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ASYMPTOTIC NORMALITY OF RANDOM RANK STATISTICS

By Hira LAL KouL

Michigan State University
0. Summary. Asymptotic normality of a class of rank statistics based on random
number of observations, called random rank statistics, is proved. Underlying
rv’s are assumed to be i.i.d.

1. Let Y;, i 2 1 be a sequence of i.i.d. rv’s with a cdf F, {c;} be a sequence of con-
stants, N,, r = 1 a sequence of positive integer valued rv’s and n,, r 2 1 a sequence
of positive integers. All rv’s are defined on the same sample space.

Let

(1.1 Ry =Y1= (Y| =¥ 1SigN,.
Let ¢ be a score function defined on [0, 1] to real line.
Define

1.2) Sy, =N, 7' Y1 ¢ (RN, +1)sgn (Y))

where sgn(x) = I(x = 0)—I(x < 0). _

Our main result is Theorem 2.1 which gives asymptotic normality of N,* Sy .
This result could be used in the following situations.

Suppose we were observing Y;, i = 1, sequentially and stop after observing N,
observations and, would like to test H,: f = Oin the regression model Y; = fic;+ Z,,
where Z; are i.i.d. F symmetric about zero. One could use Sy as a test statistic to
test Hy. Our result below says that under suitable conditions on the stopping
variables N,, F and {c;} the cut-off value for large r may be computed from normal
tables. Another situation where asymptotic normality of NSy is useful in the
problem of constructing bounded length confidence interval of prescribed coverage
probability for B, using signed rank statistic, for example see [1].

It may be mentioned that our result is more general than the Pyke-Shorack
result of [6] in the sense that one-sample and two-sample statistics can be obtained
from Sy, above by choosing {c;} appropriately. But our results are valid only under
null hypothesis that Y; are i.i.d. F. Furthermore our proof is simpler.

If we combine the comments mentioned at the end of paper [1] with our Theorem
2.1 here, we can obtain asymptotic normality of N,Sy under alternatives
B, = N,”*B, for some f,,.

We next state assumption.

Let Fe #, where

(1.3) &F = {F; F acontinuous cdf, F(x) =1—F(—x)V x}.
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- About {c;} we assume that
(1.4) lim,_, , max, ¢;<,¢;2/> 7=, ¢;2 = 0.
{n,} and {N,} are such that n, » oo as r - co and
(1.5) N,/n,—>1 inprob.as r— oo.

In the above and what follows r is thought to be integer, but this is no restriction.
One can have r as continuous time parameter also. What is important is that N,
and n, both be integer valued.

Let

(1.6) G(x) =2F(x)—1 for x>0.
Without loss of generality we may assume that
(1.7) G(x)=x 0x<1.

For, if there are any flat spots in G, one can delete these flat spots without changing
the order of ¥’s and hence the distribution of ranks of | Y|’s like this one ends with
a strictly increasing cdf G which now may be transformed by a strictly increasing
transformation to the form given by (1.7).

About ¢ function, we assume that ¢ is absolutely continuous and

(1.8) 0<fs0*<0; |lo||=[s|e'w)|du < .
Let
mAx) = N~ 3N ¢ I(Y; < x)sgn(Y))
(1.9) A{(x) = &,[F(x) sgn(x)—I(x 2 0)]
&=N"'Y" ¢
(1.10) H(|x) = N,7* ¥, 1Y < |x])
A (|x}) = G(|x)
(1.11) Ly(x) = N*[u(x) = B (x)]
(1.12) Z(|xy = NA[H(x| - H(x)].
For 0 £ y £ 1, we define
(1.13) H, " Y(y) =inf{x 2 0; H/(x) = y}.
Also let
(1.14) o, =n"'Yl ¢ [s0*(u)du = 0% 0,2
Let

(1.15) Wy () = N, "3 d{I(Y; < x) = F(0)
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Note the following relationships:
If d; = ¢; in (1.15) we have

(1.16) L(x) = Wy (x)—2Wy,(0) if x=0;
= Wy, (%) if x<O.
If d; = 1, we have
(1.17) Z(|x]) = Wy (|x]) — W, (= |x)).

In what follows all probability statements are computed under the probability
measure given by {Y;} and {N,}.

Before proceeding further we state a P. Lévy type inequality for rv’s in D[— oo,
+ o0] space. Its proof is a straightforward generalization of one appearing on
page 45 in [4] under the name of Skorhod inequality after noticing that “sum” is
measurable operation in D[— o0, + o0] when metrized by Skorhod metric. Also
see [2].

If X;, 1 £i < nareindependent rv’s on D[— o0, + 0], i.e. Xi(t), —0 £t < +
is a stochastic process with jumps of first kind for each i, and if S,(¢) = Y 71—, X(?)
then

, Prob[||S,|| = €]
1 i< . <
(1.18)  Prob[max, <;<,||S;|| = 2¢] = a2, 2, Prob[[[S,— 5[ =]

where || -|| is sup norm.

LEMMA 1.1. The stochastic processes {o, 3 Wy (x), —0 < x < +0}, r21 are
relatively compact as r — oo, with continuous Gaussian process as its limit, provided
max, <<, di2/Y 1, di? = 0, F is continuous and N,[n, — 1 in probability.

PROOF. One first shows that the processes {c, W, (x), —00 S x < +o} have a
continuous Gaussian process as a limit. The proof of this may be found in Theorem
A3 of [5] by putting ¢ = 0 in that theorem. However note that in Theorem A3 of
[5] we have assumed that F be absolutely continuous with bounded density f and
62 ; be bounded in the limit. But if one goes through that proof, one sees that these
assumptions are not really needed once we normalize by g, ;, but continuity of F
is crucial.

Next one compares o, 4 Wy_ with o, 4 W, . For, for any ¢ > 0, n > 0 we have

Pr[||Wy,— W, || 2 2¢0,.4]
< Pr[max, < ;<m ||W;— W,,|| = 2¢0, ]+ Pr[|N,—n,| = nn,]+6,(e,n)

Pr || W, = W, || Z €0,,4]
1—max,, < ;<m Pr[||W, —Wj|| Z €]
where m, = [n,(1+n)+ 1], [x] = greatest integer less than x.

Note that last inequality follows from (1.18). By assumption second term on the
right-hand side above can be made small for large r. That first term can be made

IIA

+Pr [INr_nrl 2 ”nr] +5r(8”1)
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small is not hard to show (see [1], Lemma (1.3)). J,(¢, n) is similar to the first term
on the right-hand side of first inequality where now max is taken over v, < j < n,;
v, = [n,—n,g], which may be shown to be small by argument similar to one used
in showing first term is small. Hence the lemma.

LeEMMA 1.2. Under (1.3), (1.4) and (1.5)
(1.19) SUPo<y<1Ome |L(H, '(»))—L(H, ()| >0
in probability as r - .

Proor. Here we use the fact that H,(x) = G(x) = x, 0 £ x £ 1. Now in view of
Lemma 1.1, with d; = ¢;, we have in view of (1.16) that for every ¢ > 0
lim,_, o lim, ., , Prob [sup,, _, <5 | Li(x)— L,(y)| 2 ¢0,,.] = 0.
Again using (1.17) and Lemma 1.3 with d; = 1, we have for any ¢ > 0
SUP- psxs0 lH,(le)—H,(|x|)| -0

in probability as r — .
But since H,(x) = x for 0 £ x £ 1 we have, making change of variable,

Sup0§y§oo lHr-l(y)_Hr-l(y)l = Sup0§y§1 |Hr—1(y)_y| -0
in probability.
Hence

lim, , , Prob [sup, sys1 0.;3 lLr(Hr_ '(y))—L/(H,” l()’))l <¢]
; lirnr-n:o Prob [suplx—y|§6 |Lr(x)—Lr()’)| é €0y, sup0§z§1 lHr_ l(z)_zl é 6]
=1.

This then concludes the proof.

2. Asymptotic normality of Sy . In view of (1.2), (1.9) and (1.10) we can write

(21) SNr = .‘.g-ooo ¢(Hr(|xl)) dﬂ,(x) a.s.
Notice that
(2.2) 120 o(H(|x])) di(x) = 0 = |2, o(H,(|x])) diz(x)

holds with probability 1 in view of symmetry of F.
THEOREM 2.1. Under (1.3), (1.4), (1.5) and (1.8)
(2.3) Z(N,* Sy, [oy,)— N(O,1)

asr— oo.

Proor. The proof uses usual decomposition of Sy_and facts (2.2).
We rewrite

Sy, = [20 @(HL|x])) d{p,(x) - A(x)}
+ 2o [o(H(|x])) = @(H,(|x]))] d{(x) — B ()}
= B,+R, say.
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Recalling definition of L, from (1.11), we have
N2R,| = |f& [o(H (%) — o(G(|x]))] dL,(x)|
= |fo {L(H,” (N~ L(»)} ¢’ () dy|
= SUPg<y<1 lLr(Hr—l(y))_Lr(y)l "'n_,c1 : ”q’” a'qn_l

which — 0 in probability in view of (1.8) and (1.19).
The term

0,  N*Ryy =0, |2, [o(H(|x]) = o(G(|x[))] dL,(x)

may be handled similarly.

-1
g,

Therefore |o, * N,*R,| = |o,.2 N,*[R,; +R,,]| = 0 in probability as r - co.
Next we show that

0, N2 B, =0, [ 2, o(H/|x]) dL,(x)
= an_,l N'—%ng; 16 ‘P(Gl Yil) sgn(Y))
have a limiting normal distribution.

Write V, =37, c;o(G(|Y|))sgn(Y,). Then o, ! N*B, = 0, N,"*V, . First we

nrc

show that o, 'n,”*Vy_has limiting normal distribution. Then since N,/n, - 1 in
probability, we can easily conclude that £(s, ' N,”*V}, ) - N(0,1) as r — 0.

Now forany ¢ > 0,7 >0
Prob[|n,"*Vy —n,"%V, | 2 ¢0,,]
< Prob[max, <i<m, |Vi—V,| 2 €6, 0,3 ]+Prob[|[N,—n,| > n,n]

< Prob[|V,, —V,| 2 ¢q, nt]
= 1-max, <y<n Pr[|V,,—Vi| 2 €0, 1]

+Prob[|N,—n,| > n,n]

where m, is as defined in the proof of Lemma 1.1, and A,(e, ) is similar to the first
term on the right-hand side of the first inequality where now max is taken v, £j <
n; v, = [nr_nr”]'

Last inequality follows from applying (1.18).

Now let M, = (V,, —V,)o, ' n, "% Note that M, is sum of m,—n, independent
rv’s with means equal to zero.

Also observe that

Var(M,) <n," "o, 2 Y%, 41 ¢ E@*(G(|Yi])

= 6’;02 [(mr/ nr) ar%lrc - 0'3'0]

= (mr/ nr)(am,-c/ anrc)z -1

which can be made arbitrarily small for sufficiently large r and arbitrarily small #.
This implies M, — 0 in probability as r — co and hence first term in (2.3) tends
to zero as r — co0. Second term of (2.3) tends to zero by (1.5). Similarly A,(e, 1) may
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be shown to be small. Hence o,'n,"*|Vy —V,|—0 in probability. But under
(1.3), (1.4) and (1.8) it is easy to verify thats,, ' n,”* ¥, haslimiting N(0, 1) distribu-
tion [see 3]. Hence o, ' n,”* ¥}, has limiting normal N(0, 1) distribution. In order
to conclude the proof of (2.3) we need to show that

2.5) (6%,—02)a2 >0 in probability.

In order to prove (2.5), it is enough to show that |67, . — 02 | o,.2 — 0 in probability.

However, since P([n,—nn] < N, < m,) = 1—¢ for large r, we have

n,-c |6Nrc Onec

—"an,-c |N_12i n,.+lc +(N_l I)Zl lc |
é I(vr_ mr(am,-c/o-n,-c)z - nr/vrl + n

with probability at least 1 —¢, where m, is one that appears above and v, = [n,—n,7].
Now note that the right-hand side above can be made very small for large r and
arbitrarily small #. With (2.5) and limiting normality of o, ! N,* Sy_at hand it is
easy to conclude (2.3). The proof is terminated.
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