A REMARK ON NONATOMIC MEASURES

By K. P. S. Bhaskara Rao and M. Bhaskara Rao

Indian Statistical Institute, Calcutta

In this paper the following result is proved:

THEOREM. If λ is a measure on a product σ -algebra $\mathfrak{A} \times \mathscr{B}$ and λ_1 and λ_2 are the corresponding marginals on \mathfrak{A} and \mathscr{B} respectively, then λ is non-atomic iff at least one of λ_1 and λ_2 is nonatomic.

By a measure we always mean a nonzero finite measure defined on a σ -algebra of subsets of a space. A σ -algebra $\mathfrak A$ of subsets of X is said to be atomic if X is the union of all atoms of $\mathfrak A$. A measure μ on an atomic σ -algebra $\mathfrak A$ is said to be continuous if $\mu(A)=0$ for every atom A of $\mathfrak A$. A σ -algebra is said to be separable if it has a countable generator. An element $A\in \mathfrak A$ is said to be a μ -atom if $\mu(A)>0$ and $B\in \mathfrak A$, $B\subset A$ implies $\mu(B)=0$ or $\mu(B)=\mu(A)$. μ on $\mathfrak A$ is said to be nonatomic if there are no μ -atoms in $\mathfrak A$. μ on $\mathfrak A$ is said to be 0-1 valued if it takes only two values 0 and 1. If $\mathscr D$ is any collection of subsets of X, $\sigma(\mathscr D)$ denotes the σ -algebra generated by $\mathscr D$ on X.

The following well-known results will be used without mention in the sequel. Every separable σ -algebra is atomic. There is no 0-1 valued continuous measure on a separable σ -algebra. From this it follows that a measure μ on a separable σ -algebra is nonatomic iff it is continuous. For any nonatomic measure μ on \mathfrak{A} , $A \in \mathfrak{A}$, $\mu(A) > 0$, $0 < \alpha < \mu(A)$ implies there is a $B \in \mathfrak{A}$, $B \subset A$ such that $\mu(B) = \alpha$ (see [1] page 174).

LEMMA. Let μ be a nonatomic measure on a σ -algebra $\mathfrak A$ and $A \in \mathfrak A$. Then there exists a separable sub σ -algebra $\mathscr B$ of $\mathfrak A$ containing A such that μ is nonatomic on $\mathscr B$.

PROOF. Case (i).
$$\mu(A) > 0$$
 and $\mu(A^c) > 0$.

Let $A_0 = A$ and $A_1 = A^c$. We can define for every finite sequence i_1, i_2, \dots, i_k of 0's and 1's sets A_{i_1, i_2, \dots, i_k} from $\mathfrak A$ by induction on k satisfying

$$A_{i_1,i_2,\cdots,i_k} \subset A_{i_1,i_2,\cdots,i_{k-1}},$$

(b)
$$A_{i_1,i_2,\cdots,i_{k-1},0} \cup A_{i_1,i_2,\cdots,i_{k-1},1} = A_{i_1,i_2,\cdots,i_{k-1}},$$

(c)
$$A_{i_1,i_2,\cdots,i_{k-1},0} \cap A_{i_1,i_2,\cdots,i_{k-1},1} = \emptyset$$
,

(d)
$$\mu(A_{i_1,i_2,\dots,i_k}) = \frac{1}{2}\mu(A_{i_1,i_2,\dots,i_{k-1}}).$$

Let $\mathscr{B} = \sigma\{A_{i_1,\dots,i_k}\}$. Then $A \in \mathscr{B}$ and μ is continuous on \mathscr{B} . Hence μ is nonatomic on \mathscr{B} .

Received November 6, 1970.

Case (ii). $\mu(A) = 1$. Let $B \in \mathfrak{A}$ be such that $B \subset A$, $\mu(B) > 0$ and $\mu(A - B) > 0$. Take $A_0 = B$, $A_1 = A - B$ in the construction of Case (i).

THEOREM. Let $\mathfrak A$ and $\mathscr B$ be σ -algebras on X and Y respectively, $\mathfrak A \times \mathscr B$ the product σ -algebra of $\mathfrak A$ and $\mathscr B$ on $X \times Y$, λ any measure on $\mathfrak A \times \mathscr B$, and λ_1 and λ_2 the marginals of λ on $\mathfrak A$ and $\mathscr B$ respectively. Then λ is nonatomic iff at least one of λ_1 and λ_2 is nonatomic.

PROOF. 'if' part: Assume that λ_1 is nonatomic. Let $C \in \mathfrak{A} \times \mathscr{B}$ be such that $\lambda(C) > 0$. Then $C \in \sigma\{A_i \times B_i; i \ge 1\}$ for some A_i 's in \mathfrak{A} and B_i 's in \mathscr{B} . Using the Lemma we can find a separable sub σ -algebra \mathscr{D} of \mathfrak{A} such that $A_i \in \mathscr{D}$ for all $i \ge 1$ and λ_1 is nonatomic on \mathscr{D} . Let \mathscr{C} be the product σ -algebra $\mathscr{D} \times \sigma\{B_i\}$. Observe that $C \in \mathscr{C}$ and $C \subset \mathfrak{A} \times \mathscr{B}$. Since C is separable and λ_1 is continuous on \mathscr{D} , λ is continuous on C and hence λ is nonatomic on C.

'only if' part: It is sufficient to prove that if λ_1 and λ_2 are 0-1 valued so is λ . Look at $\mathscr{D} = \{C \in \mathfrak{A} \times \mathscr{B} : \lambda(C) = 0 \text{ or } 1\}$. \mathscr{D} contains $\mathfrak{A} \times Y$ and $X \times \mathscr{B}$. Hence $\mathscr{D} = \mathfrak{A} \times \mathscr{B}$.

COROLLARY. Let λ_1 and λ_2 be measures on $\mathfrak A$ and $\mathscr B$ respectively. Let $\lambda_1 \times \lambda_2$ be the product measure on $\mathfrak A \times \mathscr B$. Then $\lambda_1 \times \lambda_2$ is nonatomic iff at least one of λ_1 and λ_2 is nonatomic.

REMARKS. (1) The previous corollary can be easily extended to countable product spaces.

(2) We shall give a proof of the following result using the Lemma which can be proved with the help of the Radon-Nikodym theorem also.

If μ and λ are two measures on a σ -algebra \mathfrak{A} , μ nonatomic on \mathfrak{A} and λ is absolutely continuous w.r.t. μ , then λ is nonatomic on \mathfrak{A} .

PROOF. For $A \in \mathfrak{A}$ such that $\lambda(A) > 0$, by the Lemma we can find a separable sub σ -algebra $\mathscr{D} \subset \mathfrak{A}$ such that $A \in \mathscr{D}$ and μ is nonatomic on \mathscr{D} . Then μ is continuous on \mathscr{D} and hence λ is continuous on \mathscr{D} , from which it follows that λ is nonatomic on \mathscr{D} .

Acknowledgments. The authors are grateful to Professors J. K. Ghosh and A. Maitra for their helpful comments.

REFERENCE

[1] HALMOS, P. R. (1950). Measure Theory. Van Nostrand, New York.