p, n) is always greater than F(—1), though the
difference is very small for large n. For any p 5 0.5, A(p, n) is less than F(—1) for
large enough n. For p near 0 or 1, h(p, n) is much less than F(—1), at least for n as
large as 100. Considering this as an argument for preferring R* to R will have
certain consequences, as will be shown in the next section.

5. A sequence R;*, R,*, --- of rules. Consider first the asymptotic case
where we assume that any sequence 3n”'(6; +0,,+: - +0; +n), where i; <i, <
.-+ < i, has a limit as n — oco. Then the asymptotic risk of R* is h(p), where p =
lim,. 47~ '(0,+: - +0,+n). Now it is possible to find a sequence of rules, say R, *,
R,*, -+, etc., where R, * is asymptotically uniformly at least as good as R*, and
where R}, ; is asymptotically uniformly at least as good as R;*,i = 1,2, -, etc. This
sequence runs as follows: Denote the original sequence of problems by (6, x,),
(65, x,), - -, etc. Then R, * consists in applying R* separately on the two subse-
quences of problems (0, x,), (03, Xx3), (05, Xs), - - and (05, x5), (04, X4), (05, X¢), ** -
Letp, =3k~ Y0, +05+ - +0,_,+k)and p, = 3k~ '(0,+ 04+ -+ 05, +k). Then
p = (lim, _, , p, +lim, _, ,, p,), and because of the concavity of A(p), the asymptotic
risk of R, *, namely 4(4(lim p,)+ h(lim p,)), is less than /(p), unless limp, = limp,,
in which case 3(h(lim p,)+h(lim p,) ) = h(p). Hence, if limp, # limp,, then R, *is
asymptotically uniformly better than R*.

The construction of R,*, Rs3*, -+, etc. is this: The relation between R} and
R;* is the same as the relation between R, * and R*,i= 1,2, -, etc. For instance,
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the construction of R,* consists in applying the rule R* separately on the four
subsequences of problems

(81,4), (05, x5), (09, xg), **
(62, x,), (665 X6), (0105 X10),"
(03, x3), (64, %), (011,%11), "
(04, x4), (08, xs), (012,%12), "

Let us now consider the more interesting case where n = 2k is large but fixed.
If the problems are presented to the statistician in random order, then this is not a
Compound Decision Problem according to the description of Robbins: “No
relation whatever is assumed to hold amongst the unknown parameters 0,”,
because randomization creates relations between the 6,’s, for instance the relation
that p, ~ p, with high probability. Hence this situation, where the 0,’s are presented
in random order, should rather be called an Empirical Bayes Case.

Now consider the case where the problems are not presented in random order,
but according to something else, for instance according to time order. If we do not
believe that Nature randomizes the problems for us, then there is no reason why
P, should be near p,, and if p, and p, are not close together, then R, * is better than
R* (much better if p, and p, differ considerably), because if n = 2k is large, then
k is also large. Continuing this way one gets the conclusion: The same sort of
argument for preferring R* to R applies for preferring R, ; to R;*, at least as long
as the number of problems in the subsequences is large.
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