ASYMPTOTIC NORMALITY OF RANDOM RANK STATISTICS

By HIRA LAL KOUL

Michigan State University

- **0.** Summary. Asymptotic normality of a class of rank statistics based on random number of observations, called random rank statistics, is proved. Underlying rv's are assumed to be i.i.d.
- 1. Let Y_i , $i \ge 1$ be a sequence of i.i.d. rv's with a cdf F, $\{c_i\}$ be a sequence of constants, N_r , $r \ge 1$ a sequence of positive integer valued rv's and n_r , $r \ge 1$ a sequence of positive integers. All rv's are defined on the same sample space.

Let

(1.1)
$$R_{i} = \sum_{j=1}^{N_{r}} I(|Y_{j}| \le |Y_{i}|) \qquad 1 \le i \le N_{r}.$$

Let φ be a score function defined on [0, 1] to real line. Define

(1.2)
$$S_{N_r} = N_r^{-1} \sum_{i=1}^{N_r} c_i \varphi(R_i/N_r + 1) \operatorname{sgn}(Y_i)$$

where $sgn(x) = I(x \ge 0) - I(x < 0)$.

Our main result is Theorem 2.1 which gives asymptotic normality of $N_r^{\frac{1}{2}}S_{N_r}$. This result could be used in the following situations.

Suppose we were observing Y_i , $i \ge 1$, sequentially and stop after observing N_r observations and, would like to test $H_0: \beta = 0$ in the regression model $Y_i = \beta c_i + Z_i$, where Z_i are i.i.d. F symmetric about zero. One could use S_{N_r} as a test statistic to test H_0 . Our result below says that under suitable conditions on the stopping variables N_r , F and $\{c_i\}$ the cut-off value for large r may be computed from normal tables. Another situation where asymptotic normality of $N_r^{\frac{1}{2}}S_{N_r}$ is useful in the problem of constructing bounded length confidence interval of prescribed coverage probability for β , using signed rank statistic, for example see [1].

It may be mentioned that our result is more general than the Pyke-Shorack result of [6] in the sense that one-sample and two-sample statistics can be obtained from S_{N_r} above by choosing $\{c_i\}$ appropriately. But our results are valid only under null hypothesis that Y_i are i.i.d. F. Furthermore our proof is simpler.

If we combine the comments mentioned at the end of paper [1] with our Theorem 2.1 here, we can obtain asymptotic normality of $N_r^{\frac{1}{2}}S_{N_r}$ under alternatives $\beta_r = N_r^{-\frac{1}{2}}\beta_0$ for some β_0 .

We next state assumption.

Let $F \in \mathcal{F}$, where

(1.3)
$$\mathscr{F} = \{F; F \text{ a continuous cdf}, F(x) = 1 - F(-x) \forall x\}.$$

Received August 25, 1969; revised February 25, 1970.

About $\{c_i\}$ we assume that

(1.4)
$$\lim_{n\to\infty} \max_{1\leq i\leq n} c_i^2 / \sum_{i=1}^n c_i^2 \to 0.$$

 $\{n_r\}$ and $\{N_r\}$ are such that $n_r \to \infty$ as $r \to \infty$ and

$$(1.5) N_r/n_r \to 1 in prob. as r \to \infty.$$

In the above and what follows r is thought to be integer, but this is no restriction. One can have r as continuous time parameter also. What is important is that N_r and n_r both be integer valued.

Let

(1.6)
$$G(x) = 2F(x) - 1$$
 for $x > 0$.

Without loss of generality we may assume that

$$G(x) \equiv x \qquad 0 \le x \le 1.$$

For, if there are any flat spots in G, one can delete these flat spots without changing the order of Y's and hence the distribution of ranks of |Y|'s like this one ends with a strictly increasing cdf G which now may be transformed by a strictly increasing transformation to the form given by (1.7).

About φ function, we assume that φ is absolutely continuous and

(1.8)
$$0 < \int_0^1 \varphi^2 < \infty; \qquad ||\varphi|| = \int_0^1 |\varphi'(u)| \, du < \infty.$$

Let

(1.9)
$$\mu_{r}(x) = N_{r}^{-1} \sum_{i=1}^{N_{r}} c_{i} I(Y_{i} \leq x) \operatorname{sgn}(Y_{i})$$

$$\bar{\mu}_{r}(x) = \bar{c}_{r} [F(x) \operatorname{sgn}(x) - I(x \geq 0)]$$

$$\bar{c}_{r} = N_{r}^{-1} \sum_{i=1}^{N_{r}} c_{i}$$

(1.10)
$$H_{r}(|x|) = N_{r}^{-1} \sum_{i=1}^{N_{r}} I(|Y_{i}| \leq |x|)$$

$$\overline{H}_r(|x|) = G(|x|)$$

(1.11)
$$L_r(x) = N_r^{\frac{1}{2}} \left[\mu_r(x) - \bar{\mu}_r(x) \right]$$

(1.12)
$$Z_r(|x|) = N_r^{\frac{1}{2}} [H_r(|x| - \overline{H}_r(|x|))].$$

For $0 \le y \le 1$, we define

(1.13)
$$H_r^{-1}(y) = \inf\{x \ge 0; \ H_r(x) \ge y\}.$$

Also let

(1.14)
$$\sigma_n^2 = n^{-1} \sum_{i=1}^n c_i^2 \cdot \int_0^1 \varphi^2(u) \, du = \sigma_{nc}^2 \, \sigma_{\alpha}^2.$$

Let

$$(1.15) W_{N_r}(x) = N_r^{-\frac{1}{2}} \sum_{i=1}^{N_r} d_i \{ I(Y_i \le x) - F(x) \}.$$

Note the following relationships:

If $d_i = c_i$ in (1.15) we have

(1.16)
$$L_{r}(x) = W_{N_{r}}(x) - 2W_{N_{r}}(0) \quad \text{if} \quad x \ge 0;$$
$$= W_{N_{r}}(x) \quad \text{if} \quad x < 0.$$

If $d_i = 1$, we have

(1.17)
$$Z_r(|x|) = W_{N_r}(|x|) - W_{N_r}(-|x|).$$

In what follows all probability statements are computed under the probability measure given by $\{Y_i\}$ and $\{N_r\}$.

Before proceeding further we state a P. Lévy type inequality for rv's in $D[-\infty, +\infty]$ space. Its proof is a straightforward generalization of one appearing on page 45 in [4] under the name of Skorhod inequality after noticing that "sum" is measurable operation in $D[-\infty, +\infty]$ when metrized by Skorhod metric. Also see [2].

If X_i , $1 \le i \le n$ are independent rv's on $D[-\infty, +\infty]$, i.e. $X_i(t), -\infty \le t \le +\infty$ is a stochastic process with jumps of first kind for each i, and if $S_n(t) = \sum_{i=1}^n X_i(t)$ then

$$(1.18) \quad \operatorname{Prob}\left[\max_{1 \leq j \leq n} ||S_j|| \geq 2\varepsilon\right] \leq \frac{\operatorname{Prob}\left[||S_n|| \geq \varepsilon\right]}{1 - \max_{1 \leq j \leq n} \operatorname{Prob}\left[||S_n - S_j|| \geq \varepsilon\right]}$$

where $||\cdot||$ is sup norm.

LEMMA 1.1. The stochastic processes $\{\sigma_{n,d}^{-1} W_{N_r}(x), -\infty \leq x \leq +\infty\}$, $r \geq 1$ are relatively compact as $r \to \infty$, with continuous Gaussian process as its limit, provided $\max_{1 \leq i \leq n_r} d_i^2 / \sum_{i=1}^{n_r} d_i^2 \to 0$, F is continuous and $N_r/n_r \to 1$ in probability.

PROOF. One first shows that the processes $\{\sigma_{n_r d}^{-1} W_{n_r}(x), -\infty \le x \le +\infty\}$ have a continuous Gaussian process as a limit. The proof of this may be found in Theorem A3 of [5] by putting t=0 in that theorem. However note that in Theorem A3 of [5] we have assumed that F be absolutely continuous with bounded density f and $\sigma_{n_r d}^2$ be bounded in the limit. But if one goes through that proof, one sees that these assumptions are not really needed once we normalize by $\sigma_{n_r d}^{-1}$, but continuity of F is crucial.

Next one compares $\sigma_{n-d}^{-1}W_{N_n}$ with $\sigma_{n-d}^{-1}W_{n_n}$. For, for any $\varepsilon > 0$, $\eta > 0$ we have

$$\begin{split} &\Pr\left[\left|\left|W_{N_r} - W_{n_r}\right|\right| \geq 2\varepsilon\sigma_{n_r d}\right] \\ &\leq \Pr\left[\max_{n_r \leq j \leq m_r}\left|\left|W_j - W_{n_r}\right|\right| \geq 2\varepsilon\sigma_{n_r d}\right] + \Pr\left[\left|N_r - n_r\right| \geq \eta n_r\right] + \delta_r(\varepsilon, \eta) \\ &\leq \frac{\Pr\left[\left|\left|W_{m_r} - W_{n_r}\right|\right| \geq \varepsilon\sigma_{n_r d}\right]}{1 - \max_{n_r \leq j \leq m_r} \Pr\left[\left|\left|W_{n_r} - W_{j}\right|\right| \geq \varepsilon\right]} + \Pr\left[\left|N_r - n_r\right| \geq \eta n_r\right] + \delta_r(\varepsilon, \eta) \end{split}$$

where $m_r = [n_r(1+\eta)+1]$, [x] = greatest integer less than x.

Note that last inequality follows from (1.18). By assumption second term on the right-hand side above can be made small for large r. That first term can be made

small is not hard to show (see [1], Lemma (1.3)). $\delta_r(\varepsilon, \eta)$ is similar to the first term on the right-hand side of first inequality where now max is taken over $v_r \le j \le n_r$; $v_r = [n_r - n_r \varepsilon]$, which may be shown to be small by argument similar to one used in showing first term is small. Hence the lemma.

LEMMA 1.2. Under (1.3), (1.4) and (1.5)

(1.19)
$$\sup_{0 \le y \le 1} \sigma_{n,c}^{-1} \left| L_r(H_r^{-1}(y)) - L_r(\overline{H}_r^{-1}(y)) \right| \to 0$$

in probability as $r \to \infty$.

PROOF. Here we use the fact that $\overline{H}_r(x) \equiv G(x) \equiv x$, $0 \le x \le 1$. Now in view of Lemma 1.1, with $d_i = c_i$, we have in view of (1.16) that for every $\varepsilon > 0$

$$\lim_{\delta \to 0} \lim_{r \to \infty} \operatorname{Prob} \left[\sup_{|x-y| \le \delta} \left| L_r(x) - L_r(y) \right| \ge \varepsilon \sigma_{n_r c} \right] = 0.$$

Again using (1.17) and Lemma 1.3 with $d_i = 1$, we have for any $\varepsilon > 0$

$$\sup_{-\infty \le x \le \infty} |H_r(|x|) - \overline{H}_r(|x|)| \to 0$$

in probability as $r \to \infty$.

But since $\overline{H}_r(x) \equiv x$ for $0 \le x \le 1$ we have, making change of variable,

$$\sup_{0 \le y \le \infty} |H_r^{-1}(y) - \overline{H}_r^{-1}(y)| = \sup_{0 \le y \le 1} |H_r^{-1}(y) - y| \to 0$$

in probability.

Hence

$$\begin{aligned} &\lim_{r\to\infty}\operatorname{Prob}\left[\sup_{0\leq y\leq 1}\sigma_{n_rc}^{-1}\left|L_r(H_r^{-1}(y))-L_r(H_r^{-1}(y))\right|\leq \varepsilon\right]\\ &\geq \lim_{r\to\infty}\operatorname{Prob}\left[\sup_{|x-y|\leq \delta}\left|L_r(x)-L_r(y)\right|\leq \varepsilon\,\sigma_{n_rc},\sup_{0\leq z\leq 1}\left|H_r^{-1}(z)-z\right|\leq \delta\right]\\ &=1.\end{aligned}$$

This then concludes the proof.

2. Asymptotic normality of S_{N_n} . In view of (1.2), (1.9) and (1.10) we can write

(2.1)
$$S_{N_r} = \int_{-\infty}^{\infty} \varphi(H_r(|x|)) d\mu_r(x) \quad \text{a.s.}$$

Notice that

(2.2)
$$\int_{-\infty}^{\infty} \varphi(\overline{H}_r(|x|)) d\overline{\mu}_r(x) = 0 = \int_{-\infty}^{\infty} \varphi(H_r(|x|)) d\overline{\mu}_r(x)$$

holds with probability 1 in view of symmetry of F.

THEOREM 2.1. Under (1.3), (1.4), (1.5) and (1.8)

(2.3)
$$\mathscr{L}(N_r^{\frac{1}{2}}S_{N_r}/\sigma_{N_r}) \to N(0,1)$$

as $r \to \infty$.

PROOF. The proof uses usual decomposition of S_{N_r} and facts (2.2). We rewrite

$$\begin{split} S_{N_r} &= \int_{-\infty}^{\infty} \varphi(\overline{H}_r(\big|x\big|)) \, d\big\{\mu_r(x) - \overline{\mu}_r(x)\big\} \\ &+ \int_{-\infty}^{\infty} \left[\varphi(H_r(\big|x\big|)) - \varphi(\overline{H}_r(\big|x\big|))\right] \, d\big\{\mu_r(x) - \overline{\mu}_r(x)\big\} \\ &= B_r + R_r \quad \text{say}. \end{split}$$

Recalling definition of L_r from (1.11), we have

$$\begin{split} \sigma_{n_r}^{-1} \left| N_r^{\frac{1}{2}} R_{r1} \right| &= \left| \int_0^\infty \left[\varphi(H_r(|x|)) - \varphi(G(|x|)) \right] dL_r(x) \right| \\ &= \left| \int_0^1 \left\{ L_r(H_r^{-1}(y)) - L_r(y) \right\} \varphi'(y) \, dy \right| \\ &\leq \sup_{0 \leq y \leq 1} \left| L_r(H_r^{-1}(y)) - L_r(y) \right| \sigma_{n_r}^{-1} \cdot \left| |\varphi| \right| \sigma_{\omega}^{-1} \end{split}$$

which $\rightarrow 0$ in probability in view of (1.8) and (1.19).

The term

$$\sigma_{n_r}^{-1} N_r^{\frac{1}{2}} R_{r2} = \sigma_{n_r}^{-1} \int_{-\infty}^{0} \left[\varphi(H_r(|x|)) - \varphi(G(|x|)) \right] dL_r(x)$$

may be handled similarly.

Therefore $\left|\sigma_{n_rc}^{-1} N_r^{\frac{1}{2}} R_r\right| = \left|\sigma_{n_rc}^{-1} N_r^{\frac{1}{2}} [R_{r1} + R_{r2}]\right| \to 0$ in probability as $r \to \infty$. Next we show that

$$\sigma_{n_r}^{-1} N_r^{\frac{1}{2}} B_r = \sigma_{n_r}^{-1} \int_{-\infty}^{\infty} \varphi(\overline{H}_r(|x|) dL_r(x)$$

$$= \sigma_{n_r}^{-1} N_r^{-\frac{1}{2}} \sum_{i=1}^{N_r} c_i \varphi(G|Y_i|) \operatorname{sgn}(Y_i)$$

have a limiting normal distribution.

Write $V_n = \sum_{i=1}^n c_i \varphi(G(|Y_i|)) \operatorname{sgn}(Y_i)$. Then $\sigma_{n_r}^{-1} N_r^{\frac{1}{2}} B_r = \sigma_{n_r}^{-1} N_r^{-\frac{1}{2}} V_{N_r}$. First we show that $\sigma_{n_r}^{-1} n_r^{-\frac{1}{2}} V_{N_r}$ has limiting normal distribution. Then since $N_r/n_r \to 1$ in probability, we can easily conclude that $\mathcal{L}(\sigma_{n_r}^{-1} N_r^{-\frac{1}{2}} V_{N_r}) \to N(0, 1)$ as $r \to \infty$.

Now for any $\varepsilon > 0$, $\eta > 0$

$$\begin{split} &\operatorname{Prob}\left[\left|n_{r}^{-\frac{1}{2}} V_{N_{r}} - n_{r}^{-\frac{1}{2}} V_{n_{r}}\right| \geq \varepsilon \, \sigma_{n_{r}}\right] \\ &\leq \operatorname{Prob}\left[\max_{n_{r} \leq k \leq m_{r}} \left|V_{k} - V_{n_{r}}\right| \geq \varepsilon \, \sigma_{n_{r}} \, n_{r}^{\frac{1}{2}}\right] + \operatorname{Prob}\left[\left|N_{r} - n_{r}\right| > n_{r} \, \eta\right] \\ &\leq \frac{\operatorname{Prob}\left[\left|V_{m_{r}} - V_{n_{r}}\right| \geq \varepsilon \, \sigma_{n_{r}} \, n_{r}^{\frac{1}{2}}\right]}{1 - \max_{n_{r} \leq k \leq m_{r}} \operatorname{Pr}\left[\left|V_{m_{r}} - V_{k}\right| \geq \varepsilon \, \sigma_{n_{r}} \, n_{r}^{\frac{1}{2}}\right]} + \operatorname{Prob}\left[\left|N_{r} - n_{r}\right| > n_{r} \, \eta\right] \end{split}$$

where m_r is as defined in the proof of Lemma 1.1, and $\Delta_r(\varepsilon, \eta)$ is similar to the first term on the right-hand side of the first inequality where now max is taken $v_r \le j \le n_r$; $v_r = [n_r - n_r \eta]$.

Last inequality follows from applying (1.18).

Now let $M_r = (V_{m_r} - V_{n_r}) \sigma_{n_r}^{-1} n_r^{-\frac{1}{2}}$. Note that M_r is sum of $m_r - n_r$ independent rv's with means equal to zero.

Also observe that

$$\begin{aligned} \operatorname{Var}(M_r) &\leq n_r^{-1} \, \sigma_{n_r}^{-2} \sum_{i=n_r+1}^{m_r} c_i^{\,2} \, E \, \varphi^2(G(|Y_i|)) \\ &= \sigma_{n_r c}^{-2} \left[(m_r/n_r) \, \sigma_{m_r c}^2 - \sigma_{n_r c}^2 \right] \\ &= (m_r/n_r) (\sigma_{m_r c}/\sigma_{n_r c})^2 - 1 \end{aligned}$$

which can be made arbitrarily small for sufficiently large r and arbitrarily small η . This implies $M_r \to 0$ in probability as $r \to \infty$ and hence first term in (2.3) tends to zero as $r \to \infty$. Second term of (2.3) tends to zero by (1.5). Similarly $\Delta_r(\varepsilon, \eta)$ may

be shown to be small. Hence $\sigma_{n_r}^{-1} n_r^{-\frac{1}{2}} |V_{N_r} - V_{n_r}| \to 0$ in probability. But under (1.3), (1.4) and (1.8) it is easy to verify that $\sigma_{n_r}^{-1} n_r^{-\frac{1}{2}} V_{n_r}$ has limiting N(0, 1) distribution [see 3]. Hence $\sigma_{n_r}^{-1} n_r^{-\frac{1}{2}} V_{N_r}$ has limiting normal N(0, 1) distribution. In order to conclude the proof of (2.3) we need to show that

(2.5)
$$(\sigma_{N_n}^2 - \sigma_{n_n}^2) \sigma_{n_n}^2 \to 0$$
 in probability.

In order to prove (2.5), it is enough to show that $|\sigma_{N_rc}^2 - \sigma_{n_rc}^2| \sigma_{n_rc}^{-2} \to 0$ in probability. However, since $P([n_r - n_r \eta] \le N_r \le m_r) \ge 1 - \varepsilon$ for large r, we have

$$\begin{aligned} \sigma_{n_rc}^{-2} \left| \sigma_{N_rc}^{2} - \sigma_{n_rc} \right| \\ &\leq \sigma_{n_rc}^{-2} \left| N_r^{-1} \sum_{i=n_r+1}^{N_r} c_i^2 + (N_r^{-1} - n_r^{-1}) \sum_{i=1}^{n_r} c_i^2 \right| \\ &\leq \left| (v_r^{-1} m_r (\sigma_{m_rc} / \sigma_{n_rc})^2 - n_r / v_r \right| + \eta \end{aligned}$$

with probability at least $1-\varepsilon$, where m_r is one that appears above and $v_r = [n_r - n_r \eta]$. Now note that the right-hand side above can be made very small for large r and arbitrarily small η . With (2.5) and limiting normality of $\sigma_{n_r}^{-1} N_r^{\frac{1}{2}} S_{N_r}$ at hand it is easy to conclude (2.3). The proof is terminated.

REFERENCES

- [1] Koul, H. L. (1969). Random rank statistics and confidence intervals. RM-234, Michigan State University.
- [2] FERNANDEZ, P. (1970). A weak convergence theorem for random sum of independent random variables. *Ann. Math. Statist.* 41 710–712.
- [3] HÁJEK, J. and ŠIDÁK, Z. (1967). Theory of Rank Test. Academic Press, New York.
- [4] Brieman, L. (1968). Probability. Addison-Wesley, Reading.
- [5] KOUL, H. L. (1969). Asymptotic behavior of Wilcoxon type confidence regions in multiple linear regression. Ann. Math. Statist. 40 1950–1979.
- [6] PYKE, R. and SHORACK, G. R. (1968). Weak convergence and a Chernoff-Savage theorem for random sample size. Ann. Math. Statist. 39 1675-1685.