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NONPARAMETRIC ESTIMATE OF REGRESSION COEFFICIENTS

By JANA JURECKOVA
Charles University

1. Summary and introduction. The present investigation is a follow up of [7]
to a class of multiple regression problems, and is devoted to the construction of an
estimate of regression parameter vector based on suitable rank statistics. Asymp-
totic linearity of these rank statistics in the multiple regression set up is established
and the asymptotic multi-normality of the derived estimates is deduced. There
exists the choice of the score-generating function to every basic distribution so that
the asymptotic distribution of the estimates is the same as that of maximal-
likelihood estimates.

2. Notation and assumptions. The following assumptions are to be satisfied for
N=12,....

ASSUMPTION 1. Y,, Y,, ---, Yy are independent random variables, Y; having
distribution function

(2.1) F(y—ao®—p%?) i=1,2,-,N

for F possesing finite Fisher’s information, ie. [[f "@)f)Pf(x)dx < oo with f
being the density of the distribution.

ASSUMPTION 2. B = (84, B2, -**, Bx) is a real vector parameter.

AssUMPTION 3. Cy = [c;] is a Kx N matrix with rows ¢;;, and columns c®
satisfying the conditions

ASSUMPTION 3a. ¢j; = ¢j;+cj;,, | S j< K, 1 Si < N.

AsSUMPTION 3b. The vectors ¢(;y = (¢}, -+, ¢in), j = 1, 2, .-+, K satisfy either

(2.2) (cth—¢)e—¢/) =0

for all but a finite number of N, or

(2.3) (cth—2¢/)e—¢/) >0

for all but a finite number of N; further

(2.4) N’l(c(j)—éj’)(cfj,—éj’)’§M1 for N =1,2,--
and if (2.3) is satisfied, then '

(2.5) limy_, o, max; c; <y (chi—&/) [0 (cji—¢,')*] = 0;

here ¢/ = 1/N[Y;_,cj] and M, > 0 is a constant independent of N. Analogous
assumptions are to be satisfied for vectors ¢{}), j = 1,2, ---, K.
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ASSUMPTION 3c. It holds for all pairs j,/ = 1,2, .-, K
(cji=ch)(cii—ci) 2 0
(cji—ci)(cii—ci) <0
(cji—ci)cii—ci) 2 0
foralli, k=1,2,---,N;N=2,3, -

AsSUMPTION 3d. limy_, , N ~'(¢qy—¢) (¢ —¢) = oy, L,j=1,2,---, K where
L = [o,;]18-1 = [V, ,6™] is a positive definite matrix.

AssUMPTION 4. (R,?, R,?, ---, Ry?) is the vector of ranks corresponding to
variables Y;—peD,i = 1,2, -, N.

AssUMPTION 5. Consider the linear rank statistics
(2.6) Sy(Y—=Bc) = N~y (c;i—¢;)an(RF), j=12,-,K

where the scores ay(i), i = 1, 2, ---, N are generated by a function ¢(u), 0 < u < 1
by either of the following two ways:

(2.7) ay(i) = Ep(Uy®)

(2.8) an(i) = o(i/(N+1)), i=1,2-,N
where Uy” denotes the ith order statistic in a sample of size N from uniform
distribution on (0, 1).

AssuMPTION 6. The score-generating function ¢(u) is non-constant non-
decreasing and square-integrable on (0, 1).

REMARK. (2.4) and analogous assumption for c(;, imply that
N7} ey —e)ey—8)) = 2{N"!(c{j =&/ )el)—¢;

NNl — /)€l =&)Y < 2AM +My) = M for N =1,2,
Put
(2.9) o(u.f) = =" (F~ ()lf(F'(u))
(2.10) y =[5 o(u)p(u,f)du
(2.11) A? = [§(p(u)—)* du, where ¢ = [ o(u)du

REMARK 1. The described regression madel does not cover the whole class of
regression models where the least square method succeeds; this fact is due to
Assumption 3d.

REMARK 2. We do not denote explicitly the dependence of variables of the
model on N; we hope that this simplification will not cause a confusion.

REMARK 3. We shall assume without any loss of generality that
N~ 1(c( »H—€)(c;—c;)" = 1; this is obtained by a proper reparametrization.
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We shall deal with the problem of estimating of parameter . In order to be in
agreement with the notation of one-dimensional case in [7], we shall work in the
sequel with new variables which are connected with old ones by relation

(2.12) Nip=A, N ¥, =x; i=1,2-N;j=1,2 K.
We thus get the model: Y, has the distribution function
(2.13) F(y—a®—A%%®), i=1,2,---,N;

the properties of the variables of the model follow from Assumptions 1-6. So, we
shall consider the statistics

(2.14) Syi(Y —Ax) = Y| (x;;—%)ay(RA), i=12,-,K

where R,%, ---, Ry* is the vector of ranks corresponding to variables Y,—Ax(,
i=1,2,--, N; we shall consider the possibility of estimating of A based on
Sy(Y—=Ax),j=1,2,-, K.

3. Asymptotic linearity of Sy; (Y —Ax) in A. The following theorem generalizes
Theorem 3.1. of [7].

THEOREM 3.1. Let P,o denote the probability distribution with the density

Pao = [TIo1 f(ri—a—AXD); et [[A—A%|| = [(A—A®)(A—A°)]:. Then under
Assumption 1 through 6 and (2.12)
(3.1) limy_, o, Pyo{max;js—aoj <c |Sy Y —AX) = Sy (Y —A%K)

+7 (A=A 2 €} =0
holds for any ¢ > 0,C > 0andj=1,2, -, K.

Proor. Let I = {x; |[x|| £ C}. We may suppose without loss of generality that
A® = 0. In order to be in agreement with the formulation of Theorem 3.1 of [7]
we denote 6 = —A. .

Let R,%*% ..., Ry’"" be vector of ranks for variables Y;+8& x® +8"x®",
i=1,2,--, N.

Forj = 1,2, ---, K, consider the statistics

Sy Y +0'x" +6"x") = YL | (x;;— %;)an(R*")
(3.2) = 2= (=% )an(R) + 200 | (xji— %, )an(R)
— S;Vj(Y+5'X'+5”x”)+S}',j(Y+5'x'+5"x”).

As it follows from Theorem 2.1 of [7], statistic S,'Vj with fixed Y, ---, Yy is non-
decreasing function of ¢,’, ---, 65" and non-increasing function of §,”, ---, 8"
Similarly, Sy; is non-increasing in é,’, ---, 65" and non-decreasing in §,”, ---, dx".

Consider a fixed j such that ) }_; (xj;—%;')> > 0 for all but a finite number of N.

We shall prove
P{maxy 5 o |Sy(Y +8'% +8"X")— Sy Y)



NONPARAMETRIC ESTIMATE OF REGRESSION COEFFICIENTS 1331

(3.3) —y 2 8 [y — % )(x{py = 2/) 1=y X 1 6/ T(x = %) (x5 = %) ]|
2 e|[x(—%/[[} >0 for N — c0.
The weaker proposition which differs from (3.3) only in that the convergence

holds for fixed point (6’, 8") and not necessarily for max, s- . ; follows from Theorem
3.1 of [7] and from the contiguity of sequences of densities

5,8 = nfl: 1f(J’i—°‘_5z'(xt'r‘5€1I)): 1=12,--,K

Qo1 = H?Llf(Yi_a_él”(xl”i_xt”))s l1=12,-,K

to densities py = []iL /() (the definition of contiguity see e.g. [4]).
For proving the stronger proposition (3.3), let us consider a partition of [—C, C]

—C=60<sM<... <" =C

and

such that
(3.4) (59— 5%~ V)| < ef(2KM,*), k=1,2r.
(M, > 0 is the constant from (2.4).)

Then by using (3.4) and the monotonicity of Sy; in the components of é" and 4",
we get
MaXy,gre 1 [SyY +8% +8"X") = SyY) = L 1 8/ [(x(n — % )(x{jy — %) ]
=y 21 8/ (% — ") (x5 = %5') 1]
(3'5) = Zmaan', “aK's 1, 9K |S1/VJ'(YI+ZIK=1 6(q")xl,i+zl’(=1 6(q'/,)xl,:')_SIIVj(Y)
=y 21 09O [(xiy — X)(x(5y — %)) ]
—7 21 89O (xGy = ) (x5 — %)) 1| +e2| x5 — /||
where maximum is taken over the set of all groups q,’, -+, qx’, 41", =, gx” Where
each ¢/, q," runs through 0, 1, ---, r. This together with the noted weaker pro-
position proves (3.3).

Analogous proposition may be proved for Sy;(Y+0'x'+48"x") with such j that
Y (xj;—x;")* > 0 for all but a finite number of N.

Let us distinguish tTwo cases:

(i) (x{;j—%;")(x(;y—X;")’ = 0 for N > N,. Then for N > N, it is X;,—X; =
Xy =Xy (X(j—X;)(X(j,—X]) = (X—X;) (x5 —X;)" = 1 by Assgmption 3a, R‘?‘
mark 3 and (2.12); Sy(Y+6'x'+0"X") = Sy;(Y+6'x'+0"x") satisfies (3.3). This
together with (2.12) and Assumption 3d means that (3.1) is valid. Analogous result
we get in the case (x(;) —X;) (x(;,—X;")’ = 0 for N > N,.

(i) (x(;y—X/)(x(y—%;) >0, (x(;y—X;") (X(jy—X,") > 0for N > Ny. Then (3.3)
is satisfied by Sy; and Sy; and this implies that

P{maxy s o1 |[Sy (Y +8'% +8"x") =Sy (Y)—y 2is: 6/ [(x/ =%/ )(x—%;)]

—y 21 8Ly — 2 )(x = %;) 1| Z &} > 0 for N — o0
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holds for any ¢ > 0 and C > 0. This together with (2.12) and Assumption 3
implies that (3.1) is valid in this case too.

COROLLARY 3.1. Under Assumptions 1 through 6 and (2.12)
(3.6) limy_,, Pyo{max,_pocs|Y 5o |Shi(Y —Ax)| =YK [Sy,(Y —A%)

o (A=A%0]| 2 8} =0

holds for any C > 0 and ¢ > 0.

4. Estimation of parameters A ---, Ag. It is known that E[Sy,(Y—A%x)] = 0

forj=1,2,---, N. Moreover, as it follows easily from Theorem V.1.5 of [4], the
random vector

Sy(Y =A%) = (Sy,(Y =A%), -+, Sy (¥ —A%))
is asymptotically normal
(4.1) (0,4°x%)
where X is the matrix from Assumption 3. So we are led to representing the unknown

parameter by A for which Sy(Y — Ax) is as near to zero as possible. One possibility
is to represent the unknown parameter by points of set

(4.2) Dy ={A=(Ap, A Ag); YK | |Sy(Y —Ax)| = min}.

The set Dy = EX is not empty for all Y, ---, Yy, for Syi(Y=Ax) (j= 1,2, -, K)
as a function of A, -+, Ag with fixed Y7, ---, Yy takes on a finite number of different
values.

We shall deal with the asymptotic properties of points of Dy in the sequel. All
points of Dy are asymptotically equivalent in the sense that they all have the same
asymptotic distribution.

We take the definition.

DEerINITION. We say that each point of set Dy is asymptotically normal (d, A),
if there exists a sequence of random vectors {Ay}¥_, asymptotically normal (d, A)
such that

(4.3) limy.,, P{supscp, ||[A—Ay|| 2 &} =0

holds for any ¢ > 0.
We shall prove the theorem

THEOREM 4.1. Under Assumptions 1 through 6 and (2.12), each point of set Dy is
asymptotically normal

(4.4) (A%~ 24%2 7).

PRrROOF. We shall prove the Theorem 4.1 by help of several lemmas; some of them
having importance of their own.
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One of the problems is that of boundedness of Dy. Lemma 4.4 solves this prob-
lem.

First of all, consider the following function of A for any fixed Y, -+, Yy:
hy(A) = T | |Sy(Y =A%) —p(A—=A%)6"|.

Theorem 2.1 and 3.1 of [7], regarding the Assumption 5 of monotonicity of ¢
imply that y = 0; if we may suppose that ¢ is such that jé(p(u)(p(u, du #0
then y > O (this is the case when both ¢(u) and ¢(u, f) relate to strongly unimodal
distributions). /y(A) is then easily seen to be a convex function of A which has a
unique minimum. The point of minimum is equal to the solution of the system of
equations

(4.5) Sy(Y =A%) = y(A—A%)0", j=1,2,,K.
Let us denote the solution of (4.5), which exists and is unique for any fixed
Y,, -+, Yy for which the left-hand sides are well defined, as Ay.

The asymptotic normality of Sy(Y—A%x) implies that the sequence {Ay} is
asymptotically normal

(4.6) (A% y24%z7Y)
which is equal to (4.4).
LeEMMA 4.1. Under assumptions 1 through 6, (2.12),
(4.7) limy., o, Pro{Y 5oy |Sy(Y —Ayx)| 2 €} =0
holds for any ¢ > 0.

ProoF. The Lemma is a direct consequence of Corollary 3.1 and of asymptotic
normality (4.6).

COROLLARY 4.1. If ¢ is any positive number, then
(4.8) limN_.,oo PAo{minAEEKZ}(=1 ISNJ(Y—AX)l g 8} = 0.

LeMMA 4.2. For any C > 0, denote as O the set Oc = {A € EX; ||A—A°|| £ C}.
Then under Assumptions 1 through 6 and (2.12),

(4~9) limy, , Ppo{Supa. DnnO¢ ”A—AN” 2eDyn0c# I} =0
holds for any C > 0 and ¢ > 0.

Proor. The continuity of the operator ™! implies existence of 6 > 0 to given
¢ > 0 such that

T[Sy ¥ —A%) —5(A—A%)0%| 2 5

holds for any A € EX satisfying ||A—Ay|| 2 e. Then

PAO{SupAeDNnOC ”A"BN” 2¢Dyn0c# @}
= PAQ{SupAeDNnOCZJI‘(=1 ISN,'(Y"AOX)“Y(A"AO)GU)I 2 0,Dy N 0c # I}
< Po{SUPac pynoe 2ne1 |Sn (Y =A%) —3(A—A%)6P| 2 6,Dy N O # &,
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SUP4 ¢ pynoe L=t |SnY —Ax)| < /2}
+ Pyo{Dy N O¢ # &, SUPAc pynoe 2pe1 |Sni(Y —AX)| 2 6/2}
< Ppo{suPacoc |LiC 1 [SuY =A%) —9(A =A%)V =TI |Sy (Y —Ax)|| 2 6/2}
+Pyo{ming ¢ px 3 =1 |Snj(Y —AX)| = 6/2}
-0 for N - o0,

for the first summand tends to zero in view of Corollary 3.1 and the second one
in view of Corollary 4.1. []

LemMa 4.3. Let Assumptions 1-6, (2.12) be satisfied. Then there exist C* > 0,
8 > 0 and index N corresponding to any ¢ > 0 such that

(4.10) Pyo{min;ja—po;jsce Y ge1 |Sv(Y—AX)| < 6} <&
holds for any N > N,.

PROOF. Let M> 0 be such that ®(— M) < ¢/8K where @ is the standard normal
cdf. Let C* and 6 be any numbers satisfying the inequalities

(4.11) C*22M- (K- A2 (Agy)™ Y & < MJ2(K - A%)?

where 4, is the minimal eigenvalue of the matrix Z.
We shall prove at first the existence of N, such that

(4.12) PAO{min”A_Aouzc:uZ;(:l (AJO—AJ)SNJ(Y—AX) < 6*} < €
holds for all N > N, with 6* = 6C.*
The left-hand side of (4.12) is bounded from above by the sum

Ppo{min|s_aojj=cs 2 =1 (A;° —A))Sy(Y—Ax) < 6%,
(4.13) min|ja—poj=cs 2 g=1 (A2 —A)[Sy (Y = A°X)+p(A° — A)e ] = 26}
+Pyo{min s gojj=ce Dpe 1 (A;° = A)[Sy (Y= A%X) +p(A° — A)a "] < 26*.
The first term of (4.13) may be bounded from above by probability
Po{max; s soj  =ce S 1 (A, A,)[Sy(¥ = A%%) +3(A° — A)o P
(4.14) —Sy(Y—Ax)] = 6*}
< Ppo{max||a-aoj=ce 2pe1 |Sn (Y —A%%) +7(A°— A)e!
—Sy(Y—Ax)| = 6*/C*}.
The last inequality is valid in view of inequality
2i=1(8;° = A)ISn (Y —A°%)+7(A° — M)V — Sy (Y - Ax)]
< 2=t [Snl(Y =A%) +9(A° = A)a” — Sy (Y- Ax)| - (max, <<k [A,° = A, ])-

The right-hand side of (4.14) tends to zero by Theorem 3.1 and this means that the
first term of (4.13) tends to zero.
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The second term of (4.13) is not greater than
PAo{min”A_Ao”=C* Zf=1 (Ajo —Aj)SNj(Y—AOX)-l—(C*)Z/‘LO’)’ < 26*}
S Ppo{ —CH[Y 5 SR Y —A%X)]F < 26%—(C*)?Aoy}
S YK Paof|SyAY —A%X)| > Co/K?}
where Cy = —26+ C*Ayy. The first inequality follows from Schwarz’s inequality.
It is known that Sy,(Y—A°x) are asymptotically normal (0, A?), so that there
exists Ny suchthat ) [ ; Ppo{|Sy;(Y—A’X)| > Co/K*} < 2K-@(— Co/(KA®)* +¢/4 <
2K®(— M)+¢/4 < ¢/2 holds for all N > N,, so that the second term of (4.13)
also tends to zero. (4.12) is proved.
If A is any point such that ||[A' —A°|| = C* and we denote as
x,~*=z;(=1(Ajo—Ajl)xﬁ, Yi* = }’i—AOX(i), i =1,2,"',N

then we may consider the statistic S(7) = Y ™, (x;* — ¥*¥)ay(R,") where (R,*, -, Ry®)
is the vector of ranks for variables Y;*+1tx;*,i = 1, 2, ---, N. S(7) is non-decreasing
function of 7 for any fixed Y, ---, Yy, as it follows from Theorem 2.1 of [7], so
that

(415) S50 (A,°—A)SuY ~[A° +5(A" ~A%)]x) = 5(2) 2 5(1)

=31 (Afo—Ajl)SNj_(Y—Alx) for any 7 = 1.
If |[A—A°|| = C* then ||[A'—A°|| = C* for
(4.16) Al = A°+[CH¥/||A—A°||J(A—A°)
and A = A°+1(A'—A°) for
(4.17) T=|[|A-A°|/C* = 1.

(4.15), (4.16) and (4.17) then imply
(4.18) 51 (A= AN)SNAY —A%) = 371 (A,°—A;1)Sy(Y—A'x)
—mings g an-gopj=cy Lj=1 (8,7 = A;)Sy (Y —A'x)
and this further implies the inequalities
Pyo{min|js_poyscv Y he1 |Swi(Y—Ax)| < 6}
< Puo{min s aojjzcr (C*/||A° - A[NIE]=1 (4,° = 4)Sw (Y —Ax)] < 5C*}
< Ppo{mingas;jjar-gopy=cn 2j=1 (8, =4;")Sy(Y —A'x) < 6C*} <&

for N > N,.
The first inequality is valid in view of the inequality

251 (A= ANShA(Y—Ax)| £ Y5 [SyY —Ax)| - (max, <<k |42 = A}').

The second inequality follows from (4.16), (4.17) and (4.18) and the third one from
(4.12). The proof is complete.
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LEMMA 4.4. Under Assumptions 1 through 6, (2.12), if O¢ = {A € E; [|A-A%| =
C} for any C > 0, then, corresponding to any & > 0, there exist C* > 0 and a
positive integer N, such that

(4.19) PAO{DNﬁﬁc* # QJ <e
holds for any N > N,.

ProoF. If ¢ > 0 is given, then Lemma 4.3 guarantees the existence of C* > 0,
6 > 0 and N, such that
(4.20) . PAo{min“A_Ao”;C*Zﬁl |SNJ(Y—'AX)! < 5} < 8/2
holds for any N > N;.

Corollary 4.1 further implies the existence of N, such that

(4.21) Pro{ming ¢ px Y 5= ISNj(Y—Ax)| =0} <ef2
holds for all N > N,.
Then

Pyo{Dy N Ocs # T}
= Pyo{Dy N Ocs # &, Minj s g0y s00 2pe1 [Sn (Y —AX)| < 8}
+Pro{Dy " Ocs # &, Minja—popscr et |SyAY —Ax)| 2 6}
< Pyo{minyja-aopizcr L=t [Swi(Y —A%)| <3}
+Pao{ming . px Y.5o; Sy (Y —AX)| 2 6} <e
for all N > N, = max (N, N,). []
LEMMA 4.5. Under Assumptions 1 through 6, (2.12)
(4.22) limy o o Pao{SUpacpy ||[A—Ay|| 2 &} =0
holds for any ¢ > 0.

PRrOOF. Let ¢ > Oand 7 > 0 be given. Lemma 4.4 guarantees existence of cC*>0
and N, such that Pyo{Dy N 0. # &} < p/4forall N > N,. By Lemma 4.2 there
exists N, such that Pao{supacpynocs||A=Ax|| = & Dy 0 # &} < n/2 for all
N > N,. We then have for all N > max (Ny, N)

Pyo{Supacpy ”A" &NH 2 &}
< Ppo{supscpy ||A—[SNH 2 & Dy Oce # @}"'PAO{DNGOC* # O}
< Ppo{SUPacpynocr A—Ry|| 2z ’DNGOC* # I}
+Pyo{supsep, [|A—Ax| 2 &, SUPA c pyroct||A—An|| < & Dy N 0c. # T}
+Pyo{Dy N Ocs # &}
< Pro{SUPacpynoct HA—ANH 2 &, Dy O # &}
+2Po{DynOce # T}
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Theorem 4.1 is then an immediate consequence of Lemma 4.5 and of the asymp-
totic normality (4.6) of Ay.

Usual choice of ¢(u) if ¢(u) = ¢(u, f,) where f, is a supposed density possessing
finite Fisher’s information. ¢(u, f;) is then and only then non-decreasing if f; is
strongly unimodal.

So we see that if the supposed density is equal to the actual one then our
estimates have the same asymptotic distribution as the maximal-likelihood
estimates. However, the theory of maximal-likelihood estimates has not been
worked out under such weak conditions up to this time (i.e. the monotonicity of
¢@(u) and finiteness of Fisher’s information). The behavior of maximal-likelihood
estimates has not also been treated in case that the supposed density differs from
the actual one.

5. Estimation of parameter a. Suppose that we are given by some specific rule
of choice of unique point from Dy, e.g. the center of gravity of Dy; let Ay be such
point.

We add to the Assumptions 1-6 and (2.12) of Section 2 the assumption of
symmetry of f(y) about zero and of Y. x;; =0,/=1,2,,K; N=2,3, .
Put

(5.) 0 (0f) = ~FTF (w+ DRUAE (@+1)2).  O<u<L.
We propose as an estimate of o

(5.2) by = 3oy *+ay**)

where

(5.3) ay® = sup {o; Sy (Y —a—Ayx) > 0}

ay** = inf {o; Sy (Y —a—Ayx) < 0}
(see [1] for one-dimensional A). Here Sy* (Y —a— Ax) denotes the rank statistic
(5.4) Sy (Y—a—Ax) =YY sgn(Y;—a—AxD)ay*(247)

where #,*%, -+, Zy™" is the vector of ranks for variables |Y;—a—Ax®|, i = 1,
2, -+, N; the scores ay™ are generzted by a nonnegative non-decreasing square-
integrable function ¢+ (), 0 < u < 1, about ecither (2.7) or (2.8).

The study of the asymptotic normality of &y is based on results of Hodges-
Lehmann [5] (Theorem 1 and Theorem 4) and on a result of [8] (Theorem 1 and
Corollary 1). First of all, we see that A has the invariance property Ay(Y +a+bx) =
Ay(Y)+D for any a, b and that the distribution of &y is continuous. We then have
the inequalities analogous to (9.1) of [5].

(5.5) P{Sy*(Y—a—Ayx) <0} < P{ay < a} S P{Sy* (Y —a—Ayx) £ 0}

which lead to the conclusion analogous to that of Theorem 4 of [5]:

(5~6) limN_,wPa’ AO{N%(&N—a) é a} = limN_,wPO’O{SN*-(Y_a/N%_KN X)é 0}.
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Theorem 1 and Corollary 1 of [8] imply
limy_, o, Poof|Sy " (Y —Ayx)—Sy*(Y)| 2 eN*} =0 for any ¢ >0

and this together with the contiguity of gy = [, f(y+a/N?) to py = [[IL1 f(¥
implies

(5.7)  limy,y Poof|Sy*(Y —a/N*—Byx)—Sy*(Y —a/N?*)| 2 eN*} =0
for any ¢ > 0. (5.7) together with Theorem VI.2.5 of [4] shows that
N7EiSyt (Y—a/N*—Ayx)

is asymptotically normal (—afsp* m)e*(u, f)du, [§[¢*(u)]* du). Regarding (5.6),
the conclusion is that 4y is asymptotically normal

(59) (0o N1 5 L () du+ [ 0 (u)™ o) du] ).
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