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AN ASYMPTOTIC EXPANSION FOR THE
NONCENTRAL WISHART DISTRIBUTION

By GEORGE A. ANDERSON
Trinity College

0. Summary. The noncentral Wishart density depends on a definite integral over
the group of orthogonal matrices. This integral defines a function of the latent roots
of a matrix involving the parent normal vectors and their means and covariances.
An expansion for the integral in increasing powers of the reciprocals of these roots
is developed using two distinct methods—an integration procedure and a substitu-
tion into a set of differential equations.

1. Introduction. Suppose the columns of an m x n matrix X are independently
normally distributed with common covariance matrix £ and suppose E(X) = M.
Then from James [5] the m x m matrix XX’ has the noncentral Wishart distribution

exp((—H)trZ7'MM)[[ o exp (tr HM'E™'X) dV(H)] dF(XX', n)

where dF(XX’, n) is the (central) Wishart probability element on n degrees of
freedom and dV(H) is the normalized invariant measure on the group O(n) of
n X n orthogonal matrices. From James [4] we have

dV(H) = (1/V(n)) (H'dH)
=(1/V(n)) l—_[?<jhil dh;
where h; and dh; are the ith and jth columns of H and dH respectively, and
V(n)= j O(n)(H’ dH)
= 2t D4 T TG2)

is the “volume” of the group O(n). To simplify the integration procedure of the next
section we define Y(A) = [y, exp (tr H'A)(H' dH) so that the noncentral Wishart
distribution can be written (1/¥(n))exp ((—1) tr 2™ MM )y(M'E" 'X) dF(XX', n).

From James [8] Y/(A) can be expressed as V(n) times the hypergeometric function
oF1(n/2, (3)A’A) which is defined as a series of symmetric polynomials in the
latent roots of (3)A’A. These polynomials are called zonal polynomials and a
complete discussion of them is given in James [7]. Since this series converges slowly
unless the latent roots are small some other type of expansion appears necessary if
the roots are large. The main result of this paper is to develop such an expansion
first for A non-singular and then for the more general case of A singular.

Since A’A is symmetric there is an orthogonal matrix H, such that H,’A’AH, =
diag {a;*} where a,2>a,®> = "= a,2 = 0. With H, = diag {1/(a;>)*}H,'A’ we
have H;AH, = diag {1/(a;®)*}. (The matrix H; can be adjusted if the rank of A
is less than n so that H;AH, comes to diag {(a,%)?, :*, (a,2)% 0---,0}.) Due to
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the invariance of the measure we have Y(A) = !//(HIAHZ) and hence the argument
matrix A can be assumed diagonal with nonnegative elements written in decreasing

order. Thus we write
Y(ay, az, +, a,) = Jo@m exp (tr H'A)(H' dH)

where A = diag {a;} and a, 242,224, 20.

With n=2, y(a;,a,) comes to 2n(ly(a,+a,)+Iy(a,—a,)) where Iy(z)=
(1/m) [5exp(zcos @) db is the imaginary Bessel function of the first kind. If both
a, and a, are large we can assume y/(a,, a,) approximately 2nly(a, +a,). From the
asymptotic expansion for I,(z) we finally have

W(ay, a) = Qm*e™ ¥ (ay +a) )1+ Y p=117-37 - (2m—1)*/m18™(a, +a,)").

The integration procedure of the next section is a generalization of Laplaces’
method (Erdélyi [2]) as applied to Io(a; +a,) to generate e **/(2n(a, +a,))?.
Term by term (approximate) integration of the remaining part of the integrand
yields the series in inverse powers of @, +a, as shown. In Section 3 and 4 a set of
differential equations for y given by James [6] is used. When » = 2 this set of
equations reduces to the Bessel equation y"'+y’/2—y = 0 where the independent
variable is z = a, +a,. The procedure followed in Section 3 and 4 is a generaliza-
tion of the substitution of (¢*/z*)(1+),-,a,/z™) into the Bessel equation above.
The resulting recurrence relation yields a,, = 12+32 -+ - 2m—1)%/m!8™.

2. The integration procedure. This section follows the methods of Anderson [1]
and the results there will be used whenever possible. We assume here that
A =diag {a;} is non-singular with a; =a,2-'-2a,>0. The integrand
exp (tr H'A) assumes its maximum value exp(trA) only when H is the identity
matrix I. Thus for large a; the integrand is negligible except on a small neighbor-
hood N(I) of I on the orthogonal manifold. Since N(I) will consist only of proper
orthogonal matrices we can transform Y(A) under H = exp(S) where S is an
n x n skew-symmetric matrix. From Anderson [1] (H'dH) comes to J[]}< 98

where .
J = 14+((n—2)/24) tr S+ ((8 — n)/4(6")) tr S*

+((5n%—20n+14)/8(6))(tr S*)* + - - -
and N(I) transforms into a neighborhood N(S = 0) of S = 0. It is not necessary to
go further into the nature of N(I) or N(S = 0) since for large a; we shall approximate

Y(A) not by integrating over exactly N(S=0) but simply over intervals
— 00 < §;; < oo for each s;;. Justification for this is given following equation (2.2)

below. Under H = exp (S) we have
.1 exp(trH'A) = exp (pr A)exp((—HY i< jciis?)
-exp {tr (S*A/4!) +tr (S°A/6))+ - -}
where ¢;; = a;+a;. Thus for large a;
Y(A) = exp(trA) j Ns=0)€Xp((— %)Z:? jCijSi(exp { HJ H;'< jdsij.
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If this integration is performed term by term on the expansion

(22a) (exp{ }J =1+tr(S*A/4)+(n—2)/24)trS?
+tr(SPA/6) + (3)(tr (S*A/41))?

(2.2b) +(n—2)/24)(tr S2) tr (S*A/41) + (8 — n)/4(61)) tr S*
+((5n% —20n + 14)/8(6))(tr S?)2 + - -

then for large g, the limits for each s;; can be set to + co since each integration is of
the form

Ins=0yexp (= DXre jeisi T s T Ti< s dsiy

and most of this integral is given in a small neighborhood of S = 0. The m;; are
positive even integers or zero since any term containing an odd power of an s;;
will integrate to zero. It is also clear that (2.2a) and (2.2b) yield terms in ¢;; !D and
(cijc) ™! D respectively where D = [/ < j(27t/c,-j)*. The precise form for the expan-

sion for Y/(A) is given by the theorem and conjecture below.

THEOREM 1. For large a;
(2.3) Y(A) = exp (tr A)[ T7< ;n/ec; )L+ @DLi< (Uei)+-++)

ProoF. We must expand and integrate term by term the two expressions in
(2.2a). The even-powered terms of tr S*A come to Y 7 yuxis5s5cij+ i< ;85 and
after integration these terms yield D(}7; 4z a(l/ci) +3Y 7<(1/c;)). With S,
defined as D[ ;1/c it is clear that tr S*A yields (2(n—2)+3)S, D. Finally
trS? =237, ;81 yields —2S, D so that the two expressions of (2.2a) combine to
give (3)S,D.

A lemma proved by Hsu [3] and stated in Anderson [1] can be applied here to
prove the exp (tr A)[ 7 < j(27r/c,-j)* is an asymptotic representation for Y(A) as a,
(hence all the a,’s) approaches infinity.

Since the proof of Theorem 1 proceeds easily we might try to expand and
integrate (2.2b) so as to produce the quadratic (terms in (c;;c,;) ' D) terms for the
expansion (2.3). However the second and third expressions of (2.2b) do not lend
themselves to a closed form for arbitrary n. For this reason the author has worked
out the (enormous) details involved for both n =3 and n = 4. The results are
(3%)S2+(%)S11 and (59)S2 +(5)S11 +(&)S1 - 1 respectively, where

S, = Z?q(l/cizj), S = Z?<k(1/cijcﬂ‘)’

and S;_; =Y 7<jr<ni<il/cc). For S;; and S;_, the indices are assumed
unequal so that the sums include all possible terms of the type shown (assuming
¢;; = ¢;;) without repetition. For larger n there seems to be no new type of term
possible and we suggest the following
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CoNJECTURE. For arbitrary n the quadratic terms in the expansion (2.3) for

Y(A) are (135)S2+(E0)S11 +(E4)S1-1-
Finally note that with » = 2 and both a@; and a, large ¥(A) has been shown in
the introduction to be a multiple of a Bessel function with known asymptotic

expansion

exp(c12)2n/e1 ) (14 Y m= 11232 - @m—1)*/m!(8c,,)™).
This expansion together with the coefficients of S; and S, above suggest the
following

CoNJECTURE. For arbitrary n the coefficient of ) 7« (1/cf7) in the expansion (2.3)
for Y(4)is 12:3%--- 2m—1)*/m! 8™,

3. The differential equation procedure with nonsingular argument matrix. In this
section we assume a; 2 a, = *** = a, > 0 so that A = diag {a;} is nonsingular.
James [5] has shown that /(A) satisfies
(31) l/’pp"-zgaﬁp(apl/lp_ail/li)/(apz_aiz) = ‘/l
forp=1,2, -+, n. Here y; and y;; denote the first and second partial derivatives
of Y with respect to a; and Y 7. ,f(i) = Y7, f(i)—f(p). The form (2.3) for yY(A4)
suggests a substitution ¥ = (exp (trA))([ [/ < (a;+4,))"*f. Certainly the equation
(3.1) cannot yield the constant (27)""~1) of (2.3) so that some sort of approximate
integration is necessary both to exhibit the asymptotic form for y/(A) and to reveal
the constant. The substitution is best done in two steps. First let ¥ = (exp (tr A) )¢.
Then (3.1) comes to

(3.2) ¢pp‘|‘2¢p+z:"¢p(ap ¢p—ai¢i)/(ap2 —ai2)+¢2'i'¢p 1/(a,+a)=0

where again the subscripts for ¢ denote partial differentiation. Now use logarithm ic
differentiation with the second substitution

¢ = (I—I?<j(ai+aj))_%f
= M(a))f.
Again with the subscripts for f denoting partial differentiation

¢i=M(a) (fi—(DT)

and ¢u = M(a)(fu—fi Ti+f(DU:i+HW)
where T =Y i1 /(a;i+ay), Ui = Y5 1/(a;+ay)?
and Vi=Yi<uiiri U@i+a)a;+ay).

Equation (3.2) comes to

fpp + 2fp +fp(_ Tp+z,i'¢p ap/(ap2 - aiz))
—Yiepaifi(a,’ —a)+f (DU, +BDV,—(3)Q))



1704 GEORGE A. ANDERSON

where
Q = Z?#p (ap Tp_ a; 7‘i)/(apZ _aiz)

= Z?atp (Z;';e pidjl((a,+a)a,+a)a;+a))+U,
= (%) Z?#p Z;¢p,i 1/((ap+ ai)(ap'l' aj)) + Up
=V,+U,.

Here the second line follows directly and the third from writing a; as
((a;+a)+(a,+a)—(a;+a,))/2. After simplifying the coefficient of f, to
Yt pai/(a,? —a;?) the equation for f comes to

Jop+ 2+ 2is palf,=fla,? —a) +(fIHU, = 0.
Summing over.p we finally have
Y= fut 2 X0 fit X< ; (i=flai—a) +(f12) Yi<; 1/(a;+a;)* = 0
or more briefly
(33) Dy f+2D, f+Dsf+(3)S,f =0

where D;, D,, and D; are the obvious operators and S, =Y7.;1/c} with
¢;; = a;+a;. By a term of degree m in the formal series for f we mean a multiple of
[Ti< {c;)~ ™ where the m;; are positive integers or zero and Y 7. m;; = m. Clearly
D, increases the degree of a term by one while D,, D; and S, increase the degree
by two. Thus to find the coefficients of the mth degree terms 4 of f from the
previously determined (m— 1)st degree terms g simply set

3.4) D,g+2D h+D3;g+(3)S,9 =0.
THEOREM 2. The formal series solution of (3.3) up to the quadratic terms is given by
f=1+@S:1+(39)S2+(ED)S1: +(E)S1-1-

PRrOOF. Recall that Sy, S,, S;;, and S;_; have been defined near the end of
Section 2. We also define S;=37.;1/c}, Sy, =Y"1/c}cy and S,_, =
i< k<il/c ey Saqy and S, _, include all possible terms of the type shown (assum-
ing the indices unequal and c;; = c;;) without repetition.

First let g =1 and hA=d,S,. Then Dh= —2d,S,, D,g =D3;9=0 and
(3)S29 = (3)S,. Thus (3.4) forces (—4d; +3)S, =0 or d; =1.

Now let g =d,S; and h=d,S,+d,1S;;+d,-1S;-1. Then D;h= —4d,S;—
2d,18,1—2d, 18,1, D,g=4d,S;, Diyg=4d,S,; and S,g=dS;+d;S; +
d,S,_,. Thus (3.4) forces d, = (%)d;, d;; = B)dy, and d, _ = (}) d;.

These methods become a bit clumsy for higher order terms. The author has
worked out the coefficients of the cubic terms for n = 4, 5, 6 and also for » arbitrary.
The results are given in Theorem 3 below but due to the enormous amount of
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detail required the proof is not included. We define
St =" Leijeucj
St = 2 eizeqcn
Sin = 2 ejenci
St = Z" eij ey Cim
St = Z" eij ¢ Cnn

where again the indices are assumed unequal and each Si,, includes all terms of
the type shown without repetition (with ¢;; = ¢;;).

THEOREM 3. The cubic terms of the formal series solution of (3.3) are given by
3@ (7555 +458,, +98, - ) +(@)*(1581 1, + 1581 +9531 1 +35111 + 55 10).
To close this section we consider the case n = 3. f has the form
T+ Y it iatiaz 1600 25 B3)[CaC5C5s
and from the conjecture following Theorem 1 it is clear that
c(i; +1,0,0) = ((2i; + 1)?/8(i, +1))c(iy, 0,0).

With the obvious definitions for S,, S5, S,,, and S,;, when n = 3 the fourth
degree terms come to (3)*((3%-5%2-7%/4)S,+(3:52-7/2)S5,+(3%:5:7/4)S,,+
(3%:5:7/2)S,11). These terms together with Theorem 3 suggest that

c(iy+1, i, i3) = (i + D> +ip+1i3) + 1)/8(i + 1))e(iy, iz, i3).

Repeated use of this along with the symmetry of the coefficients leads to the
following

CONJECTURE.
(iysip,i3) = (13- (2i;—1))(1-3---(2i,—1))
(13 Qig—=1)(1-3 - QUi+ i+ i) —1)) i iy iy 8 Hiaths,

4. The differential equation procedure with singular argument matrix. In this
section we use the notation and methods of Section 3 but assume a; = a, =+ =
a,> 0 so that A = diag {a;, a5, ", a,,0, -, 0} is singular. A slight extension of
James’s [6] work shows that y/(A) satisfies

(41) l//pp + Z’z:*p (ap ‘l’p —a; ‘/’i)/(apz - aiz) + (n - r)‘l’p/ap = ‘l’
for p=1, 2, -, r. The nonsingular results of Theorem 1 suggest that
Y(ag, - ,a,) =exp(tr A)(n;q (27t/cij) Hf: 1 (27t/ai)"_r)*f(al, T, ay)

or ¥ =kexp(tr A)[[i<(@i+a)[li=1a" ") "% where f=1+(HYi<;1/(a;+a)+
di'Yi-11l)a;+ -+ and k = ((2r)¥)*-1/2*+r®=0 From (4.1) we can determine the

i=1
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asymptotic form for i to within an unknown constant and the value shown for k is

only suggested.
Following Section 3 we first substitute y = (exp(tr A)) ¢ and (4.1) comes to

(42) G,p+20,+Y5s,(a,0,—a;d)/(a,>—a?)+(n—1)p,la,
+¢Q s, @, +a)+(n—r1)]a,) =0.

¢= (H;<j(ai+aj)' H;=1 a7 = M(a)f.
Then ¢; = M(a)(f;—(f/2)T) and ¢;; = M(a)(f;i—fiTi+f (R Ui+ (F)V3)) where
T, =Y 2i(1(a;+ayp))+(n—r)/a;
U;= Z'}#i(l/(ai+aj)2)+(n_r)/aiz

Now let

and
Vi= 2;'<k; sz L@ +a)a;+a)+(n—r) Z;’#i 1/(a;+aja;+(n—r)(n—r— 1)/2a?.
Equation (4.2) comes to
Font 2t fl(— Tyt Yinpa,l(a,? —a) +(n—r)a,)

= Yispaifil(a,? —a?)+ (DU, +BV,—(DQ) =
where '

Q0= pr i2+(n nNT,/a,

i#p p

= Zl<], i, j#p 1/(ap+ai)(ap+aj) +Z;#p 1/(ap+ai)2 +(n - r)Tp/ap

=U,+V,+(n—r)(n—r—1)/2a,
Here the second line follows from the similar arguments in Section 3 and the third
from writing (n—r)? as (n—r)+(n—r)(n—r—1). The coefficient of f, comes to
simply Y}« ,a;/(a,> +a;) and the equations for f simplify to

fpp+2fp+zg¥p ai(fp_fi)/(ap2 _012)+(f/4)(Up_(n - r)(n_ r— 1)/ap2 ) =0.
Summing over p we finally have
Zi’: Sat2Y 1fi+z'i‘<j (fi—=fla;—ay)
+(U1DQ Y @ +a) —(n—r)(n—r=2)¥i-11/a*) =0

or more briefly
(43)  Dyf+2D,f+D3f+(f1)S:—(fiH(n—r)(n—r—2)Yi- 1/a” =0
where D, D,, D5, and S, are as defined in Section 3 with » replaced by r. Formal
substitution into (4.3) will now yield the coefficients of the formal series for f.

THEOREM 4. The formal series solution of (4.3) up to quadratic terms is given by
f=1+@)S;+d,' Yi-11/a,
+(1539)S2:+(@E)S 11 +E)S1 -1
+@d A +d,) Y5 a? +d ' E+dy) Yicjlla;a;
+@)dy k=1 ((A)a) Yi<j, s, j2i /(@i +ap),
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whered,' = (—D)(n—r)n—r—2)and S,, S,, S1,, and S, _, are as defined in Section
2 with n replaced by r.

PROOF. Let f'=1+d;S;+d,’Y - 1/a;. Then the terms of degree two in (4.3)
come to (—4d; +3)S,+(—2d,' —(})(n—r)n—r—2))>5_,1/a;? so that d; =} and
d,' = (—§)(n—r)n—r—2). Consider the quadratic terms of f. Note that the first
four terms of equation (4.3) make up equation (3.3) with n replaced by r. Thus
the S,, Si;, and S,_, terms follow from Theorem 2. To find the additional
quadratic terms apply the first, third, and fourth terms of (4.3) to ;"> 7~ ;1/a; and
the fifth term to d,S;+d,’Y;_,1/a;,. This comes to

d'Q-Fm—r)n—r-2))Yi-1/a?
+d'G= B n—rn—r—2))T} ;.ix;1/ala;
+@)d, 'erc= 12;<j; i=2laa;+ aj)z +1/a2(a;+ a;)).

Finally apply the second term of equation (4.3) to constant multiples of the
additional quadratic terms for f as shown in the theorem to complete the proof.

The results of this section suggest that with A = diag {a;,a5,°**,a,0,:-,0},
¥(A) has the asymptotic expansion

(exp(tr A [i<, (@it a)]i-1 (@)™ 7%

as the ag; increase without bound. Certainly the conjecture given at the end of Section
2 also holds here, namely, that the coefficient of Y ;< ;1/(a;+a;)™ in the expansion
for fis 12-32 -+ 2m—1)/m! 8™,
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