A NECESSARY CONDITION FOR GLIVENKO-CANTELLI CONVERGENCE IN E_n

By JOHN DEHARDT

California State College, Los Angeles

Let μ be a probability measure on the Borel sets, β , in k dimensional Euclidean space E_k and X_1, X_2, \cdots a sequence of independent random vectors with values in E_k such that $P(X_i \in A) = \mu(A)$ for every A in β , $i = 1, 2, \cdots$. When $k \ge 2$, a necessary condition is given for

(1)
$$\sup_{f \in \mathcal{M}} |n^{-1} \sum_{i=1}^{n} f(X_i) - |f| d\mu| \to_{a.s.} 0,$$

where \mathcal{M} is the class of all monotone functions on E_k . This theorem answers a conjecture of Blum [1].

For $k \ge 2$, the graph of a real-valued function with domain E_{k-1} which is strictly monotone in each variable is said to be a strictly monotone graph in E_k . Let L be the set of points x in E_k with $\mu(x) > 0$. Define $\mu^L(A)$ as $\mu(AL^c)$ for all A in β .

THEOREM. For $k \ge 2$, if there is a strictly monotone graph, B in E_k with $\mu^L(B) > 0$, then (1) does not hold.

PROOF. Suppose there is a strictly monotone graph B in E_k with $\mu^L(B) > 0$. Without loss of generality it is supposed that B is the graph of a function on E_{k-1} which is decreasing in each variable. Corresponding to $\mathbf{x} = (x_1, x_2, \dots, x_k)$ in E_k let

$$A_x = \{(y_1, y_2, \dots, y_k): y_i \ge x_i, i = 1, 2, \dots, k\}.$$

Let $A' = \bigcup_{x \in B} A_x$ and A'' = A' - B. Let f' and f'' be the characteristic functions of A' - LB and A''. Given a sample sequence, $\{x_1, x_2, \cdots\}$ x_i in E_k , for each positive integer n define A(n) as $\bigcup_{x_i \in A', 1 \le i \le n} A_{x_i}$ and f_n as the characteristic function of A(n) - LB. For f in \mathcal{M} , let $S_n(f) = n^{-1} \sum_{i=1}^n f(x_i)$. It follows that $S_n(f') = S_n(f_n)$ and that $\{f_n\}$ is a non-decreasing sequence of monotone functions on E_k . Since $A(n) - LB \subset A'' \cup [\{x_1, x_2, \cdots\} \cap BL^c]$ for all n and $\mu [\{x_1, x_2, \cdots\} \cap BL^c] = 0$, $\lim_{n \le n} f_n = \sum_{i=1}^n f_n = \sum_$

$$\int f_n d\mu \to \int \lim f_n d\mu \leqq \int f^{\prime\prime} d\mu.$$

From $S_n(f') \to \int f' d\mu$ it follows that

$$\sup_{f \in \mathcal{M}} |S_n(f) - \int f d\mu| \ge |S_n(f_n) - \int f_n d\mu| \to_{a.s.}$$
$$\int f' d\mu - \int \lim f_n d\mu \ge \int f' d\mu - \int f'' d\mu = \mu^L(B).$$

Hence (1) does not hold.

Define a class \mathscr{A} of sets in β as follows: A is in \mathscr{A}_1 , if (x_1, \dots, x_k) in A and $y_i \leq x_i$, $i = 1, \dots, k$ imply that (y_1, \dots, y_k) is in A. Let \mathscr{A}_i , $i = 1, 2, \dots, 2^k$ be

Received July 7, 1969.

classes defined as \mathscr{A}_1 with the inequalities reversed one at a time. $\mathscr{A} = \bigcup_{i=1}^{2^k} \mathscr{A}_i$. The empiric measure $\mu^n(A)$ is the proportion of the first n random vectors which are in A. In [1], Blum proved that if μ is absolutely continuous with respect to Lebesgue measure then

(2)
$$P[\lim_{n\to\infty}\sup_{A\in\mathcal{A}}|\mu^n(A)-\mu(A)|=0]=1.$$

He conjectured that (2) holds with no assumption on μ . As a special case of the Theorem, it is necessary for (2) that μ^L be 0 on all strictly monotone graphs in E_k .

REFERENCE

[1] Blum, J. R. (1955). On the convergence of empiric distribution functions. *Ann. Math. Statist.* **26** 527-529.