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A CHARACTERIZATION OF INVARIANT LOSS FUNCTIONS

By ROBERT G. STAUDTE, JR.
Michigan State University

Maximally invariant loss functions are constructed in a decision
theoretic framework, and sufficient conditions for their measurability are
given.

1. Introduction. This paper is concerned with the implications of group theoretic
structure for invariant loss functions. The impetus for this study was a paper by
Berk [1] in which equivariant estimators are characterized. While Berk does not
discuss optimality in that paper, his results may prove useful in such discussions.
The characterization of invariant loss functions presented here will, hopefully,
complement his work and further contribute to such discussions.

The invariant estimation problem as defined in [1] is in part generalized to an
invariant decision problem in Section 2 so that some examples considered in [1] as
well as others may be included. Then in Section 3 ‘“maximally invariant” loss
functions are exhibited in this general setting and illustrated by examples;
measurability of these loss functions is discussed in Section 4.

2. Preliminaries. Our underlying structure consists of a class of probability
models (%, &7, #), a one-one mapping ¥ taking & onto an index set ©®, a measur-
able space of actions (%, %), and a real-valued loss function L defined on ©® x %
We assume that a group G of one-one «7-measurable transformations acts on Z°
and that it leaves the class of models (%, <7, &) invariant. We further assume that
homomorphic images G and G of G act on © and %, respectively. (G may be
induced on © through y as in [1]; and G may be induced on % through L, see [3].)
We shall say that L is invariant if for every (0, y) € @ x %

2.1) L(g0,gy) = L(0y), geG.

Given the structure described above there are aesthetic and sometimes admissi-
bility grounds for restricting attention to decision rules ¢ : & — % which are (G, G)
equivariant in the sense that

(2.2) o(gx) = Jo(x) xe¥,geGC.

If G is trivial and (2) holds, we say ¢ is G-invariant, or simply invariant. Further
discussion of these concepts may be found in [1], [3], and [4].

3. Invariant loss functions. We begin by noting that L is invariant in the sense of
(2.1) if and only if L is a G*-invariant function, where G* is defined on @ X% as
follows: to each g € G, with homomorphic images §,§ in G,G respectively, let

g*0,y) = (g0,3y),(0,y) e ©x%.
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Since any invariant loss function will depend on a G*-maximal invariant, we
shall study the latter under various assumptions. A standing assumption through-
out the remainder of this paper is that G is a homomorphic image of G. When
context allows, we drop the bars on g,G for notational convenience.

DEFINITION 3.1. A transformation group G acting on a set @ is called (uniquely)
transitive if for every 0, n € © there exists a (unique) g € G such that g6 = 5.

When G is uniquely transitive on ® we may index G by ©: fix an arbitrary point
0o € © and define g, to be the unique g € G satisfying g0, = 0. The identity of G
clearly corresponds to 6,. An immediate consequence is Lemma 3.1.

LEMMA 3.1. Let G be uniquely transitive on ©. Fix 0, € © and define g, as above.
Theng,y = hgyfor0e ©,hed.

Proor. The identity g,0, = h0 = hg,0, shows that g,, and hg, both take 0, into
h0, and the lemma follows by unique transitivity.

THEOREM 3.1. Let G be uniquely transitive on ©. Fix a reference point 0, € © and
index G by ©. A maximal invariant m with respect to G* acting on © x ¥ is defined by
~
(3.1) m(0,y) =go 'y 0,y)eOx%.
PRroOF. Foreach (0, y)) e ®x% and ge G
- N" N NI L
m(90,3y) = (950 )7y = (990)"'Gy = g0 ‘g™ gy =m(0,y)

by Lemma 3.1 and the structure preserving properties of homomorphisms. Thus
mis G™-invariant. To see that m is maximal, let

m(0;,y1) =m0, ).

~ ~ ~/
Then gy, 'y, = go, ¥2 01y, = §y, where§ = o, Jo, -
Since 0; = go,00 = go,95,'0, = 90, (0,, y,) = g~ (0,, y,) for some g* € G*, and
the proof'is complete.

In some cases (See Example 1) the transformation group acting on © is not
uniquely transitive but it contains a subgroup with this property. By composing
certain maximal invariants we may still obtain the G*-maximal invariant we seek;
Theorem 3.2 below provides the details of such a construction. We need one more

definition.

DEerINITION 3.2. Let G be a transformation group acting on a space ©. The
isotropy subgroup of Gat 0,0 € ©,is Gy, = {ge G:g0 = 0}.

THEOREM 3.2. Given the structure defined in Section 2, assume also that G contains
a uniquely transitive and normal subgroup H. Fix 0, € © and let G, be the isotropy
subgroup of G at 0. If my is the H -maximal invariant guaranteed by Theorem 3.1
and if my is a Gy-maximal invariant, then the composition of my with my is a
G ™ -maximal invariant.
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PrOOF. In order to apply the well-known theorem ([4] page 218) for composing
maximal invariants we show first that H and G, generate G, and second that the
group induced by m, and G,* on the range of my, is precisely G.

The subgroups H and G, of G will generate G if G = HG,. Accordingly choose
g arbitrarily in G and let 0 = g0,. Since also 0 = h,0, we have h,"'g € G,, say
hy™'g = go. Hence g = hggo € HG, and G = HG,. Incidentally, the product
G = HG, = G H is direct if and only if G, is trivial.

To show that my and G,* induce G, (in the same way that s and E induce E* of
Theorem 2, page 218, [4]) it suffices to show that my is (Go*, G)-equivariant;
i.e., that

(32) mu(90.3y) = gmu(y,0) for all g€ G,.
We first show that if H is normal in G, then
(3.3) hyy = gheg ™! for all ge G,

For any g € G, the identity A0, = g0 = ghy0, shows that hy'ghyeGo; let
hp'ghy = go, say. Then ghy = hygo = goh' for some i’ € H since H is normal in G.
It follows that g,"'g = h'hy™' € H n G, which is trivial, so g = g,. Since g was
arbitrary in G,and g, = h~' gh,, statement (3.3) follows.

The equivalence (3.2) now follows from the identities:

~ m—— L~ .
mu(90,3y) = hye'Gy ="ghe™ g™ "Gy = G(he™'y) = Gmu(,0).
In all the examples to follow, X is a vector of independent random variables

which take values in Euclidean n-space and .o is the usual Borel field on Z.

ExampLE 1. Consider the problem of estimating a location parameter for a
continuous symmetric distribution. Each component of X has cdf Fy defined by
Fy(r) = F(r—0), re R for some fixed continuous cdf F which satisfies
F(r)+F(—r) = 1,r€ R. Here & consists of product measures indexed by the
location parameter ® = R = %.

The family of models & is left invariant under the group G generated by the
translation group H and the map x — —x. The reader may easily verify that by
Theorems 3.1 and 3.2 any G ™ invariant loss function on © x (range ¢) has the form

L(0, ¢(x)) = L(|o(x)—0)).

ExampLE 2. Consider the problem of estimating the location-scale parameter
of a distribution belonging to a family generated by a continuous cdf F.

P = {P,,:F,,(x) =F (ic-;—”> xeR,Oe@}
O ={(u,0):4u,6eR, 06 >0} =%.

The group G of location and scale changes leaves the class of models invariant.
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Since G induced on © by P, — 0 is uniquely transitive, we may apply Theorem 3.1,
and obtain invariant loss functions of the form

L(0, o(x)) = L(‘f"_()f);“’ ‘M)

o o
if 0 = (1, 0) and p(x) = (¢ 1(x), @ 2(x)).

ExampLE 3. Let O be the class of all strictly increasing and continuous cdf’s,
and consider the problem of estimating a numerical characteristic of Fwhen % = R.
This situation arises when, e.g., we estimate a median and our loss depends on
both Fand the estimate (see (3.4) below).

The family of product measures & is indexed by © (Y(P) = F,) and it is left
invariant under the group G of strictly increasing 1 — 1 onto continuous maps acting
coordinatewise on 4. The induced G acts on O as follows:

GF = Fg~! = composition of F with g~

We define G to be the group G acting on %, (with homomorphism § — g = §).
Now G is uniquely transitive on ©, since for F,, F, € © the transformation g
corresponding to g(x) = F, 'F,(x) is the unique member of G taking F, into F,.
Fix 0, = F,, where F, is arbitrary in ©. Then g F, = F implies gz = F~'F,; by
Theorem 3.1 a G*-maximal invariant is defined by m(F, y) = g~ '(y) = g '(y) =
Fo,"'F(y). Since F, is 1—1 any invariant loss function for this problem has the
form

L(F, ¢(x)) = L(F(¢(x)))-

An example of this kind is
(34) L(F, o(x)) = |F(o(x))—4].

ExAMPLE 4. Let P, ©, and G be continued from Example 3 but now expand
the action % to contain al/ cdf’s on R. We define G to be G acting on % as it does on
O, (§F = Fg'). Then for fixed F, € ® we have (as in Example 3) g = F~'F, and
G*-maximal invariant m(F, F) = g, 'F = F(F~'(F,)) for (F, F)e © x%. Since
F, is 1 — 1 any invariant loss function has the form L(F, F) = L(F(F™')). Note that
the usual invariant loss functions for this problem—supx]F(x)—F(x)l and
[(F(x)—F(x))*dF(x)—are functions of this kind.

4. Measurability of invariant loss functions. In the previous sections a loss
function was defined to be an arbitrary real-valued function on ® x %. In order to
compute the risk involved in using a decision rule ¢ when 0 = y(P) is the para-
meter associated with the distribution of X, we need by definition to find the
integral (say, Lebesgue) of L(0, ¢(X)) with respect to the measure P. Thus it would be
desirable to know conditions under which L is measurable in its second argument
for fixed 0. If, in addition, we desire to compute Bayes risks with respect to measures
on O, we want L to be jointly measurable in both arguments. Sufficient conditions
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for such measurability are presented below for the invariant loss function of
Theorem 3.2. Incidentally, we obtain sufficient conditions that the members of
G acting on % be #-measurable.

Under the conditions for Theorem 3.2, any invariant loss function is given by
L(0, y) = Lo(mo(my(0, »))), (v, 0) € % x © where L,: (range m,) — R. If L, and
m, are measurable (with respect to appropriate o-fields) then measurability of my
in its second argument for fixed 0 implies the same measurability for L; a similar
statement holds for joint measurability. Therefore we examine the measurability
of my.

Since mH(O y) = ho !y, it is clear that my, is measurable in y for fixed 0 if and
only if each i € A is measurable with respect to 4. It is usually assumed that the
members of G (and hence H) are #-measurable; the following results show that
under rather mild conditions such #-measurability is automatically guaranteed.

THEOREM 4.1. Let (%,s7), (¥,B), G and G be given as in Section 2. Assume ¢ is a

(G,G)-equivariant map of % into ¥, and define B, to be the collection of B = ¥ such
that 9~ 'B e o/ . Theneach € G is B ,-measurable.

PROOF. Be B,<> ¢ 'Bed < g 9 'Beod <@ (j7'B)e s/ by equivari-
ance <> § 'Be 4,
If we add the natural assumption that ¢ is («7,%)-measurable to those stated in

Theorem 4.1, then clearly # < 4,. We want # = %, so that we may conclude
eachj e G is g{s’ measurable.

COROLLARY 4.1. If (in addition to the assumptions of Theorem 4.1) ¢ is (oL, %)-
measurable and onto, then either of the following conditions implies # = 2.,

(a) o(A) e B foreachA e o
(b) (%,of) is a Lusin space and % is Euclidean.

PROOF (a). Be B,<> ¢ 'Be o/ = B = (¢~ 'B) e A. (b) follows directly from
a result of Blackwell [2], which is repeated here in our context: Let (%,/) be a
Lusin space, let ¢ map 2 onto an arbitrary space % and define %, as above. If &
is a separable subfield of %, and every B %, is a union of atoms of %, then
B = B,.

To summarize, my is measurable in its second argument for fixed @ if there
exists a (G, G)-equivariant and (&/,%)-measurable map of & onto % and if &%
are “‘nice” topological spaces; these propertles are present in Examples 1, 2, and 3
of the previous section.

In Example 4 the situation is more compllcated. The Lévy metric defines a
separable Borel field 2 on % which contains the singletons but Theorem 4.2 is not
applicable since an equivariant ¢ : Z — % will not be onto; (in fact, it is essentially
shown in [4] that if ¢ is equivariant then F = ¢(x) must increase by fixed amounts
only on the order statistics). However, Theorem 4.2 does apply when % is replaced
by the range of ¢ and #,%,, are replaced by the respective o-fields they induce on
it. We also observe that if § € G is #,-measurable it is measurable with respect to
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the o-field induced by 4, on the range of ¢. Thus by Theorems 4.1 and 4.2 the
loss function of Example 4 is measurable on the range of any (G,G)-equivariant and
(«/,%)-measurable ¢, and we may meaningfully discuss the integral over & of
L(F, ¢(x)) = Lo(F(F™Y)) for fixed F and integrable L,. It is not clear that L is
measurable over % for fixed F since there are uncountably many distinct G-orbits
which correspond to ranges of different equivariant rules @.

Finally, a word about joint measurability of m, when % = ® and G = G.
Assume Z is generated by the compact subsets of a topology on % and that the
group (O, -), where 0-n = hyn, (0, n € ©) is topological. Then by definition of
topological group my, is jointly continuous (hence jointly measurable) on © x ©.
This situation exists in Examples 1 and 2 of the previous section.
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