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EXISTENCE AND CONSISTENCY OF MODIFIED
MINIMUM CONTRAST ESTIMATES

By D. LANDERS
University of Cologne

It is the purpose of this paper to explore the efficiency of a modified
definition for maximum likelihood estimates which depends on the
whole equivalence class of densities only and not—as in the classical
case—on the particular choice of versions. We prove the existence of
measurable maximum likelihood estimates in the new sense for compact
metrizable families of probability measures without any continuity
assumption for the densities. For appropriate families of probability
measures the modified asymptotic maximum likelihood estimates are
exactly the strongly consistent estimates. The paper uses Huber’s
concept of minimum contrast estimates which covers maximum likeli-
hood estimates as a special case.

Introduction. Maximum likelihood estimates in the usual sense are based on
fixed versions of the densities. In [6] and [4] it was shown that the particular
choice of the versions essentially influences existence as well as consistency
of the maximum likelihood estimates.

It is the purpose of this paper to explore the efficiency of a modified definition!
of maximum likelihood and asymptotic maximum likelihood estimates which
depends on the whole equivalence class of densities only and not on the par-
ticular choice of versions any more. It turns out that this new definition has
a number of advantages:

(i) For a compact metrizable family of probability measures measurable
maximum likelihood estimates exist without any continuity assumption for the
densities (Theorem 3.1), whereas measurable maximum likelihood estimates
in the usual sense exist in general only under the assumption that the densities
are upper-semicontinuous (see [6], page 253).

(i) Under appropriate regularity conditions (e.g. exactly the conditions of
the “classical” consistency theorem) the property of being a sequence of
asymptotic maximum likelihood estimates is not only sufficient but also
necessary for the strong consistency of the sequence of estimates (Theorem 3.2).

Example 3.3 shows that strongly consistent estimates (and hence asymptotic
maximum likelihood estimates in our sense) are, however, not necessarily
asymptotic maximum likelihood estimates in the usual sense.

(iif) The proofs for the main theorems are simpler than in the “classical”
case since with modified maximum likelihood estimates no measurability
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problems (such as sup 4, is measurable for all compact sets C, see [6]) arise.

(iv) The presented concept covers the “classical” concept in all important
cases.

Since this creates no additional difficulties we use in Section 2 Huber’s [3]
concept of minimum contrast and asymptotic minimum contrast estimates.
In Section 3 we apply the results of Section 2 to the case of maximum likeli-
hood estimates. Section 4 collects auxiliary lemmas for Section 2 and Section 3.

For references concerning the “classical” theory of minimum contrast and
maximum likelihood estimates we refer the reader to [6].

1. Preliminaries. Let (7, Z) be a topoldgical space. The Borel-field ¢(Z)
is the o-field, generated by 7. A denotes the closure of a set 4 — T. Let
(L, <) be a complete lattice, i.e. a partially ordered set such that inf L, and
sup L, exist for each L, c L. If t - g,e L, te T, is any map, we write for
every S C T:inf gg: = inf{g,: te S}, supgs: = sup{g,: € S}. The map ¢ —
g,eL, teT, is lower semicontinuous (1.s.c.) [upper semicontinuous (u.s.c.)],
iff g, = sup,. ., inf g,[g, = inf, ., sup g,] for every te T. If L is the real
line this is the usual definition of l.s.c. and u.s.c.

Let x be a g-finite measure on a o-field % on X. Denote by M(.#, p) the
set of all y-equivalence classes of & -measurable functions on X with values
in [—oo, 4 00]. Elements of M(.#, ) will be denoted by f. It is known
that M(%, p) endowed with the natural ordering (i.e. f < giff f(x) < g(x)
p-a.e.) is a complete lattice ([2] page 335). Furthermore each subfamily of
M(, i) contains a countable subfamily’ with the same ‘infimum’ and
‘supremum’ (loc. cit.). We remark that the infimum or supremum over a
countable family, say M,, can be taken pointwise, i.e. fefe M, implies
inf,, feinf M,.

Let N be the set of natural numbers. For each n e N let 4" on the product
o-field .7 " be the Cartesian product of » identical components p on . For
any function f: X —[—o0, 4+ 00] we denote by f™: X" —[—o0, 4 0o] the
function defined by f™(x,, ---, x,) = n™* 230, f(%), (x,, - -+, X,) € X", using
the convention co —oco=—oo. Sometimes f™ is considered in a natural way
as function defined on the countable product space XN. If fe M(.7, p),
denote by f™e M( ", u*) the p"-equivalence class of functions on X"
containing the functions f™, fe f. For f,e M(.7, p), teT,and f, e f,, teT,
we have—as introduced above—the following denotations:

inf fi = inf(f™:reS} and  inffy™ = inf {f,™:re S},

where S  T.
The following notion is basic for our concept of minimum contrast

estimates.
DEFINITION. Let f, e M(.7, p), te T. A subset T, C T is a separant for f,
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teT, iff T, is countable and inf f,, = inff, for all Ue Z. T, is a strong
separant for f,, te T, iff for every ne N, T, is a separant for the family f,™,
teT, (i.e. inf {0, =inff,™ forall Ue Z, neN).

A family of versions f, € f,, t € T, is separable (see Doob (1953) page 52) iff
there exista countable set 7, 7'and a p-null set X, € & such thatinf f;,,, (x) =
inf f;,(x) for all x¢ X, Ue Z.

If (T, Z) has a countable base, for every family £, e M(~, p), t e T, there
exist a strong separant (Lemma 4.1) and a separable family of versions f, € f;,
te T (see [1] page 57).

2. Minimum contrast estimates. Throughout this section let (T, Z’) be a
topological space, ¢ a o-finite measure on a o-field &% and f, e M(7, p), te T.

DEFINITION 2.1. A function ¢: X — T isa minimum contrast (m.c.) estimate
for f,, teT, iff there exist a separant T, C T, versions f, € ﬁ, teT, and a
p-null set X, e & such that

inffvnro(x) = inffT(,(x)
for all x¢ X,, Ue % with ¢o(x) € U. ¢, is a m.c. estimate for the sample size n,
iff ¢, is a m.c. estimate for the family /™, te T.

If (T, /) has a countable base, the definition of m.c. estimates is independent
of the special separant T, and the particular choice of versions f,ef,, te T
(see Lemma 4.2 (i)).

We remark that in contrast to the classical case we do not require a m.c.
estimate to be measurable, because strong consistency of sequences of m.c.
estimates can be proved without such measurability assumptions (see Theorem
2.8).

The following proposition shows that minimum contrast estimates in the
sense of Huber [3]and Pfanzagl [6], derived from separable families of versions,
are also minimum contrast estimates in our sense.

ProPOSITION 2.2. If (T, Z') has a countable base and f, € f,, te T, is a sepa-
rable family of versions, then each function ¢: X — T with f,, (x) = inf f,(x),
x € X, is a m.c. estimate for f,, teT.

Proor. As the family f, ¢ € T, is separable, there exists a countable 7, ¢ T
and a pg-null set X, € # such that inf f;(x) = inf f,, (x) forall x¢ X,, Ue Z.
Then T, is a separant for f,, £ € T, and x ¢ X,, ¢(x) € U e % imply inf f;,, (x) =
inf f,,(x) = inf f;(x) = inf f; (x) which proves the assertion.

THEOREM 2.3. Let (T, Z) be compact metrizable, and f,e M(, p), te T.
Then F *, 6(Z)-measurable minimum contrast estimates exist for every sample
size n€ N.

Proor. Let T, be a strong separant for f,, e T, and let f, e f,, te T. Apply
now Lemma 4.5 for each ne N to f,;*, te T, and T..
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Now we consider sequences of asymptotic minimum contrast estimates (for
short: a.m.c. sequences). We remind the reader that a sequence ¢, : XN — T,
ne N, is a ‘classical’ a.m.c. sequence for versions f, ef, teT,iff forall x e X¥

24) lim, . v(eXp felo)(X) — expinf f;(x)) = 0
(see [6] page 251). Equivalently this means
2.5) lim supneNofS;:(’,)(x) = lim SUP,cxn, inf f.™(x)

for all x € X~ and all subsequences IN, C N.

To obtain a concept which is independent of the special choice of versions
fi.€fi, te T, we do not consider the values of the versions pertaining to ¢,(x)
any more, we are only interested in their behavior ‘in the neighborhoods of
accumulation points of (¢,(x)),.- This leads to the following modification of
(2.5):

DEFINITION 2.6. Let P € p be a probability measure on & . A sequence
¢,: XY - T, neN, is a P-a.m.c. sequence for f,, t e T, iff there exist a strong
separant T,, versions f, € fio teT, and a PN-null set X, & N such that

lim sup, .y, inf £z (%) = lim SUP,, ¢, I0f f77'(X)
if x¢ X,, Ue 7 and ¢,(x) e V for all ne N, and some Ve Z with V c U.
If (T, Z/) has a countable base this definition is independent of the special
strong separant T, and the special choice of versions f, € f;, t € T (see Lemma
4.2 (ii)).
PRroPoOSITION 2.7. If (T, Z/) has a countable base and if ¢, is m.c. estimate

(for f., teT) for each sample size ne N, then (¢,),.y is @ P-a.m.c. sequence
for every probability measure P £ p on 7.

ProOF. Let T, be a strong separant for f,, te T, and f,e f,, te T. Asg,is
m.c. estimate for f,*), t e T, there exists a p*-null set 4, € # " such that for
all x € X~ which are not element of the cylinder set over 4,, say X, e & ¥,
we have inf fi7), (x) = inf fi*'(x) if ¢, (x)e Ue Z. Then X,= U,.nX, isa
PN-null set for each probability measure P < p, and for each ne N we have
inf fim, (x) = inf fi»(x) if x ¢ X,and ¢, (x) e Ue Z. This immediately implies
the assertion.

The ‘if part’ of the following theorem is closely related to Theorem 1.12 of
Pfanzagl [6]. As Example 3.3 shows, we prove, however, strong consistency
for a larger class of estimates. Moreover our proof is simpler than that of
Pfanzagl because no measurability problems such as those found there arise.

THEOREM 2.8. Let p be a o-finite measure on a o-field % and P & p: a proba-
bility measure on 7. Let (T, Z') be a compact metrizable space, f, e M(7, p),
teT,and S C T dense in T. Assume that

() t—f, teT,isls.c. If for some t,eS
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(i) P(f,) < P(f) forallt + 1, teT,
(iii) P(inf f,) > — oo for all compact sets C C T with t,¢ C, then a sequence

of estimates ¢,: X~ — S, ne N, converges P¥-a.e. to f, if and only if (¢,)nen IS
a P-a.m.c. sequence for f,, te S.

Proor. Letf, e f;, te T. Then, according to the strong law of large numbers,
there exists a PN-null set X, € .7 V, such that for all x¢ X; and all S, c T
with ¢, € S,

(2.9) lim sup, . inf fi'(x) < lim, . fi(x) = P(fy,) -

Let U, e %, ke N, be a base for the neighborhood system of t, such that
U,,c U, cU,keN. By Lemma 4.1 there exists a countable T, T,
t,e T,, which contains a strong separant for all the families f,, t € Z, where
Z=8T,T—U,S—U,keN. As for each ke NN the assumptions of
Lemma 4.3 are fulfilled for T — U,, there exists a PN-null set X, e % ~ such
that for all x¢ X, and all ke N

(2.10) P(f,) < inf, gy, P(f) = limy, e inf fi7 L0 00 (X)

where the first inequality follows from (i) and the fact that a l.s.c. function
attains its infimum on a compact set.

(@) Assume that (¢,), .y is a2 P-a.m.c. sequence forf,,teS. As S, =S5nT,
is a strong separant for ﬁ, te S, there exists a PN-null set X; € & ¥ such that
for all x¢ X,, N, N with ¢,(x)e V. V c Uforallne Ny(U, Ve %)

(2.11) lim sup, . , inf fiHs (%) = lim sup, . , inf f53'(x) -
Let X, = X, U X, U X,. Then PN(X,)=0. If x¢ X,and ¢,(x)e T — U, C
T — U,_, c T — U, for infinitely many ne N, say Ny, and some k > 1, we
have by (2.11)
lim sup,. v, inf fi727,)ns,(¥) = lim sup, ., inf f3’(x) -
AsT— U, c T — U, and S, C T,, we have by (2.10)
P(f,,) < lim sup, .y, inf £ (%) -

This, however, contradicts (2.9). Hence for all x ¢ X,(¢,(%))aex is eventually
in each U,, k e N, whence lim, . ¢,(x) = £, P™-a.e.

(b) Assume conversely that the sequence of functions ¢, : XN — T, ne N,
converges PN-a.e. to £, Hence there exists a PN-null set X,’ € # ¥~ such that
lim, . ¢,(x) = ¢, for all x¢ X,'.

Let X,/ = X, U X, U X,’. Then PY(X,’) =0 and we have by (2.9) and (2.10)
for all x¢ X/, N, C N, ke N:

lim sup, .y, inffs(g)nvk(x) = P(.fto) < limneNo infﬂrm—ukmso(x)
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and therefore

lim sup, ., inf f}'(x) = lim sup, ., inf f§7, (%) .
Since lim, . ¢,(x) = t, for all x¢ X/, since S, is a strong separant for £, t € S,
and since U, n S, k€ N, is a base for the neighborhood system of ¢, in §, this
implies that (¢,), . is a P-a.m.c. sequence for f£,, t€ S.

3. Maximum likelihood estimates. In this section we shall apply the results
obtained in Section 2 to maximum likelihood estimation. Let P be a family
of probability measures endowed with a topology 7z and dominated by a o-finite
measure p on the o-field %~ For each P¢P let 4, be the equivalence class
of densities of P with respect to p.

A function ¢, : X" — P is a maximum likelihood estimate for P at sample size
n, iff ¢, is m.c. estimate at sample size n for the family f, = — logh,, PeP.
A sequence of functions ¢,: XN — P, ne N, is an asymptotic maximum likeli-
hood (a.m.l.) sequence for P, iff for every P,eP the sequence ¢,, ne N, is
P,-a.m.c. sequence for f, = — logh,, PeP.

A sequence of functions ¢,: XN — P, ne N, is strongly consistent for P, iff
for every PeP:lim, ¢, (x) = P PN-a.e.

THEOREM 3.1. If P is endowed with a compact metrizable topology 7, for each
ne N there exists an F ", 6( % )-measurable maximum likelihood estimate for P
at sample size n.

Proor. Apply Theorem 2.3to T =P and f, = — logh,, te T.

THEOREM 3.2. Let P be endowed with a compact metrizable topology and assume
that P — h,, P c P, is upper semicontinuous. If for every P ¢ P

(i) P(loghy) > — oo,

(i) P(logsuph,) < +oo for each compact C < P with P ¢ C, then-a sequence
of functions ¢, : XN — P, ne N, is strongly consistent for P if and only if it is a
sequence of asymptotic maximum likelihood estimates for P.

Proor. As by (i) and (ii) P(logh,) > — oo and P(logh,) < oo if Q # P,
we have for all P, Qe P with P = Q

P(log h,) — P(log h,,) < log P(hy/h,) < log p(hg) =0,
and hence P(logh,) < P(logh,). Therefore we may apply Theorem 2.8 for

each PyeP to S=T =P, P=P, t,= P, and the family f, = — log#,,
P eP. This implies the assertion.

We remark that—similar as Theorem 2.6 of Pfanzagl [6]—Theorem 3.2
can be formulated with a compact metric space T O P, where for t € T — P
an equivalence class k, > 0 with p(h,) < 1 is given. Then we have in addition
to assume that t — A,, t € T, is u.s.c. and that 3.2 (ii) holds with compact Cc T
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instead of C — P. In this case the assertion follows from Theorem 2.8.,
applied to 7, S = P and f, = — logh,, teT.

According to Theorem 3.2 each sequence of ‘classical’ a.m.l. estimates for
P which turns out to be strongly consistent is a sequence of a.m.l. estimates
for P, if P fulfills the assumptions of Theorem 3.2. The following example
shows that even for a compact metric P with uniformly bounded upper semi-
continous densities there exist large classes of a.m.l. (and hence strongly
consistent) sequences for P, which cannot be obtained as classical a.m.l.
estimates from a suitable family of versions of the densities. Example 3.3
improves an example of Liipsen [5]. -

ExampLE 3.3. Let X = (0, 2), # the Borel-field on X and p the Lebesgue
measure on . For each te T = [0, 1] let P, be the probability measure on
& with density 4, = 1, ,,,, with respect to x; where 1, denotes the indicator
function of the set 4 — X. Let P = {P,:te T}, and let Z/ be the topology
on P induced by the | —1 map¢— P,, t € T, and the usual topology on T = [0, 1].
Then the assumptions of Theorem 3.2 are fulfilled for (P, 7). Let

Xy ={(x);en€XNisup(xy, - -+, x,) —inf(x, ---, x,) <1 forall nx=2}.

Then PN(X,) = 1 forall teT. Let T, = {t,: i ¢ N} be dense in 7. Then we
have for all (x;);.y€ X, and all n = 2

(3-4) SUP;er I ht(xi) = Supzero 11 ht(xi) =1

Now define forall x = (x,);.y € XNandalln e N: ¢,(x) = liffinf(x,,. - ., x,) =
1, and ¢,(x) = t, otherwise, where k is the smallest index ie IN such that
t; e (inf(x, ---, x,), inf(x,, - -+, x,) + 1/n). Itiseasy to seethat ¢, : XN > T
is measurable for each ne N. As for all re T there exists X, e &# ¥ with
PN(X,) = l1suchthatlim, inf(x, - - -, x,) = tforall (x;),. € X,, the sequence
(@n)nen 1s strongly consistent for P and hence an a.m.l. sequence for P
(Theorem 3.2).

Now we shall show that for no choice of versions (¢,),., iS an a.m.l.
sequence in the usual sense. Let A/ ¢ h,, te T. AsT,is countable there exists
X, e # with p(X — X)) = 0 such that

(3.5) h(x) = h'/(x) forall xeX, teT,.
Let X, =X,/n X, n XN, teT. As P,(X,) =1 we have PN(X;¥) =1 and
hence P,N(X,) = 1 for all te T. Let f, = — logh,, f,/ = —logh,/,te T. Since

¢, assumes its values only in T, U {1}, we obtain by (3.5) for all ¢ [0, 1) and
all x = (X,);ey € X2

1 , 1
(3.6) — Dt Sopm(X) = " Z?ﬂfgo,,(z)(xi) =+

n

for all sufficiently large ne N.
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By (3.4) and (3.5) we have for all (x;);., € X, n X;N and all n > 2

. 1 . 1
(3.7) inf | X f/(x) < dnf - 5 filx) = 0.

According to (3.6) and (3.7) relation 2.5 is violated for all xe X,, t€[0, 1)
for both the families f;, te T, and f;’, te¢ T. Hence (¢,),. is not an a.m.l.
sequence in the usual sense.

4. Auxiliary Lemmas. In this section we collect lemmas which are auxiliary
for the results in Section 2 and Section 3. Throughout this section let x be a
o-finite measure on a o-field & over X.

Lemma 4.1. Let (T, Z’) be a topological space with countable base and
fie M(7, p), te T. Then for each countable family & of subsets of T there
exists a countable T, T which contains for every C e & a strong separant for
the family f,, te C.

Proor. As each subset of T with the relative topology has a countable base,
for each C e %, ne N, there exists a separant, say T(C, n)  C, for the family
f.™, te C (see [6], Corollary 3.2). Then T, = U {T(C,n): Ce &, ne N} is
countable and fulfills the assertion.

LemMA 4.2. Let (T, Z') be a topological space with countable base, f,e
M, p),teTand f,, g,ef, teT.

(i) If T,, T, C T are separants, then there exists a p-null set X,e F such
that for all x¢ X, and all Ue Z

inf fy0, (%) = inf gy, (%) -

(i) If T,, T, C T are strong separants, then there exists X, . N, which is
PXN-null set for each probability measure P & p on 7, such that for all x¢ X,,
UeZ,neN

inf £l (x) = iaf g7z, (%) -
Proor. We only prove (ii). The proof for (i) is similar. As T, T, are
strong separants we have for allne N, Ue %
inff[‘,’}]’TO = infﬂr?])Tl .
Hence for each Ue %, ne N, there exist a x"-null set 4, , € # " such that
for all xe X~, which are not element of the cylinder set over 4, ,, say
X, ,e N, we have
inf f; M{To(x) = inf gz(,'nn)rl(x) .

Let 77, be a countable base for %/ and define X, = U {X, ,: Ue %\, n€ N}.
If P « ¢ is a probability measure on & then P¥(X, ,) =0 forall Ue %,
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neN, whence PN(X,) = 0. As inf fi, (x) = inf g7, (x) for all Ue Z,
x¢ X,, neN, and each Ue Z is (countable) union of elements of %/, this
implies the assertion.

The following lemma is a slight modification of Lemma 3.11 of Pfanzagl [6]:

Lemma 4.3. Let (T, %) be a compact metric space and f, e M(7, p), teT.
Assume that

(i) t—>f,teT, isls.c.

Let furthermore P & p be a probability measure on &~ such that

(if) P(inf f;) > — oo.

Then

(@) t—>P(f,), teT, isls.c.

(b) Iff,efi, teT, and T, is a strong separant forﬁ, teT, then

inf, ., P(f,) = lim, . inf fi?'(x) PN-a.e.

Proor. The proof for (a) and for the relation
4.4) inf,.,P(f,) < liminf, . inff;z)(x) PN-a.e.
runs analogously to the proof of the corresponding assertions in Lemma (3.11)
of Pfanzagl [6].

As the function t — P(f;), te T, is Ls.c. by (a), it attains its infimum for
some t, ¢ T. Since 1nff‘"> < f‘") for each ne N, we have by the strong law of
large numbers lim sup, . inf f{»'(x) < lim sup, . fi"(x) = P(f,) = inf, ., P(f,)
PN.a.e. Together with (4.4) thls implies (b).

LemMA 4.5. Let (T, Z) be a compact metric space andlet f,;: X —[— oo, + oo},
te T, be a family of F -measurable functions. Then for every non void T, C T
there exists a .7, o(Z )-measurable function ¢ : X — T such that p(x)e Ue Z/
implies inf f,, (x) = inf f;;7,(%)-

Proor. Foreach xe Xlet Q, ={te T:inf f;,,(x)=inf f (x)ifte Ue Z}.
In order to apply Theorem 4.1 of Sion (1960)—which admits a measurable
choice ¢(x) € Q,, x € X—we prove the following:

(@) Q,+ @ foreach xe X
Let t, ¢ T,, n€ N, be such that lim, . f, (x) = inf f; (x). Then every accumu-
lation point of t,, ne N, belongs to Q,. Asa compact metric space is sequen-
tially compact this implies Q, #+ @.

(b) Q, is closed for each xe X
Let ¢ be limit point of the sequence ¢, € Q,, neN. Then teUe Z implies
t, € U for some n e N; hence inf f;,,, (x) = inf f; (x), whence te€ Q,.

(¢) {xeX:0,n C= @}e & for each compact CcT
Let %, be a countable base of (T, %) which is closed under finite unions.
We shall prove

(4.6) {x:0,nC= @} = {{x:inf fnp(x) > inf f7,(x)}: C C Ue Z} -

-
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The inclusion “>” in (4.6) is trivial. Assume, conversely, 0, nC = ¢. Then
for every ¢ C there exists U, € %, t € U,, with inf f;, ;. (x) > inf f; (x). As
{U,: t € C} is an open cover of the compact set C, there exists a finite subcover,
say U, -, U:,,- Let U={U,:i= 1, ..-,n}. Then Cc Ue %, and
inf £, ,(x) > inf £, (x). This proves (4.6). As T, is countable and each f;,
t e T, is measurable, (4.6) implies (c).

Because of (a), (b), (¢), Theorem 4.1 of Sion (1960) is applicable and we
obtain the existence of an .&#, ¢(% ) measurable function ¢ : X — T such that
o(x) € Q, for all xe X. This function has the asserted properties.
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