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BLOCK DESIGNS FOR MIXTURE EXPERIMENTS
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1. Introduction. Scheffé (1958), (1963) introduced Simplex-Lattice and Simplex—
Centroid designs for experiments with mixtures. Recently, Murty (1966) and
Murty and Das (1968) have evolved Symmetric-Simplex designs which are the
generalized form of Scheffé’s designs.

One of the basic requirements for any response surface design according to Box
and Hunter (1957) is that it should lend itself to blocking. Mixture designs so far
available in literature lack this desirable characteristic. Murty (1966) did make
some efforts for blocking the Symmetric-Simplex designs and reached the conclu-
sion which, however, is empirical, saying that the actual blocking is not possible
and the only possibility is to replicate the designs. Our investigations into this
problem indicate that though the orthogonal blocking ensuring estimation of the
regression parameters independent of the block effects is not possible without
transforming the mixture variables, yet the parameters can be estimated by adjust-
ing the parameters for the block effects. In the present paper we have derived the
conditions required for blocking for estimating the parameters of a quadratic
model. We have also constructed designs which satisfy these blocking conditions
and hence are amenable to blocking. In the last section we have also constructed
orthogonal blocking arrangements through suitable transformations. The case of
cubic model will be dealt with in a separate paper.

2. The quadratic model.
2.1. The blocking conditions. Let the quadratic model proposed by Scheffé (1958)
with block effects be

2.1 Y, =Y 1 cizaB¥ut Y1 i<jznBiiXuXjut Yow=1BwZwa

where Y, represents the response at the uth experimental point; (u = 1,2, -, N),
B: and B;; are the regression coefficients, x;,’s are the mixture components such that
O0Sx,<land),.icpx;,=1foreachu=1,2,---,N, B, is the expected value of

the response in the wth block, w=1,2,--+,¢ and
z,, = 1 for those experimental points which fall in the wth block
=0 for all other points.

Let the design with ¢ blocks and N experimental points satisfy the following
symmetry conditions of Murty and Das (1968):

zxizu =4, zxiuxju =B, zxtzuxju =C,
(2'2) inuxjuxku = Da inzux}u = E’ zxizuxjuxku = F’
D XX XX 1y = G forall i#j#k#1.
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The summations range over N experimental points and A4, B, etc., are constants.
Then, following the procedure similar to that of Murty and Das (1968), it is easy to
derive the following two normal equations by differentiating

(2.3) Zu( Y, _Zi Bixi, _Zi< j ﬁijxiuxju —ZW ﬂwzwu)z
w.r. to any f, and f;, respectively:
Zuxxuyu = Abz+321 <ign#3i bi+CZI§i§n¢l bu+D21 <i<jsn#abij
+ 2w b Q1 X2
Y X1uXuuVu = C(b3+b)+D Y1 <iznsa b+ Ebyy+ F(Lby+ 3 b,)
| + G si<ssnranbis+ T BTy Xa%) 1 A,

where b’s are the estimates of the parameters fs.
Now, differentiating (2.3) w.r. to ,,, we get

(2.4)

(2.5)

(2.6) e Ve =Qu xlu)Zl <izn bi+(Q ey xiuxju)Zl <i<jsnbij+myb,

where m,, is the number of points in the wth block.
It may be observed from the equations (2.4), (2.5) and (2.6) that orthogonal
blocking can be achieved if

Q@7 Ymx,=0.and Yuyr x,x;,=0 forall w=1,2,--+,¢ and i#j.
But, an experiment with mixture requires x,, = 0. Obviously, the conditions (2.7)
are satisfied when all x,,’s are zero which is meaningless. Thus, it becomes clear
that ‘“‘orthogonal” blocking is not possible without transforming the mixture
variables. We, therefore, attempted ‘“‘non-orthogonal” blocking by adjusting the
parameters for the block effects.
To facilitate the solution of the normal equations, let us assume that
(2.8) Y, x;, = constant = k, and
Ymw XX ju = constant = k,

foral w=1,2,---,t and i#j;i,j=1,2,- , n.
We then get from (2.6) the following solution for b,
(2.9) b, = (z:."‘é’l Vu—ky Zi b;—k, Zi<j b;p)/m,,.

Summing (29) over all w = 1,2, -, ¢ and putting Y ,, 1/m,, = k3, we get

(2.10) w=1by,= ZW us1 yu/mw—kxkszbt—kzkszbir
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Substituting for Y b,,in (2.4) and (2.5), we get the following two equations adjusted
for block effects: ‘

YuXadu—Ky Yo Y u2y Yulm,
(2.11) = (A—ky?k3)b,+(B—ky*k3) Yz, b
+(C—kyksk3)Y w2 by+(D—kykyks) Yi<sraby
YuXaXuYu—Ka Y Y1 Yalmy,
(2.12) = (C—kykok3)(b,+b,)+(D—kiksk3)Y 145, b;
+(E—ky*k3)b,, +(F— ka*k3)(} by +Y.b,)
+(G—k22k3)Zi<j¢A,u b;;. i#dnu

The Lh.s. in (2.11) and (2.12) are the adjusted sums of products.
Let us put

A—k*ky=A*,  B—k,*ks = B*, C—kyk,ks =C*,  D—k k,ky = D*,
E—ky*ky = E*, F—ky%k, = F*, G—ky%ky = G*.
(2.13) YuXabu—ky Yo 22y vumy, = (CuX190)*
DX aXuVu—Ka Yo 2wy Val m, = (QuXaXuya)*.
Then, the equations (2.11) and (2.12) can be written as
(2.19) Quxwy)* = A*b,+B*Y .. b+C* Yizabu+D*Y i by
QuXa¥uuy)* = C*(ba+b)+D*Y s, . b+ E*b,, + F*Y by +Y b,y)
+G*Yicjsauby i#A,pu.

These equations are similar to those of Murty and Das (1968) with the exception
that the products Y, x,,», and ), X4 XY, are replaced by adjusted products
Quxuyn)* and x4, X,uYu)* respectively and the constants 4, B, etc., of Murty
and Das (1968) are replaced by the constants A*, B*, etc. We, therefore, straight-
way obtain the following solutions of b, and b,,:

Ple = PQ4(Zu x).uyu)* - PQ2 Zi(Zu xluxiuyu)* - A1 Zi(Zu xiuyu)*
+ A2 Zi < j(Zu XiuX juy u)*

(2.15)

(2.16)

and
PQ(E* —2F*+ G*)bl,,

= PO(Y, %1 %uba)* — P[Q4(C* — D*)— Q5(F* - G*)]

2.17) T X1V * + (T %) *]
+P[Q,(C*—D*)—Q,(F*-G")] D xaXuy)* + Y. XX *]
—[(D*P,—G*P3)Q—2(C*—D*)A, +2(F*— G"A;] Zi(Zu XuY)*
+[(D*P,—G*P,)Q—2(C* —D*)A, + 2F*—G*)A] T (T, i a1)*
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where P, =A*+(n-1)B*
P, =2C*+(n-2)D*
Py =(n—1)C*+("3")D*
P, = E*+2(n—2)F* +("3;»)G*
P = P1P4—P2P3
0, = A*—B*
Q; = C*-D*
Qs =(n—2)(C*-D*)
Q,=E*+(n—4)F*—(n—3)G*
0=0,0,—0,0;
Ay = P,[B*Q,—0Q,(C* +(n—2)D*)] - P3[D*Q, — Q,(2F* +(n—3)G*)]
A; = P,[B*Q,—Qx(C*+(n—2)D*)] - P,[D*Q,— Q,(2F* +(n—3)G*)]
Ay = P,[B*Q3—Q,(C*+(n—2)D*)]—P5[D*Q;— Q,(2F* +(n— 3)G*)]and
Ay = P[B*Q3—0,(C*+(n—2)D*)]~P,[D*Q3—Q,(2F*+(n—3)G*)].
The solutions for any b, and b,, follow from the above because of the symmetry
of the design. The block estimate b, can easily be obtained by substituting for
Y b;and Y b;; in (2.9).

Thus, it has been possible to estimate the parameters of the quadratic model (2.1)
fitted through designs satisfying the relations (2.2) and (2.8). The conditions (2.8),
in addition to the conditions (2.2) which are to be satisfied even if there is no
blocking, therefore, must be satisfied for non-orthogonal blocking.

The variances and covariances of different estimates of the quadratic model (2.1)
are easily obtained by following the method given by Murty and Das (1968).

2.2. Analysis of variance. Let the design of N points be replicated r times. Suppose
there are ¢ blocks. Then, the break-up of the degrees of freedom in the analysis of
variance for the quadratic model (2.1) will be as follows:

Source of variation df
Block t—1
Regression n+(3)—1
Lack of fit N—[n+(3)+t]+1
Error N(r-1)
Total Nr—1.

The S.S. for blocks is found in the usual way. Regression S.S. is given by
Sr=Y12iznbiQuXul)+Y1<i<jgnbifCuXwXpuy)—C.F., C.F. being the S.S.
due to general mean. The error S.S. is found from the r replicated observations for
each N design points. The lack of fit S.S. is found by subtract.ion.

3. Designs in blocks. We now proceed to obtain designs which satisfy the con-
ditions (2.2) and (2.8) and hence are amenable to blocking.
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3.1. Designs through suitable choice of mixture points on a simplex. Consider an
n-component simplex-Centroid design of Scheffé (1963) without the total mixture
(1/n1/n 1/n---1/n). Then by joining the points representing binary mixtures with
equal proportions a triangle can be formed on each of the (3) faces of the simplex
whose vertices are of the type (3300---0).

Points distant 1/p (p taking non-zero integral values) from the vertices of this
triangle, measured on each face along the sides in a certain direction, will form a set
of (3) triangles with vertices of the type (3(p—1)/2p 1/2p 0 0- - - 0). One more set of

3) triangle with vertices of the type (3 1/2p (p—1)/2p 00+ --0) can be formed by
points lying at the complementary distance (p—1)/p measured on each face in the
same direction from the respective vertices.

We now state the following theorem:

THEOREM. The points of the vertices of the two sets of triangles form a mixture
design in two blocks, each set of vertex-points constituting a compact block.

PRrOOF. Let us consider the points of the first block. The point (3(p—1)/2p 1/2p 0
0---0) generates (3) points in which non-zero values occur in the same cyclical
order irrespective of the position of zeros. Each of these points further gives rise to
3 points. For instance, in the case of (3 0(p—1)2p 1/2p 0 0+ - - 0), we have the follow-
ing 3 points:

30(»-1)/2p1/2p00---0),
(1/2p04(p—1)/2p00---0), and
(p—1)/2p01/2p300---0).
Obviously, all the 3(3) points of the block satisfy the relations (2.2) and (2.8).
Similar is the case for the points of the second block. It, therefore, follows that all
the 6(3) points of the two blocks also satisfy the relations (2.2). Hence the theorem.

EXAMPLE. Let us consider a 4-component design for p = 3. Then the two blocks
formed out of four faces of the simplex will be as given below:

Faces Block 1 Block 2
-1 —_— 2
lp=% (r—-Dip=%
1 2 1 1 1 2
1 z7¢¢0 3 %0
2 1 1 1 2 1
ts 320 ¢+ ¢t 370
1 1 2 2 1 1
s 7 ¢0 % 3 %0
1 2 1 1 1 2
2 z¢0s 2 02
2 1 1 1 2 1
ts 02z ¢ %03
1 1 2 2 1 1
s2z20¢% % 7024
1 2 1 1 1 2
3 7 0% 2 03 2
2 1 1 1 2 1
¢t 057 s 0% 3
1 1 2 2 1 1
s 03 & ¢ 01 %
1 2 1 1 1 2
4 03¢ 0 3 ¢ 2
2 1 1 1 2 1
0 ¢ s 32 0 ¢ %2 1
1 1 2 2 1 1
02z %¢ 0 2 31 %
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X, 0010

(1000 0100
X, X,

FiG. 1

The points of the first face for both the blocks are exhibited in Figure 1.

Thus, for an n-component mixture, the design will consist of 6(3) points, with
3(3) mixtures in each block. To these, suitable points at the interior and exterior
can be added in common to each block to make a uniform exploration of the
simplex and to provide replicated points for the estimation of a valid experimental
error.

3.2. Designs through mutually orthogonal Latin Squares (MOLS). We first give
the method of construction of mixture designs (without blocks) through MOLS.

3.2.1. Construction of mixture designs through MOLS. Suppose there is a set of
(s—1) MOLS of order s with symbols p;, 1 £i<s. Let the symbols p; take the
positive integral values (including zero). Then, if each element of the set of (s—1)
MOLS of order s is divided by ¥, <;<sp: then the set of (s—1) MOLS forms a
mixture design in s components.

It may be observed that, though the construction of mixture designs is quite
simple, the method of estimation of regression parameters is somewhat cumber-
some because some of the symmetry conditions (2.2) are not satisfied by these
designs. We, therefore, propose the following restrictions on the choice of p;,
1<iss:

Case 1. All the p’s are zero except two, say, p; and p;.
Case 2. All the p’s are zero except three, say, p;, p; and p;.
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It can easily be verified that Case 1 satisfies all the conditions (2.2). Case 2 also
satisfies all the conditions (2.2) when p, p; and p, are all different. But
Y. X2, x juXxu has two values when p; = p; # p,. The estimation procedure will not
yet be difficult, for, it follows directly from the method of ‘“Asymmetrical Mixture
Experiments” given by Murty (1966).

3.2.2. Designs in blocks through MOLS. We first state a lemma due to Murty
(1966):

LeMMA. For odd s, the (s—1) MOLS can be partitioned into two sets of (s—1)/2
Latin Squares each such that the s(s—1)/2 pairs of the s elements occur exactly once
in any two columned submatrix of an array formed by s(s—1)/2 rows of any of the two
sets.

We now state the following theorem:

THEOREM. If each of the elements of all the (s— 1) MOLS be divided by Y, <;<,P:»
where p;, 1 £ i< s are selected according to one of the two cases of Section 3.2.1,
then the two sets of (s—1)/2 Latin Squares each will form two different blocks of an
s-component mixture design.

Proor. It follows from the lemma that s(s— 1)/2 pairs of the s components occur
exactly once in each block and this is true for all the columns. Thus, constancy of
Y xux u over each block is achieved. Further, Y , x,, is also the same for both the
blocks because each p; occurs (s— 1)/2 times in each block. We thus see that both
the conditions (2.8) for blocking are satisfied by the design. Hence the theorem.

ExaMPLE. For s =5, we give below the two sets of two MOLS which with
pi=1,p;=2,p, =3, p, =p,, =0 correspond to Case 2.

Set 1 Set 11
01 3 0 2 00 21 3
1 2 0 0 3 1 03 20
23010 210 30
30120 32001
00 2 31 0310 2
03021 02130
1 00 3 2 1 3200
201 0.3 2 0 301
31200 3001 2
02310 010 2 3.

Then, by dividing each element by 6, we get a 5-component mixture design in two
blocks and 20 mixtures.

3.3. Designs through factorial experiments. In this section we propose a method
of obtaining orthogonal blocking arrangements by transforming the mixture
variables.
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“3.3.1. Preliminary. In an n-component mixture experiment, if x; is the proportion
of the ith component, then

3.1) YigizaXi=1 or
3.2) Xp = I—Zl§i§n—1xi'

Thus, there are only (n—1) independent variables in the design. Murty (1966),
instead of choosing the proportions of n components for satisfying (3.1), considered
only (n—1) components for choosing the proportions and then determined the
proportion of the nth component such that (3.2) is satisfied. Utilising this, he con-
structed mixture designs through s"~! factorial designs.

As regards the analysis, Murty (1966) showed that Scheffé’s quadratic model in
n mixture variables

(3.3) Y, =Y 1 cicnBXiut Digi<jznBiiXuXi

reduces to the following general quadratic model in (n—1) factorial variables by
virtue of (3.2)

(3.4) Y,=Bo+Y1sicn-1 BiXiyy+Y 1<ign—1 BixZ+Y 1 ci<jsn—1BiXuXju

where By = B,
(3.5) Bi = ﬂi—ﬁn +pin
Bii= —[is and

Bij = ﬁij_ptn—pjn .

Conversely, if B’s are known through the fitting of (3.4), Murty (1966) obtained the
following

Bi=B;+By+B;

(3.6) B.=Bo
Bi; = B;;—B;—Bj; and
Bim= —By.

Murty (1966), thus established a correspondence between the model (3.3) in n
mixture variables and the model (3.4) in (n— 1) factorial variables. He, therefore,
suggested to fit the model in (n— 1) factorial variables (instead of fitting the model
(3.3) in mixture variables) and then to transform this model into a model (3.3) for
the mixture variables. :

3.3.2. Orthogonal arrangements in blocks. With the s"~! confounded factorial
design, it is well known that the design ensures orthogonal blocking for the model
(3.4) if the main effects and first order interactions are not confounded with block
differences. Supposing that the s”~* factorial design is an orthogonal arrangement
in blocks, the B’s of the model (3.4) can be estimated independent of the block
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effects. As the parameters f’s of the model (3.3) are linear combinations in B’s (by
virtue of the relations (3.6)), the parameters f’s can also be estimated independent
of the block effects. Thus, an orthogonal arrangement in blocks for the (n—1)
factorial variables ensures orthogonal blocking of the design in # mixture variables.
It is known that the blocking can be orthogonal even if a fraction of the s"~!
factorial design be so taken that no four factor interaction or less is in the identity
group and no first order interaction or less is confounded with the blocks. Similarly,
the rotatable designs can also be used to achieve orthogonal blocking if the rotatable
designs satisfy the blocking conditions as obtained by Box and Hunter (1957).
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