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LINEAR SPACES AND UNBIASED ESTIMATION!

By JusTus SEELY?

Iowa State University

1. Introduction. In this paper some general results are obtained on unbiased
estimation when the choice of estimators is restricted to a finite-dimensional linear
space /. The results concern mainly necessary and sufficient conditions for
existence of unbiased estimators within o/ and procedures for obtaining such
estimators when they exist. At the outset the approach is from a coordinate-free
(Kruskal [2]) viewpoint; but then it is found useful, and for many situations
natural, to use a fixed reference set of spanning elements for particular subspaces.
Identical analogues with estimation procedures in what is commonly referred to as
linear model theory will be seen to exist. Much of the formulation has been
motivated by problems especially relevant in the study of a general mixed linear
model Y = X+ e where the random vector Y has expectation X and covariance
matrix

Elee'] = Z:"': WiV

Concerning this model attention is given in a second paper to quadratic estimation,
ie, o/ = {Y'AY: A real and symmetric}, of parametric functions of the form
Y i<ihiiBiB;+ Y kv, With special emphasis on parametric functions of the form

KAV

2. Preliminary framework. Terminology and elementary properties associated
with linear spaces (vector spaces) are utilized in the sequel. Much of the notation
and terminology is similar to that used in Chapter II of Wilansky [3] and in
Halmos [1]. Since only finite-dimensional real linear spaces are considered, we
adopt the convention that whenever a linear space is referred to it is assumed to be
a finite-dimensional real linear space. In addition to vector space notions, the usual
notations and ideas of elementary set theory are also employed.

Concerning vector space notions, we mention a few at this point. If &/ and %
are non-empty subsets of a vector space ¥, then &/+% denotes the set
{a+b:ae, be B}. When the set o consists of a single element a, we abbreviate
o+ % by a+%B. The linear span of a non-empty subset & of & is denoted by
spo. If o and 4 are disjoint subspaces of &, i.e., their intersection is the null
vector, then we denote the sum of o/ and # by &/ @ %. The null vector is denoted
by 0, and even though the symbol 0 is used for other purposes, it should be clear
from the context what O represents.
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We assume that 2 = {P} is a family of probability measures with an associated
measurable space (%, S) and that &/ is a linear space of real-valued random
variables such that the expectation of each random variable in o/ exists with
respect to all Pe 2. The form of Pe 2, or even the complete structure of 2, need
not be known completely; however, we do assume that Q is some given parameter
space and that E is a function on &/ x Q, called the expectation function, from
which the expectation of an element in o/ may be characterized over the class 2.
Formally we assume that to each Pe 2 there is a 6 €Q and to each e Q there is a
Pe 2 such that the following expression is true:

@2.1) . aesd = Epla] = E[a| 0],

where Ej denotes expectation with respect to the measure P. Note that (2.1) insures
for a fixed 6 that the function E[- | 0] has all the usual properties associated with
expectations. In essence: o/ is a linear space (finite-dimensional) of random
variables from % into the real line R'; Q is some set of parameters which may be
given either explicitly or implicitly; interest is in obtaining unbiased estimators
from .7 for functions from Q into R'; and the possible expectations of any random
variable in &/ may be described via the parameter space Q and the function E.

For the linear space of random variables .« and a parametric function g, i.e.,
a function from Q into R!, let & , denote the collection of unbiased estimators for g
that are in &7 and let &7, denote 2/, when g is the identically zero function. Note
that &7, is a linear space and that .7, is an affine set provided it is non-empty; in
fact, e o/, implies that o7, = i+ 7.

DEFINITION 1. A parametric function g is said to be <7-estimable if and only if
&/, is non-empty.

Definition 1 is essentially a standard one. For instance, in a fixed linear model
Y = XB+e with o7 = {a'Y: ae R"} the term o/-estimable corresponds to linearly
estimable or if o = {Y'AY: 4= A'} the term /-estimable corresponds to
quadratically estimable. ‘

For the space & it is convenient to let the random variables in &/ have an
explicit inner product representation. Without loss of generality let o7 be specified
in the form & = {(a, Y): ae o/} where (o, (-,")) is a finite-dimensional inner
product space and Y is a random variable from % into /. This method is similar
(we do not insist that ¥ range over the entire space .«¢) to that employed by Kruskal
[2]. Without loss of generality it could be assumed that sp { ¥(u): ue”Zl} = o/; but
this restriction would exclude several useful representations sometimes employed
in the usual linear model. By not using the restriction sp {Y(u): ue%} = s/, the
representation (a, Y) is not necessarily unique, i.e., (@, Y) = (b, Y) does not imply
that a = b. For a parametric function g let o/, denote the set of elements ae .o/
such that (a, Y) is an unbiased estimator for g and for Z< ./ let # denote the
collection of random variables {(b, Y): be #}. Note that the usage of 7, is
consistent with previous usage, i.e.,

A,={a:(a, Y)ed,} and ,={(a, Y):aesd,},



LINEAR SPACES AND UNBIASED ESTIMATION 1727

where &7, in the first expression denotes the collection of all unbiased estimators
for g that are members of 7.

DeriNITION 2. For each 6eQ let p, be the unique element in &/ such that
E[(a, Y)|60] = (a, pp) for all ae o/ and let & = sp {u,: 0 Q}.

In Definition 2 the quantity E[(a, Y) ] 0], considered as a function on & with 6
fixed, is a linear functional on &/ and so the existence and uniqueness of y, is
assured. Also, note that y, may be regarded as the expectation of Y in the sense
that E[(a, Y)|0] = (a, E[Y|0]) = (a, pp).

Let (&, <-,-)) be a finite-dimensional inner product space and let T be a linear
operator from & into «/. The range of T is denoted by R(T), the null space by
N(T), and the adjoint by T *. By the adjoint of T we mean the linear operator T *
from & into % which takes an element ae ./ into the unique element T *a in &
that satisfies the condition {T *a, p> = (a, Tp) for all pe &. We denote the rank of
T by #(T), the nullity by n(T), and the orthogonal complement of a non-empty
subset # of &£ by #*. In the event that several inner products are considered
simultaneously on the same linear space, we shall take care to explain exactly what
the symbol £+ denotes. For matrices the same notation is used as that just described
for linear operators, except that a prime is used to denote the transpose of a matrix
or vector.

To facilitate computational procedures and to represent certain parametric
functions explicitly, it is convenient to have another representation for y,. Suppose
that (o#, <-,->) is an inner product space and that H is a linear operator from #
into o such that & = R(H). For each 0 €Q let ¢,€ o be such that y, = HEy and let
Qy = {&: 0€Q}. Note that in general &, is not unique; however, for any particular
problem we assume that one set of elements {&,} has been specified and remains
fixed throughout. Representing yu, in the fashion just described will frequently be
both useful and natural in the sequel; thus, we adopt the convention that whenever
reference is made to a u, = H&, representation without referring to a particular
circumstance, it will be understood that (#, -, ->), H, and a set of elements {,}
are defined as in the beginning of this paragraph.

3. </-estimability—general results. Let ¥ denote the entire collection of o/-
estimable functions. From Definition 1 it is clear that a parametric function g is
of-estimable if and only if there exists an ae o/ such that

0eQ = El(a, Y)|0] = (a, up) = 9(0);

i.e., if and only if there exists an Fe &/* (/% is the collection of linear functionals
on &) such that F(u,) = g(0) for all 6. It follows that

9 = {g: 9(0) = (@ o), ac &}

Since some elements ae.o/ may describe the same parametric function g it is
possible that ¥ may be characterized through a subset of «/. The following theorem
gives the conditions on such a subset.



1728 JUSTUS SEELY

THEOREM 1. A necessary and sufficient condition for the collection % to be equal to
{(b, po): be B} is that B+ E* = o .

PrOOF. Suppose that ¢ is as stated and that ae </, then there must exist be#
such that (a, uy) = (b, pe) for all Q. Therefore, a—be &+ which implies that
a=b+f for some feé&*. Conversely suppose that Z+&L = o7 and that ae .
Let a = b’ +f where b’ e # and fe &+, then (a, ) = (', pp) for all § and thus the
desired result follows.

Note that ¢ is a vector space and that Theorem 1 implies dim & =dim % (dim ¢
means the dimension of the subspace %). Also, several other conclusions can be
drawn from Theorem 1. For example, the subspace &, i.e., the subspace corres-
ponding to the collection of zero estimators &7, is &*. Further if g is <7/-estimable
and ae /,, then o/, = a+ 4.

ExaMPLE 1. Suppose that Y is an n x 1 random vector with expectation X3
where X is a given n x p matrix and it is known that the parameter vector f
satisfies the equations A = 0. Let & = R" and let (-,) denote the usual inner
product on R" so that o/ = {a'Y:aeR"}, i.e., & denotes the class of linear
estimators. Since our concern is only with the expectation of random variables of
the form 4’7, it is clear that we may take Q as N(A). It follows immediately that

(3.1) (a) BeQ=p;=Xp.
(b) &= {XB:AB=0}.
(c) 9= {adXB:acR"}.
(d) dimé =r(X)—dim [R(X")AR(A")].

The number of linearly independent estimable (i.e., <7-estimable) functions is given
by (3.1.d). In linear model terminology the expression in (3.1.d) says that the
dimension of & is equal to the rank of X minus the number of linearly independent
estimable restrictions. Suppose that 4 is a p x g matrix such that N(A)<R(4),
then & = R(XA) so that Theorem 1 implies

Y = {(XAp, XP): pe RT}.

Of the possible choices for the matrix A, the special cases 4 = I and R(4) =N(A)
should be noted. In the latter case observe that 4 = I—A~A will suffice for any
g-inverse A~ of A and that R(4) =N(A) implies & =R(XA) and &' = o=
NA'X).

For the remainder of this section suppose that p, is described by a yy, = Hé,
representation and that W is a linear operator from a finite-dimensional inner
product space (#, (-, -)*) into (o7, (-,*)). When y, is described via a y, = H&,
representation, the parametric functions usually of interest are of the form {4, &;).
Suppose that W is such that R(W)+ ./, = &, then from Theorem 1 it follows
that a parametric function {4, &, is in ¢ if and only if there exists a pe #” such
that

0eQ = (4, &) = (Wp, pg) =(H*Wp, &p);
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that is, if and only if 1 —H*WpeQg* for some pe# . We state this last condition
in the following theorem.

THEOREM 2. Suppose p, is described by a py = HEy representation and that W is a
linear operator such that R(W)+./, = o, then a parametric function {1, &) is
Z-estimable if and only if 2eR(H*W)+Qp" .

COROLLARY 2.1. Under the conditions in Theorem 2 a parametric function {A, &y)
is s/-estimable if and only if there exists a A; eR(H*W ) such that {1, £p> = {4, Ep>
Sfor all 0e Q.

From Corollary 2.1 it is clear that R(H*) (i.e., W =I) contains all the information
regarding o7-estimability in the sense that ge % if and only if g(0) = {4, &) for
some AeR(H*). Corollary 2.1 also implies it is not necessarily true that if {4, &)
is &7-estimable then AeR(H*).

COROLLARY 2.2. If W is a linear operator into &/ and p and ) are such that
H*Wp = A, then the random variable (Wp, Y) is an unbiased estimator for the
parametric function {A, £y).

CoROLLARY 2.3. If W is a linear operator such that R(W)+ </, = & and if
Q< R(H*W), then a parametric function {1, &,> is sZ-estimable if and only if
there exists a p such that H¥*Wp = J.

COROLLARY 2.4. A sufficient condition for W to satisfy the relationship
RW)+oly=of is that RMH*W) =R(H¥*). Moreover, this condition, i.e.,
R(H*W) =R(H*), is both necessary and sufficient when R(H) = &.

ExaMPLE 2. Consider the same situation and notation as in Example 1. Let
# = R” with the usual inner product, let Hé = X6 for all e R?, and let {5 = f
for all BeQ. It follows that X is a u; = H, representation and that Q, = N(A).
Let A be any p x ¢ matrix such that N(A) = R(A4), then with W = X4 Theorem 2
and Corollaries 2.1 and 2.2 imply the following statements:

(3.2) (a) A'B isestimable if and only if AeR(X'XA)+ R(A").
(b) A'B is estimable if and only if there existsa A, €R(X’'XA4) such that
AMB=A,B forall BeQ.
(¢) If p and A are such that X'XAp =41, then (XA4p, Y) is an
unbiased estimator for A'f.

If Y has a covariance structure of the form o2l and A is selected such that
R(A) =N(A), then it may be noted that the estimator in (3.2.c) is in fact the best
linear unbiased estimator for the parametric function A'f.

Noting the similarities thus far with estimability in linear model theory, e.g.,
Examples 1 and 2, we now consider finding a random variable & from % into #
such that (4, &) is an unbiased estimator for an 27-estimable {1, &,>. One possible
way to proceed is via Corollary 2.2. If A =H*Wp, then (Wp, Y) is an unbiased
estimator for (4, &>. Thus, if  =H*Wp and & is such that W*Y =W*HE, then
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A necessary and sufficient condition for the existence of a random variable & from
% into # such that W¥HE =W*Y is

3.3) sp {W*Y (u): ue %} = R(W* H).

If the condition sp {Y (u): ue %} = &/ holds, then this last condition is equivalent
to R(W*) = R(W*H). We summarize in the following theorem and corollary.

THEOREM 3. Let W be a linear operator such that (3.3) is satisfied, e.g.,
R(W*) =R(W*H). To any random vqriable & such that W¥HE =W*Y and to any
AeR(H*W) the random variable {1, &) is an unbiased estimator for {2, &g).

COROLLARY 3.1. Suppose that W is a linear operator such that

(3.4 (a) condition (3.3) is satisfied,
(b) RW)+ o, = &, and
(©) Qy* =RH*W);

then {1, &> is an unbiased estimator for each sf-estimable (1, &y) whenever & is such
that W¥HE =W*Y.

ExaMmpLE 3. Consider the same situation and notation as in Example 1 and
Example 2. Let W = X4 where A is any matrix such that N(A)cR(4). Since
r(A'X")=r(4'X'X) it follows that (3.3) is satisfied. Thus, if B is such that
A'X'Xp = A'X'Y and AeR(X'XA), then Theorem 3 implies that A'B is an unbiased
estimator for A’B. As noted in Example 2, if the covariance structure of Y is of the
form oI and A is such that R(4) = N(A), then A’ is actually the best linear
unbiased estimator for 1'f.

If in Corollary 2.2 there exist p; and p, such that H¥*Wp, =H*Wp, = 4, then
(Wp,, Y) and (Wp,, Y) are both unbiased estimators for {4, . Although both
are unbiased estimators for the same parametric function, it is not necessarily true
that (Wp,, Y) = (Wp,, Y), i.e., for a given W in Corollary 2.2 unbiased estimators
are not in general unique. However, if R(W)nN(H*) = {0}, then H*Wp, =H*W)p,
implies that W(p, —p,)eN(H*) so that Wp, = Wp,. Thus, for a given W such
that R(W)nN(H*) = {0}, an unbiased estimator in Corollary 2.2 is unique. Note
that this uniqueness is dependent upon W ; that is, different W’s do not in general
yield the same estimators. As a final point note that R(W)nN(H*) = {0} is
equivalent to having R(W*H) = R(W*) which implies Condition 3.3. Thus, if W
is selected in Theorem 3 or Corollary 3.1 such that R(W*H) =R(W¥*), then
Condition (3.3) is satisfied and the estimator (4, & is unique.

4. s7-estimability—main results. We consider in this section &7-estimability for
parametric functions of the form Y /£ 1,£,(0) when y, has the representation

4.1) 0eQ = py =YL ,£(0)b;

In this representation & = {b,, b,, - -+, by} is a known set of elements in &/ and
&1, &,, v+, &y are parametric functions. A characterization as given in (4.1) may
be obtained from any finite set of elements which contains a spanning set for &;
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however, in this section we assume the collection 4 is such that for any set of real
numbers {o;} the following condition is satisfied:

4.2 Y a(0) =0 forall 0eQ=0;=0, i=1,2,---, M.

Note that any representation of the form in (4.1) may always be reparametrized to
satisfy (4.2). In the event that one does not wish to reparametrize a representation
as in (4.1) when (4.2) is not satisfied, the techniques in Section 3 may still be
employed for estimability considerations regarding parametric functions of the
form ' ,4,€,(0). For instance, in Example 1 denote the columns of X by x,, - - -, Xps
then p; = Y P, B;x; is a representation as in (4.1) and when A # 0 it is easily seen
that (4.2) is not satisfied. However, as can be seen from Examples 1, 2 and 3
estimability considerations for parametric functions of the form 1’$ may be treated
by the results in Section 3.

In many problems the form of y, in (4.1) is a natural one and in many of these
situations Condition 4.2 will be satisfied. From (4.1) a very natural linear operator
for a uy = H&, representation may be defined. For this representation induced by
(4.1) the condition in (4.2) implies that sp Qg = 5. The significance of spQy =#
is partially evidenced in Section 3 (e.g., Q4" = {0}) and is exhibited further in the

present section.
It was noted in Section 3 that a parametric function g is </-estimable if and only

if there exists an Fe«/* such that F(u,) = g(0) for all 6eQ. Thus, a parametric
function Y ,4,£,(6) is Z-estimable if and only if there exists an Fe o/* such that

ibilfi(e)F(bi) = Fup) = ?il;liéi(e)
for all 0eQ. From this expression and (4.2) the following theorem may be stated.

THEOREM 4. Assuming a representation as in (4.1) and that Condition 4.2 is true,
the existence of an Fe s4* such that F(b,) = A; for i = 1,2, -+, M is both a necessary
and sufficient condition for ¥ 'L ,2,£(0) to be -estimable.

COROLLARY 4.1. The parametric function & (0) is <Z-estimable if and only if
byésp {b;:i# k}.
COROLLARY 4.2. Each £ (0) is s/-estimable if and only if B forms a basis for &.

Corollary 4.2 follows easily from Corollary 4.1 which may be obtained from
Theorem 4. To see that Theorem 4 implies Corollary 4.1 note that £,(0) is
&Z-estimable if and only if there exists an Fe «Z* such that F(b,) =1 and F(b;)) =0
fori# k.

To utilize the results in the previous section, consider the following convenient
pe =HE, representation induced by (4.1). Let # = RM, let (-, be the usual
inner product on R, and define H from R into o/ by

p=(p1, P2, py) ERM=>Hp =Y pb,.

Define &, = (¢,(0), -+, £)(0))’ for each e Q, then Y 1 £,(0)b; = HE, for all Q.
Observe that Qu' = {0}, R(H) = & N(H*) = </,, and that the linear operator
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H* from .« into R takes an element ae & into the vector H*a in R with element
i equal to (b;, a) for each i=1,2,---, M. In the remainder of this section H is

defined as just described.
We illustrate the utility of H by using Corollaries 2.3 and 3.1 with W = H.

Both corollaries require the form of H*H which may be conveniently described by
an M x M matrix. To see this let pe R™, then

(b1, b))
= ZxM=1pi

(by, b))

[: (by, by) -+ (bl"bM)] l:p‘lijl
(bM’ bl)(bM’ bM) Pm
where the last expression denotes usual matrix multiplication. Denote by H*H
the M x M matrix in (4.3), then Corollary 2.3 says that (4, &,) is &Z-estimable if

and only if there exists p such that H*Hp = A. In fact if H*Hp = A, then by
Corollary 2.2 the random variable

is an unbiased estimator for <4, &,>. Further, Corollary 3.1 with W =H implies
that if Ae R(H*H) and ¢ is such that

R ':(bls bl)"'(bla bM):' ':&:l {(bp Y):'
(4.5) H*Hé=| : =] i |=H%Y,
(bM’ by) - (b bM) M (bM, Y)

then (4, &) is in & and is an unbiased estimator for {1, &).

ExAMPLE 4. Let Y denote an n x 1 random vector with mean 1 where f is an
unknown parameter and 1 is a vector of ones. Suppose the covariance matrix of Y
exists and is of the form vV +o2] where V is a known symmetric matrix and v and
o2 are unknown parameters. Let Q denote the subset of R® that describes the range
of the unknown parameter vector 8 = (8, v, 6%)’ and assume there is not a restriction
on the parameters of the form o,;B%+a,v+az02 = 0 for some a,, «,, a3 not all
zero. Let &/ denote the linear space of n x n symmetric matrices and define
(A4, B) = tr(AB) for A, Be «, then (&, (-,*)) is a finite-dimensional inner product
space. Denote the random variable Y Y’ which takes its values in & by U, then
o ={(4,U):Ae s} = {Y'AY: Ae o/} is the linear space of quadratic estimators.
It follows that

(4.6) (a) po = P2J+vV+ail (J=11") and
(b) ¢=spiJ,V,1}.
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The representation in (4.6.a) is of the form in (4.1) and the condition on the
parameters assumed above implies that (4.2) is satisfied. Thus, the results of this
section may be immediately applied. For instance, from Corollary 4.1 it follows
that v is «&7-estimable if and only if ¥V is not a linear combination of J and I. The
forms of H¥H and H*U for the linear operator H induced by (4.6.a) are

" 1Vl n Y'Jy
H*H=|1V1 t(V?) tr(V)|, H*U=|Y'VY
n tr(V) =n Y'Y

With these expressions one may use any of the results stated in this section. For
example, the parametric function A,8%+A,v+ ;0% is o/-estimable if and only if
the vector A = (4, 4,, 43) is in the row space of the 3 x 3 matrix H*H.

Under the transformation H a parametric function {4, &) is equal to )_;4,£,(6).
For some purposes concerning &/-estimability interest is in a certain subset of the
&;’s. Thus, it seems natural to ask if we can find an operator W such that A eR(H*W)
is both a necessary and sufficient condition for {4, &) to be Z-estimable when
certain A;’s are zero. The next theorem (i.e., Theorem 5) is probably the most
interesting result in this section and its usefulness is illustrated in a following
paper which concerns quadratic estimability in a mixed linear model situation.
In Theorem 5 and the corollaries it is assumed that %, = {b;:ieS,} and
B, = {b;:ie S} where S, and S, are disjoint sets with union equal to the first M
integers.

THEOREM 5. Let W be a linear operator such that ROW)+ .4, = B,*. A necessary
and sufficient condition for g(0) =Y ;cs,AiE(0) to be oZ-estimable is the existence

heed

of a p such that H*Wp = ) where 1; = 0 for each i€ S,.

Proor. Sufficiency follows from Corollary 2.2. Conversely if g(6) is </-estimable,
then there exists an a such that A =H*a and such that
(@, po) = Ziéi(e)(a, b)) = Zieslliéi(o) = g(0)
for all e Q. Thus by Condition 4.2 it follows that
(a,b) =4 for iesS,
=0 ieSy;
and so ae B,". Now let a =Wp+ f where fe.o/,, then A = H*a =H*Wp+H*f =
H*Wp. Thus, the proof is complete.

COROLLARY 5.1. Let W be a linear operator such that ROW) @ oy = By . If
Ay o) = ies Aili(0) is sZ-estimable then {4, & is an unbiased estimator for
(A, &> provided that & satisfies WHHE =W*Y.

COROLLARY 5.2. The number of linearly independent s<f-estimable functions
of the form g(0) =Y s5,4E(0) is equal to r(H)—dim[sp%B,] = dim [spB,]—
dim [sp %, N sp #,] = dim [R(H) " %,*].
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COROLLARY 5.3. Suppose that W is a linear operator such that R(W)+ N(H*) < #,*
but not equal to By*. For any ac By* such that a¢R(W)+ N(H*) the parametric
Sunction Y s (a, b)) (0) is sZ-estimable.

In Corollary 5.3 note that under the stated assumptions such an a always exists;
furthermore, for such an « it is also true that (a, b;) # 0 for at least one i€ S;.
Thus, in Theorem 5 the statement R(W )+ &/, = %, cannot be weakened to any
form of inclusion in %,
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