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THE CAPACITY AND AMBIGUITY OF A TRANSDUCER!'

By WiLLiIAM M. CONNER

University of Pittsburgh

A particular noiseless, discrete channel with memory (called a transducer)
is made to correspond to a function in the unit square by associating the
infinite sequences of symbols of the transducer with the expansions of
points in the unit interval. It is shown that the Hausdorff dimension of the
set of points received over the transducer is equal to the transducer
capacity. A definition of ambiguity is given which has a geometric interpre-
tation in the square, and it is shown that the transducer has a homogeneity
property by proving that the ambiguity is almost everywhere the same.

1. Introduction. Besicovitch [1], Eggleston [7], [8] and others have calculated
the Hausdorff dimension of subsets of the unit interval defined by placing certain
restrictions on the digits of expansions of numbers. For example, let M(p),
0 < p =1, be the set of points in the unit interval containing 1 in their dyadic
expansions in the proportion p, i.e., x = .x; x,* - belongs to M (p) if and only if
lim,,,n" ') =1 x; = p. Eggleston [7] has shown that the dimension of M (p) is
—plog, p—(1—p)log,(1—p). (A simplified proof is obtained by using a general
theorem due to Billingsley [5] page 142.)

Observing that this value for the dimension is the entropy of an information
source, Kinney [14] and Billingsley [2], [3], [4] sought a connection between
dimension theory and information theory by making the infinite sequences of
symbols from the source correspond to the expansions of points in the unit interval.
Theorem 1 of Kinney’s paper asserts the existence of a set of measure one whose
dimension is the entropy of a Markov source. Dym [6] recently extended this
theorem to general stationary, ergodic sources. Theorem 2 of Kinney’s paper is
concerned with noiseless coding and shows that the dimension of a certain set
corresponding to the coded messages is equal to the capacity of the noiseless
channel. Smorodinsky [16] recently extended this theorem to very general noiseless
channels.

As yet little work has been done on examining the correspondence between a
discrete, noisy channel with memory and the unit square. Such an investigation is
begun in this paper, although not in this generality. We introduce the element of
memory but not noise, and examine the following particular type of noiseless
channel with memory.

Let S=1{0,1,---,b—1} where b =2 is an integer and let m be a positive
integer. Let #,, be the set of all functions f* from $™ =8 x § x -** x S into S.

m factors

We note that crd #,, = b®" where crd denotes the cardinal number of a set.
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Let f*e #,, and let n be a positive integer. We define a function f, from S"*™~*
into S as follows. Let x = X;*** Xprm— 1 €S" ™! and let y; = f*(X;"** Xitm—1)s
i=1,--+,n Then the sequence y =y,---y,eS", and we define f,(x) = y. Note
that f; = f*.

Now let xe(0, 1] and let Z;";lxib" be the (unique) nonterminating base b
expansion of x. We define a function f from (0, 1] into [0, 1] by f(x) = } {2, yib7i
where y; = f*(X;*** X;+m-1)s i = 1, 2, - -. In the terminology of Shannon [15], the
function f is an example of a transducer of memory m. In the terminology of
Feinstein [9], Billingsley [5], Khinchin [13], and others f is a noiseless, discrete
channel (or code) of memory m. We will call {x;} the input sequence and {y;} the
output (or received) sequence; and, following Shannon, we will call f'a transducer
of memory m.

We now introduce some notation and definitions. Let x€(0, 1] and let x =
Y21 x;b7" be the nonterminating base b expansion of x. Define by(x) = x; for all
i, i.e., b,(x) is the ith digit of the nonterminating base b expansion of x. A set of the
form {x:b(x)=s;,i=1,"+-,n}, where s,€S, is denoted by [s;,**,s,] and is
called a cylinder of length 5~". Note that [s;, - -, s,] is a half-open (open on the
left) b-adic interval of length ™" (i.e., an interval of the form (j/b", (j+1)/b"] for
some j,0 < j < b"—1).

The following definition of dimension in the unit interval, which extends
Hausdorff’s original definition, is given by Billingsley [5]. Let M < (0, 1], let « and
p be positive real numbers, and let u be a probability measure on the Borel sets of
(0, 1]. Define u, (M, p) = inf) ; u(v))®, where the infimum is taken over all p-p-
coverings of M, a u-p-covering being a covering by cylinders v; with u(v;) < p. It
is clear that p (M, p) £ u (M, p') for p' < p, so the limit

#a(M) = limp-‘O #a(M, p)
exists (but may be infinite). It can be shown that for fixed M there is an a, such
that u (M) = oo for a < ay and u,(M) = 0 for a > a,. The number a, is called the
(Hausdorff) dimension of M with respect to u and is denoted by dim, M. We will
denote Lebesgue measure by L and will write dim M instead of dim; M.

Let # be the Borel sets in (0, 1] and define a transformation T on (0, 1] by
Tx =Y b4 (x)b~" for xe(0,1]; T is a left shift on the digits of the base b
expansion of x. Let u be a probability measure on #; then if u(T~'B) = u(B) for
all Be 4, T is said to be measure preserving. In such a case we will say that u is
stationary. T is called ergodic under y if for each Be# such that T~'B = B, u(B)
is either zero or one. In such a case we will say that u is ergodic, omitting reference
to 7. We will denote by .# the set of all probability measures on # which are
stationary and ergodic.

Entropy was introduced into information theory by Shannon [15]; Kolmogorov
and Sinai have extended the notion of entropy to general measure preserving
transformations (see Billingsley [5]). The entropy of a stationary probability
measure y is defined as follows. For each positive integer n define

Hn(ﬂ) = _Zﬂ([sl’ e ’Sn])IOgﬂ([sh Tt ,S,,]),
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where the summation is taken over all s, -+ - 5,€ 8", and where we take 0logO0 to be
zero. It can be shown (see, for example, Feinstein [9] page 85) that the limit
H(y) = lim,_, , H,(1)/n exists. We call H(u) the entropy of p.

Similar definitions can be given for the unit square. Define a transformation T
on (0, 1] x (0, 1] by T,(x, y) = (Tx, Ty) for each (x, y)e(0, 1] x (0, 1]. As before
a probability measure P on the Borel sets of (0, 1] x (0, 1] will be called stationary
if T, preserves P. For stationary P we define

Hn(P) = _ZP([SD '..9snar19 '..)rn])logp([sl, '.'9sn7r19 .'.3rn]),

where [sy, ** ", 8, r1, 00, 1] = {(x, 9):b(x) = 55, b(y) = r;, 1 £i < n}, and where
the summation is taken over all s, - **s,, r{ -+ - r,€S". Again it can be shown (Fein-
stein [9] page 87) that the limit H(P) = lim,_, , H,(P)/n, called the entropy of P,
exists.

In Section 2 we give two definitions of the capacity of the transducer and show
that they are equivalent. It is shown in Section 3 that the dimension of the set of
all received sequences is equal to the capacity. Finally, in Section 4 we define and
examine the ambiguity of the transducer. It will be shown that the transducer has
a homogeneity property by proving that the ambiguity is almost everywhere the
same.

All logarithms throughout this paper are to the base b.

2. The capacity of the transducer. Let f*e %, and let f be the corresponding
transducer of memory m. Let n be a positive integer and let N (n) = crdf,(S"* ™™ 1),
i.e., N (n) is the number of distinct output sequences of length » which correspond
to the »"*™ ' input sequences of length n+m—1. Following Shannon’s
terminology [15] we call

C =lim,,, n~ 'log N(n)
the capacity of the transducer.
THEOREM 2.1. The limit C exists and satisfies 0 < C £1.

PRrOOF. Let k and n be positive integers. There are N(k) different ways in which
a received sequence of length k& +#n may begin, and at most N (n) different ways in
which it may end. Hence N(k+n) < N(k)N(n). Also it is obvious that N(k) £
N(n) for k < n.

We now follow a well-known procedure (see, for example, Feinstein [9] page 85)
to show that C exists. Let a = inf,n~ ! log N (n) and let & > 0 be given. There exists
an integer r such that logN(r)/r < a+e. For any integer n = r define k, by
(k,—Dr = n < k,r. By the two inequalities above we have log N (n) £ log N (k,r) <
k,log N(r), and thus

log N(n) < k,rlog N(r) k,r

< =
n T n r = (k,=Dr (a+2) k,—

n

1(a +8).

As n approaches oo, k, approaches oo and hence k,/(k,—1) approaches 1.
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It follows that limsup,n”'logN(n) < a+e. Since ¢ was arbitrary, we have
limsup,n 'logN(n) <a, and since n~'logN(n)=a for all n, we have
liminf,n~*log N(n) = a. Thus C exists (and is equal to a).

Clearly C =0 since n™'logN(n) 20 for all n. As for C <1, we note that
n~tlogN(@m) <n 'logh"=1foralln ]

We now apply another definition of capacity, introduced by Shannon [15] for
noisy channels, to our transducer.

For each x€(0, 1] define a probability measure v, on # by letting v, assign unit
mass to the point f(x). Let ue # and, for Me¥, where % is the class of Borel
sets in (0, 1] x (O, 1], define
@2 P(M) = [0, 17:({y: (x, ) € M}) pu(dix).

It is easily seen that fis measurable with respect to %, and using this fact, standard
arguments show that the integrand in (2.2) is measurable. Thus the integral (2.2)
is defined.

It is easily verified that P(M) = u(proj, {Mn graph of f'}), where proj, denotes
the projection on the x-axis, and that P is a probability measure. Also the set
function A defined, for Be 4%, by

(2.3) A(B) = P((0,1] x B)
is easily seen to be a probability measure. We note that A(B) = u({x:f(x)€ B}).
THEOREM 2.4. P is stationary and A€ H .
PRrOOF. It is clear that fand T commute, and thus we have
{x:f(x)eT™'B} = T~ '{x:f(x)eB}.
Now for any Be %,
AT™'B) = p({x:f(x)e T~ 'B})
= (T~ {x:f(x)eB})
= p({x:f(x)eB})
= A(B),

where the next to the last equality follows by the stationarity of u. Thus 4 is
stationary.
If Be # is such that 7~ !B = B, then we have

T~ Yx:f(x)eB} = {x:f(x)e T~ 'B}
= {x:f(x)e B}.

It follows by the ergodicity of u that A(B) (which is equal to u({x:f(x)eB})) is
either zero or one. Thus A is ergodic.
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To see that P is stationary it suffices to prove that P(T," (B x C)) = P(B x C)
for all B, Ce # (Billingsley [5] page 4). We see that

P(T,"'(B x C)) = P(T™'B x T™1C)
= u(proj, {(T~'B x T~'C)n graph of f})
= u({x:f(x)e T~'C}nT~'B)
= (T Yx:f(x)eC}nT"'B)
= (T~ '({x:f(x)e C}nB))
= u({x:f(x)e C}nB)
=PBx C). [
Now for pue.#, all three measures y, A, and P are stationary so their entropies
are defined. We let
(2.5) R, = H(u)+ H(1)— H(P)

and C' =sup,. 4R,
We show that C’ can be called the transducer capacity by proving the following
theorem.

THEOREM 2.6. C' = C.

ProOF. For any integer n 2 1, the triple (S"*™~!, §", f,) forms a discrete,
noiseless, memoryless channel, where we think of a transmitted sequence
xeS"*™~! being received as the sequence f,(x)eS". The capacity C, of this
channel is easily computed to be log N (n) (see Feinstein [9] for the definition of
capacity of a memoryless channel). Feinstein [10] has shown that lim,_, , 7~ l‘C,, =

C’. But since lim,_, ,n~'C, =lim,_, n"'logN(n) = C, we have C=C’. []
3. The dimension of the received set. Let /* € #,, and let f be the corresponding
transducer of memory m. Let Y = f((0, 1]) be the range of f (Y is the collection of

all possible received sequences). In this section we show that the Hausdorff
dimension of Y is C, the transducer capacity.

LEMMA 3.1. The expression (2.5) for the rate of transmission R, of the transducer
reduces to R, = H(2).

PrOOF. Since by (2.5), R,=H(u)+H()—H(P), we must show that
H(u)—H(P)=0. We will make use of the following two forms of the same
inequality: if p, ¢, and r are positive real numbers then

(3.2) (p+q)log(p+q) = plogp+qlogg
and
(3.3) (p+q)log(p+q)+rlogr < (p+q+r)log(p+q+r).

The basic inequality follows from the monotonicity of the logarithm.
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Now
(3.4) H,(P)= =Y P([xy, * Xp Y1, " a1 Py, Xy ¥15 "5 )
= “Z#([xl,""xn]m{x:f(x)e[)’h'“,J’nj})
dog pu([xy, -+, X0 {x: f()E[ye, - yal})-

The set [x,, - -, x,]n{x:f(X)€ [y, " *, ya]} is either empty or is the disjoint union
of cylinders (b-adic intervals) of length 56~*™~1_ Then by using (3.2) and (3.3)
on the summation (3.4) it is seen that H,(u) < H,(P) < H,4,- (). Thus

H H (P
HGw = lim 2 < lim ";)
Hn+m—l(ll') _ l Hn+m—l(#)

= lim
n+m-—1

= H(P)

= H(w).

< lim

n—oo n n—o

Hence H(u) = H(P). [J
THEOREM 3.5. dim Y = C.

Proor. Clearly, for each positive integer n, N(n) b-adic intervals of length 5™"
will cover Y. Let p > 0 and & > 0 be given, and choose a positive integer k such
that 5~% < p and C+¢ > k~'log N (k). Then

Ler Y, p) S N(R)b™HE*2
< N(kyb™'8¥® =1,

Since p was arbitrary, it follows that Lo, (Y) < 1, and thus dim Y £ C+e. Since
¢ was arbitrary, we have dim Y £ C.

We now show that dimY = C. Let ¢ > 0 be given and choose ue.# so that
R, > C’'—¢. Then by Theorem 2.6 and Lemma 3.1 we have H(4) > C—¢&. Now
Ae# by Theorem 2.4 and thus the Shannon-McMillan-Breiman theorem (see
Billingsley [5]) shows that

(3.6) lim, ., —1/nlog A[b,(v), b)) = H(A) ace. [4].

Let M be the set of y’s for which (3.6) holds. Then MnY < M and by a general
theorem due to Billingsley [5] page 141, we have dimMnY = H(A)dim, MnY.
Now A(M)=1and A(Y) = p({x:f(x)e Y }) = u((0, 1]) = 1 so (MnY) = 1. Thus
dim,MnY =1, so dimMnY = H(1) > C—e. Since ¢ was arbitrary, we have
dimMnY = C, and since MNnYc Y, we have dim Y 2 dimMnY = C. (]

We remark that dim MnY = H(A) can also be shown by using a theorem of
Dym [6], Theorem 2. Dym provides a direct proof not involving Billingsley’s
general theorem.

We also note that both definitions of capacity given in Section 2 were used in
proving Theorem 3.5. The C definition was used in showing dim ¥ < C and the C’
definition was used in showing dim Y = C.
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‘4. The ambiguity of the transducer. Let f*e#,, m=1, and let f be the cor-
responding transducer of memory m. Let ye(0, 1] and for n > 1, let

M,(y) = erd £,7 1 (b1(y) - - bu(¥)),

i.e., M,(y) is the number of input sequences of length n+m—1 which map into
the output sequence b,(y)---b,(»). In this section we examine the quantity
lim,_, ,n~'log M,(y), called the ambiguity of the transducer at the point y, and
we examine the dimension of the set M (y) =f~'(y) = {x:f(x) = y}. We will call
M (y) the ambiguity set of y.

When y is a b-adic point, the set M (y) consists of two disjoint parts, namely,

(4.1) A= {x: f¥b(x) " bjsm—1(x)) is the ith digit of the nonterminating
expansion of y, forall i 21} and

B = {x: f*(b{x) " bi+m-1(x)) is the ith digit of the terminating
expansion of y, for all i = 1}.

In this case we wish to consider only the set 4 so, for y a b-adic point, we re-
define M (y) to be the set A.

For the moment we restrict our attention to the case m = 2. We begin by
defining a set of matrices and stating a theorem which allow computation of
M,(»). These definitions and the theorem appear in a report by Hedlund [12].2

Let r and s be integers satisfying 0 < r<d™ 1—1, 0<s<b""!'—1, and let
Firy Tm—yand s, s, s, be the b-adic representations of r and s respectively,
ie, r=rb"" 24 -4r,_,b+r,_; and s=s5,b"" 245, ,b+s,_;. A
sequence x = x, X, ** X, € S* is said to begin with r and end with s provided the
initial (m —1)-sequence of x is r, - - - r,,_; and the terminal (m— 1)-sequence of x is
Syt Sy

Let A' = (a},), 0 <i < b—1, be the square matrices of order b™~! defined as
follows. For0 < r, s < b"~1—1, a, is the number of members of f, ~1(i) = (f*)~ (i)
which begin with r and end with s.

THEOREM 4.2. Let y =y, -y, €S* and let W(y) = W(y -+ y) = A1 A7+ -- A%,
Then w,,, the r, s entry of W(y), 0 <r, s Sb™ "1 —1, is the number of members of
[~ '(v1 i) which begin with r and end with s.

Proor. The proof is by induction on the length k of the sequences. See Hedlund
[12]. 0

By the weight of a matrix 4, denoted by |4|, we will mean the sum of all the
entries of A.

COROLLARY 4.3 If ye(0, 1], then M,(y) = |W(b,(»)* - b,(»)|-
We now show that the ambiguity exists and has the same value for almost all y.
We begin with a lemma.

2 The author is grateful to Professor G. A. Hedlund of Yale University for sending a copy of
his report.
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LEMMA 4.4. Let A = (a;;) and B = (b;;) be two n x n matrices with nonnegative
entries. Then |AB| < |A||B|.

PrOOF. We see that
4.5) |ABi = Z?= 1 27= 1 Zr'c'= 1 @ by and
(4.6) |A| |B| = (Z?:x Z','= 1 aij)(Zi"=l Z}'=1 bij)-
It is clear that each term in the summation (4.5) appears on the right-hand side of
(4.6), and since all terms are nonnegative we have [4B| < |4||B|. [

THEOREM 4.7. Let f be a transducer of memory m = 2, let ue #, and let A be
defined by (2.3). Then lim,_, , n~ ' log M,(y) exists and has the same value for almost
all y[A).

Proor. We define a stochastic process Y, Y,, - -+ with domain (0, 1] and values
in the set of 5™~ ! x b™~! matrices as follows. For ye(0, 1] define Y,(y) = A7,
where the subscript T denotes the transpose operation. By Theorem 2.4 we have
A€ . Then defining the norm of a matrix A4 = (a;;) by ||4|| = max;} ;|a;}|, we
have by a theorem of Furstenberg and Kesten [11], Theorem 2 that

4.8) lim,, , n” log||Y,(») - Y;(»)||
exists and has the same value for almost all y[A]. We may rewrite (4.8) as

lim,,,, n~'log||(4%® -+ - AN || or
4.9) lim, ., n~ " log || Wr(b1(y)- - b(»))||-

The only property of the norm used by Furstenberg and Kesten in their proofs
is that || AB|| || 4]| || B|| for any two matrices 4 and B. Since the matrices A’
are all nonnegative, we have the same inequality when the norm is replaced by the
weight (Lemma 4.4). Hence we may use the weight instead of the norm in (4.9).
Then, noting that

[Wa(b1(y) - - b, 0| = [W(b1(») -+~ b, ()],

and using Corollary 4.3, we have lim,, , n~ 'log M,(y) exists and has the same value
for almost all y [A). [
If we let D be the limit in Theorem 4.7, we have the following theorem.

THEOREM 4.10. Let f be a transducer of memory m = 2, let e .#, and let A be
defined by (2.3). Then dim M (y) < D for almost all y[A].

ProoF. Let E = {y:lim,_ . n"'log M,(y) = D}. By Theorem 4.7, A(E) = 1. Let
yeE. Clearly, for each positive integer n, M,(y) b-adic intervals of length 5~ ®*m™~1)
will cover M (). (It is here that we use the fact that for y a b-adic point, M (y) is
defined by the set (4.1). See Example 4.12). Now let p > 0 and ¢ > 0 be given, and
choose a positive integer k such that 5~ **™~1 < p and D+¢&> k™ log My(y).
Then Ly, (M (¥), p) £ M(p)b~ ¢ +m= D@+ < M (y) b8 MOIp= (= DO+ < 1,
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Since p was arbitrary, it follows that L, (M (»)) < 1, and thus dim M (y) £ D+e.
Since ¢ was arbitrary, we have

4.11) dimM(y) £ D.
Since (4.11) holds for all ye E, the proof is completed. []

EXAMPLE 4.12. We demonstrate in this example why for y a b-adic point, M(y)
is defined by the set (4.1). Let b=2, m =2, and let f*e %, be defined by
S*(00) =f*(11) = 0 and £ *(01) = f*(10) = 1. Let y be the dyadic point .0111---,
and note that .1000--- is also equal to y. Now M,(y)=crd(f*)~1(0) =
crd {00, 11} = 2. The two intervals (0, 3] and (3, 1] represented by the two sequences
00 and 11 do not cover () since the point x =.0111--- belongs to f ~1(y) but
does not belong to either (0, 1] or (3, 1]. However, if M (y) is defined to be the set
(4.1) and not the set £~ !(y), then it is clear that for all n = 1, the M,(y) intervals
represented by the set of sequences £, ~1(b,(y) - - b,(y)) will cover M (), a property
which is essential for the proof of Theorem 4.10.

The discussion so far in this section has been for transducers of memory m = 2,
since the matrices A’ are not defined for m = 1. We now examine the case m = 1
separately.

Let f*e %, with f the corresponding transducer of memory 1. We represent f*
by a b x b matrix D =(d;;), 0<1i, j<b—1, as follows. The entry d;; is one if
S*@) =j and is zero if f*(i) # j. Thus each row of D contains a single entry of one
and all other entries of the row are zero. Define /; =Y 72gd;;, 0<Sj<b—1; I, is
the number of elements of .S which map to j under f*.

Let pe # and define p; = u([i]),0< i< b—land g, =Y }24d;;p;; 0S i< b-1.
We note that A defined by (2.3) is such that A([i]) = ¢;, 0 < i < b—1, since A([i]) =
p({x:f(x)elil}) = ' u(j]) = q;, where )’ denotes the summation taken over
those j for which f*(j) = i.

We now prove the equivalent of Theorem 4.7 for the case m = 1. The proof is
similar to that of Theorem 4.7, using /; instead of A’ and the ergodic theorem
instead of the Furstenberg and Kesten theorem.

THEOREM 4.13. Let f be a transducer of memory 1, let ue #, and let A be defined
by (2.3). Then the ambiguity at the point y, lim,_, . n~ ' log M,(y), exists and has the
same value (namely, qologly+- - +q,_1logl,_,) for almost all y [A).

PrOOF. Let 4,'(y) be the number of occurrences of i, 0 < i < b—1, among the
first n digits of the nonterminating base b expansion of y. By Theorem 2.4, Ae .#
and we may apply the pointwise ergodic theorem (see Billingsley [5] page 13) to
conclude that for each i, 0 < i< b—-1,

(4'14) limn-'co n- ! hn’(y) ={q;

for almost all y[A). Let D, 0 <i < b—1, be the set of y’s for which (4.14) holds.
Then for ye F= N’2¢ D;, lim,_,n"'h,'(y) =q; for all i, and A(F) =1 since
AD)=1,0<i<b—1.
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Now since for each n = 1 we obviously have M,(y) = [ --- [:* 7' then

logM h,° h2!
og n..(y)= "'fy)loglo+'“+ " n(y)loglb-l’

where we take 0° to be one and 0 log 0 to be zero. Hence if yeF, we have
lim,_,, n"'log M,(y) exists and is equal to gologly+---+gq,_,logl,_,. Since
MF) = 1, the proof is completed. []

We now prove the equivalent of Theorem 4.10 for the case m = 1. In this case
we are able to obtain an equality for the dimension of the ambiguity set rather
than just an upper bound. We begin with a lemma.

LEMMA 4.15. Let ye(0, 1] and let E, = U'[x,, * - -, x,,) where |J’ denotes the union
over those Xy, ***, x, such that f,(x,--x,) = b,(y): - b,(y) (there are clearly M,(y)
such sequences x,, -+, x,). Then

n:o=1 En = M(.V)

ProoF. Let xe M (). Then f*(b(x,)) equals the ith digit of the nonterminating
expansion of y, i.e., f*(b(x;)) = b)(y). Thus f,(b;(x)* - b,(x)) = b,;(»):-*b,(y) for
all n. Hence xe E, so M (y)<E, for all n. Therefore

(4.16) M(y) = Na=1 E,.

Let xe N2, E,. Then f,(by(x)* - b(x)) = b,(»)- - b,(y) for all n so f*(b,(x)) =
b,(y) for all n. Thus xe M (y) so

(4.17) Na=1E, = M(y).
Inclusions (4.16) and (4.17) give the desired result. []

THEOREM 4.18. Let f be a transducer of memory 1, let ue.#, and let A be defined
by (2.3). Then

dim M(y) = Y 224 g;log};
for almost all y[1).

Proor. Let ye(0, 1] and- let y; = b,(y) for all i = 1. For each integer k = 1 and
each sequence x, - - - x, € S¥, define a function p, on S* by

pilxy o xd = UMY =1Ly, -1, 0 filxyox) = y1oe s
=0 otherwise.
It is clear that
(4.19) (X1 x) =0 for all k.
Also we have

(4.20) YiesPi(D=1,/l, =1.
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'We show next that
4.21) Zlespk+ 1(Xq X)) = pi(q *** x).
If pu(xy - -+ x) = O then fi(xy *** X)) # p1** " Vi 80 frw 1 (g *** Xic0) # Y1 Y Vi1 foOr
all ieS. Hence p, . (x; - *x,i)=0 for all ieS so (4.21) is true in this case. If
pi(xy e x) =1L, -+ 1, then fi 0y« X4 8) = 1 Yi Y41 for the I, | values of
i for which f*(i) = y4. Hence pyy (xy - "x,8) is 1/l -1, 1, for those I, .,
values of i and is zero for the remaining values of i. Therefore

Ziespk+l(xl cexd) =1y, Sl = DX %)

so (4.21) is also true in this case.

Finally we see that for any sequence x,, * -+, x, of elements of S, we have

- (4.22) lim,, & Prsn(X1° %, 0---0) =0,
——
n0’s
It follows from (4.19), (4.20), (4.21) and (4.22) that there exists a probability
measure v, on the unit interval such that
vy([xl’ e ’xk]) = pk(xl e xk)’
where x, - - - x, € S* (see Billingsley [5] page 35).
Now let F be the set of y’s for which Theorem 4.13 holds, and let yeF. If
xeM(y) and if we set x; = b(x) and y; = b(y), then

_IOgvy([xh“',xn]): _IOg(l/lyl.“ly,,)

lim lim
n—oo n n— oo h
Il My(y) 2!
= limIOg L4 T L limlog ) =Y g;logl;.
n- o n n—-o i=0

The next to the last equality follows from the fact that we obviously have M, (y) =
ly,:++1,, and the last equality follows from Theorem 4.13. By a theorem of
Billingsley [5] page 141, we now have

(4.23) dim M(y) = dim,, M(y) ¥ 1= g;log];

for all yeF.

If E, is defined as in Lemma 4.15, it is seen that v,(E,) = 1. Since %, E, = M (y)
by Lemma 4.15 and since {E,} is a decreasing sequence, we have v (M (y)) = 1.
Hence dim, M (y) = 1 and thus from (4.23) we have

dim M(y) = Z?;(} g;logl;
for all ye F. Since A(F) = 1 by Theorem 4.13, the proof is completed. []

For the case m = 1 we were able to calculate the dimension of the ambiguity set
M (y) (Theorem 4.18), whereas in the case m = 2, we were able to obtain only an
upper bound on dim M (y) (Theorem 4.10). Conjecture is that for the case m = 2,
dim M (y) is actually equal to this upper bound. However, the method of proof of
Theorem 4.18 cannot be used to prove this conjecture, since the consistency
condition (4.21) may not hold for m = 2. The following example demonstrates this
fact.
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'EXAMPLE 4.24. Let b =2, m = 2, and let f*e %, be defined by f*(00) = 0 and
f*01) = £*(10) = f*(11) = 1. The function f, is then as follows:

Domain Value Functional Value
0 00 00
0 01 01
010 11
011 1 1
1 00 10
1 01 11
110 11
1 11 1 1

Let ye(3, 1]; we see that M,(y) =crd {01, 10, 11} = 3 and M,(y) = crd {010,
011, 101, 110, 111} = 5. If we define (as in the proof of Theorem 4.18) p,(00) = 0,
P2(01) = p5(10) = p,(11) = } and p3(000) = p3(001) = p3(100) = 0, p(010) = p(011)
= p(101) = p(110) = p(111) = 4, then it is clear that the consistency condition
(4.21) does not hold. Thus for any ye(3, 1], we cannot define a measure v, as we
did in Theorem 4.18. ’
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