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A NOTE ON POISSON-SUBORDINATION

By Jozer L. TEUGELS
University of Louvain, Belgium

Pseudo-Poisson processes can be obtained from discrete time Markov
processes by subordination. A continuous time analogue of a random
walk is defined by

Y(r) = S[T(1)]

where S(n) is the partial sum of a sequence of independent identically
distributed random variables and T(f) a process with stationary inde-
pendent increments, independent of S(x) and taking values in the non-
negative integers. It is then shown that Y(¢) is a compound Poisson
process; furthermore the supremum of Y(¢) is Poisson-subordinated to
the maximum of S(n) if and only if T(¢) is a Poisson process.

1. Pseudo-Poisson processes. In [5] Feller defines a pseudo-Poisson process as
a continuous time process with stationary transition probabilities

(1) 0,x,T) = P{X(t + 5) e T'| X(s) = x}

satisfying

©) 0,(x,T) = e wz, WO Ko, T
n:

Here x ¢ Z, the sample space, I is a Borel set in ¥ and ©#>0. K(x,T') is a
stochastic kernel inducing a Markov chain {Z,,n=0,1,2, ...} governed by

3) K™(x, F) =Pz, , el | Z,, = x}

forallm=0,1,2,....
If{Z,} is a Markov chain formed by successive sums of independent identical-
ly distributed random variables, then X{(1) is called a compound Poisson process.
Looking at (1) from the point of view of subordination theory [2, 3, 5,9, 11]
we can write X(f) = Z,,, where {7(#), t > 0} is a Poisson process, independent
of {Z,}, and with

P[T(t) = n] = e‘#‘w.
n!
Feller expresses the relationship between {Z,} and {X(#)} by saying that {X(z)}
is subordinated to {Z,} using {T(f)} as a directing process. Starting with an arbi-
trary Markov process {Z,} the process X(f) = Z,,, is again Markovian if 7(z)
is a process with stationary independent increments, independent of {Z,}. As
such the probabilities a,(f) = P[T(f) = n] satisfy the representation formula
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for infinitely divisible processes ([4] page 280):

(4) log{Xoa.(t)z"} = at[ p(z) — 1]
where a > 0, p(2) = X7, p.2" p, = 0 and p(l) = 1.

THEOREM 1. A continuous time Markov process {X(t), t = O} with transition
probabilities (1) is a pseudo-Poisson process if and only if it is subordinated to a
discrete time Markov process.

Proor. We only have to prove that if Z, is a discrete time Markov process,
and T(¢) satisfies (4), then X(¢) = Z,,, has transition probabilities of the form
(2). Let indeed

M~x,T)y=PZ, el |Z, =x}
then by total probability
P(x,T) = 12, a,()M™(x,T).

Now put G(x,I') = Y52, p, MV (x, ') where {p,} is the discrete distribution
involved in (4). An easy induction argument shows that

3) GW(xT) = Xz, p" MO (x,T)

where {p,'™} is the n-fold convolution of {p,}. On the other hand (4) implies
readily that

P,(x, F) =e Z:n:o”(a—t)'j‘ G™(x, F)
m:

which proves the desired formula.

The above theorem is not surprising if one compares it with a result of
J. W. Cohen [3] where it is proved that a Poisson-subordination of a discrete
Markov chain leads to a conservative continuous time Markov chain and
conversely. For applications of this idea, see [6, 10].

2. Continuous time random walks. The above theorem illustrates that a natural
way to obtain a continuous time analogue from a discrete time process can be
based on Poisson-subordination. As another example we define a continuous
time analogue of a discrete time random walk.

Let X, X;, - - - be a sequence of independent identically distributed random
variables with partial sums S, =0a.s. and S, = X, + --- + X, for n > 1.
Let T(¢) be a process governed by (4). We define a continuous time random walk
Y(t) by the subordination Y(f) = S,,,. Clearly then

(6) PIY(1) < x] = Zi0a,()P[S, < x].
LEMMA. A continuous time random walk is a compound Poisson process.

Proor. Let U, U,, - -- be a sequence of discrete valued independent iden-
tically distributed random variables, independent of {S,} and with distribution
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p.from@4); T,=0as.and T, =U,+ U, + --- + U, for n = 1. Then the

process S, = S, _ is a random walk subordinated to S, with distributions
G™(x) = P[S,' < x] = Xep. ™ P[S, < x].

Finally put Y(f) = S}.,, where T'(¢) is a Poisson process. Then by Theorem 1

™) P[Y(t) < x] = e Y1z, (“_") P{S,’ < x}
n.

or {¥(#)} is compound Poisson.

Instead of deriving the analogues of Spitzer’s random walk theory [8] for
the Y(f) process we restrict ourselves to the supremum functional.

3. The supremum of Y (7). In this section we prove the rather surprising

THEOREM 2. Forall x and T = 0

Ty ,
(8) P[Supogth Y(t) é x] = e—aT Z::O (_an"_)’" P[maXOSmSn Sm é x] .

ProOF. Puto,(x, T) = P[sup,,., Y () < x]. Now Y(¢) is a separable process
with stationary independent increments and Y(0) = Oa.s. The double Laplace-
Stieltjes transform of g,(x, T) has then been obtained by Baxter-Donsker [1].
Foru =0

(9) log{u§zdT 2 e=~*"ay(da, T)} = f(2, u) = §7ds§7 e [¢y(3, T) — 1]dT
where ¢,(4, T) — 1 = {7 [e7** — 1]d, P[Y(T) < a].
By (7) we have

Go(d, T) = 1= e T2, CTV g e — 116 (a) .

By Fubini’s theorem the right-hand side of (9) can be written as
S ) = Bz [ — 11G(d) §rds §z emror ) ar
n!

We drop the term with n = 0 for G*’(x) = U(x), the unit step function at
x = 0. After some manipulations using
(10) (et (aT)"dT = n! a™(a + s)™"!
we obtain
[ = Tz 25z, et — 116 (dv)

where t = a(a 4 u)~. This can be rewritten in the form

(1) f(h ) = D7 2§72 G (dx) + T2 2 P[S) < 0] + log(1— ).



POISSON SUBORDINATION 679

On the other hand the distribution of max,_, ., S, is well known from a
Spitzer identity ([7] page 218], i.e. for |f| < 1 and 2 > 0.

(12) log Z::I r S:o— e—hdzP[maxogmgn Sm, é x]
= 3o, D PS/ <01+ B, D i e G(dy) |
n n

Comparing (9), (11) and (12) we obtain
u§odT ;e Toy(dx, T) = (1 — 1) 7o " 7. e7d PImaXogng, Sy’ = X] -
Use 1 — t = u(u 4 a)™* again together with (10). The relation (8) follows
from the uniqueness theorem for the Laplace-Stieltjes transform.

It follows from the proof that a duality as given by (7) and (8) is only pos-
sible for Poisson-subordination.

As pointed out by the referee, the last theorem can be proved by using more
explicitly some properties of the Poisson process. By the lemma

Y(t) =87,
where T, = 0 a.s. and T, is Poisson; hence we have with probability one that
foreverym=1,2, ...
{Ty =0,T = m}
={0=T0’< Tt,1< e < T;m~1< Tt,=m’0<t1< <tm—1<t}'

Consequently, with probability one

{supps.<: Y () = X} = Unm=o {SUPvs-=: S;,' =
= U:n°=0 {Supogngm m’ é x! Tt, = m}
from which relation (8) follows immediately by the independence of the pro-
cesses T, and S,’.
A special case of Theorem 2 is due to Tacklind [10] and is mentioned by
Spitzer [8].

<x, T  =m}
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