EXPANSIONS FOR THE DENSITY OF THE ABSOLUTE VALUE OF A STRICTLY STABLE VECTOR

BY BERT FRISTEDT

Mathematics Research Center, University of Wisconsin

Let q be the density function of the absolute value of a strictly stable random vector in \mathbb{R}^N , N-dimensional Euclidean space. Asymptotic expressions for q(r) for large r and for small r are found. The proofs use the Fourier inversion formula and contour integration. Bessel functions play a role occupied by the exponential and trigonometric functions when N=1.

Let q be the density function of the absolute value of a strictly stable random vector in \mathbb{R}^N , N-dimensional Euclidean space. Asymptotic expressions for q(r) for large r and for small r are found. A harder problem not treated here is to find asymptotic expressions for p(x), where p is the density function of a strictly stable random vector. This problem is discussed quite completely for N=1 in [4]. Pruitt and Taylor [3] discuss the behavior of p for N>1 and, in particular, they show by simple examples ([3] page 299) that the general situation is quite complicated.

We say that a random vector X, as well as its distribution, is *strictly stable* if for every positive integer n, there exists a number c_n such that $X = \sum_{k=1}^n X_{n,k}$ where $X_{n,k}$, $k = 1, \dots, n$ are independent and each has the same distribution as $c_n X$. Let $\langle \cdot, \cdot \rangle$ denote the inner product in R^N and let S^{N-1} denote the unit N-1-dimensional sphere, the surface of the unit N-dimensional ball. If X is a strictly stable random vector in R^N , then it has a density p which can be written in terms of a number $\alpha \in (0, 2]$, a finite measure μ on S^{N-1} , and, in case $\alpha = 1$, a vector b via the following formulas [2]:

(1)
$$p(x) = (2\pi)^{-N} \int_{\mathbb{R}^N} \exp\left[-i\langle u, x \rangle - |u|^{\alpha} g(u/|u|)\right] du,$$

(1a)
$$g(\phi) = \int_{S^{N-1}} \left[1 - i \operatorname{sgn} \langle \phi, \theta \rangle \tan \frac{1}{2} \pi \alpha \right] |\langle \phi, \theta \rangle|^{\alpha} \mu(d\theta) , \qquad \alpha \neq 1$$
$$= \int_{S^{N-1}} |\langle \phi, \theta \rangle| \mu(d\theta) + i \langle \phi, b \rangle , \qquad \alpha = 1 .$$

Given α , μ such that

$$\int_{S^{N-1}} \theta \mu(d\theta) = 0$$

when $\alpha=1$, and, in case $\alpha=1$, a vector b, there exists a corresponding p which is the density of a strictly stable random vector; only if $\alpha=2$, can different measures μ give rise to the same (normal) density. We assume that μ is not concentrated on a hyperplane of dimension N-1; for, if it were, we could consider the random vector to lie in R^M for some M < N.

669

Received May 20, 1971; revised August 12, 1971.

¹ Sponsored by the United States Army under Contract No. DA-31-124-ARO-D-462.

THEOREM 1. Let m be a positive integer. As $r \to \infty$,

$$\begin{split} q(r) &= \frac{2\Gamma(1+\alpha)\sin(\frac{1}{2}\pi\alpha)\mu(S^{N-1})}{\pi r^{1+\alpha}} \\ &+ \pi^{-1-N/2} \sum_{k=2}^{m} \frac{(-1)^{k-1}\Gamma(\frac{1}{2}(N+\alpha k))\Gamma(\frac{1}{2}(2+\alpha k))2^{\alpha k}\sin(\frac{1}{2}\pi\alpha k)}{\Gamma(1+k)r^{1+\alpha k}} \\ &\times \int_{S^{N-1}} g(\phi)^{k} \lambda(d\phi) + O(r^{-1-\alpha(m+1)}) \;, \end{split}$$

where λ is Lebesgue measure on S^{N-1} . If $\alpha < 1$, q(r), for r > 0, equals the infinite series obtained by letting $m = \infty$.

Before proceeding with the proof we state two lemmas.

LEMMA 1. Let λ be Lebesgue measure on S^{N-1} , $\phi \in S^{N-1}$, and f be a continuous complex function on [-1, +1]. Suppose $N \neq 1$. Then

$$\int_{S^{N-1}} f(\langle \phi, \theta \rangle) \lambda(d\theta) = \frac{2\pi^{\frac{1}{2}(N-1)}}{\Gamma(\frac{1}{2}(N-1))} \int_0^\pi f(\cos y) (\sin y)^{N-2} dy.$$

PROOF. The proof is a straightforward calculation if one chooses one coordinate axis parallel to ϕ . Alternatively, the lemma is a special case of formula 4. 644 of [1].

LEMMA 2. Let w be a complex number with a nonpositive real part. For any nonnegative integer m,

$$\left| e^{w} - \sum_{k=0}^{m} \frac{w^{k}}{k!} \right| \leq \frac{|w|^{m+1}}{(m+1)!}$$
.

PROOF. The assumption that $\mathcal{R}w \leq 0$ yields the result for m = 0. An induction argument using

$$e^{w} - \sum_{k=0}^{m+1} \frac{w^{k}}{k!} = \int_{0}^{w} \left[e^{z} - \sum_{k=0}^{m} \frac{z^{k}}{k!} \right] dz$$

completes the proof.

PROOF OF THEOREM 1. We consider only the case $N \neq 1$. The proof when N = 1 is easier. In order, we use (1), Lemma 1 and the definite integral formula 8. 411-7 of [1]:

(2)
$$q(r) = r^{N-1} \int_{S^{N-1}} p(r\theta) \lambda(d\theta)$$

 $= (2\pi)^{-N} r^{N-1} \int_{S^{N-1}} \int_{0}^{\infty} \int_{S^{N-1}} s^{N-1} \exp[-irs\langle \phi, \theta \rangle - s^{\alpha}g(\phi)] \lambda(d\theta) ds \lambda(d\phi)$
(3) $= (2\pi)^{-N/2} \int_{S^{N-1}} \int_{0}^{\infty} (rs)^{N/2} J_{\frac{1}{2}(N-2)}(rs) \exp(-s^{\alpha}g(\phi)) ds \lambda(d\phi)$,

where $J_{\frac{1}{2}(N-2)}$ denotes a Bessel function of the first kind. Let t=rs.

Since $\int \mathscr{I} g(\phi) \lambda(d\phi) = 0$,

(4)
$$q(r) = (2\pi)^{-N/2} (2/\pi) r^{-1}$$

 $\times \int_{S^{N-1}} \mathscr{R} \left[\exp(-\pi i N/4) \int_0^\infty t^{N/2} K_{k(N-2)}(-it) \exp(-(t/r)^\alpha g(\phi)) dt \right] \lambda(d\phi),$

where $K_{\frac{1}{2}(N-2)}$ denotes a modified Bessel function of the third kind, which, in particular, has the property ([1] formulas 8. 405-1 and 8. 407-1):

$$J_{\frac{1}{2}(N-2)}(t) = \mathscr{R}[(2/\pi) \exp(-\pi i N/4) K_{\frac{1}{2}(N-2)}(-it)].$$

Let $\beta=i$ if $\alpha<1$ and $\beta=\exp(\pi i/4\alpha)$ if $\alpha\geq 1$. Using Lemma 2, the fact that, since $\mathscr{I}\beta>0$, $K_{\frac{1}{2}(N-2)}(-it)$ has a negative exponential tail as $t\to\beta\infty$ along a ray ([1] formula 8. 451-6), and the fact that $\mathscr{R}e^{-ct^{\alpha}}<0$ along the ray from 0 to $\beta\infty$, we have, as $c\to0$,

$$\begin{split} & \int_0^\infty t^{N/2} K_{\frac{1}{2}(N-2)}(-it) e^{-ct^{\alpha}} \, dt \\ & = \int_0^{\beta \infty} t^{N/2} K_{\frac{1}{2}(N-2)}(-it) e^{-ct^{\alpha}} \, dt \\ & = \sum_{k=0}^m \frac{(-c)^k}{k!} \int_0^{\beta \infty} t^{\alpha k + N/2} K_{\frac{1}{2}(N-2)}(-it) \, dt + O(c^{m+1}) \\ & = \sum_{k=0}^m \frac{(-c)^k \beta^{1 + \alpha k + N/2}}{k!} \int_0^\infty u^{\alpha k + N/2} K_{\frac{1}{2}(N-2)}(-i\beta u) \, du + O(c^{m+1}) \, . \end{split}$$

We use the definite integral formula 6.561-16 of [1]: set $c = g(\phi)/r^{\alpha}$, insert the resulting expression into (4), and simplify (4) using $\int \mathscr{I}g(\phi)^{k}\lambda(d\phi) = 0$. The term with k = 0 is zero and the terms with $k \ge 2$ check with those in Theorem 1. For k = 1, we must show

$$\pi^{-N/2}\Gamma(\frac{1}{2}(N+\alpha))\Gamma(\frac{1}{2}(2+\alpha))2^{\alpha}\int_{S^{N-1}}g(\phi)\lambda(d\phi)=2\Gamma(1+\alpha)\mu(S^{N-1}).$$

We have

$$\int_{S^{N-1}} g(\phi) \lambda(d\phi) = \int_{S^{N-1}} \int_{S^{N-1}} |\langle \phi, \theta \rangle|^{\alpha} \lambda(d\phi) \mu(d\theta) ,$$

which, by Lemma 1, the definite integral formula 8. 380–2 of [1], and the relation $2\pi^{\frac{1}{2}}\Gamma(2z) = 4^{z}\Gamma(z)\Gamma(z+\frac{1}{2})$, equals the desired ratio.

If $\alpha < 1$, we want to show that the infinite series converges to q(r). Our proof of the asymptotic result actually gives a remainder bound of the order of

$$[r^{-1-\alpha(m+1)}/(m+1)!]\, \int_0^{\beta\infty} |t|^{\alpha(m+1)+N/2} |K_{\frac{1}{2}(N-2)}(-it)|\, |dt| \; ,$$

which, as $m \to \infty$, behaves like ([1] formula 8. 451-6)

$$[r^{-1-\alpha(m+1)}/(m+1)!]\Gamma(\alpha(m+1)+\frac{1}{2}(N+1))\to 0$$
.

In case $\alpha = 2$, Theorem 1 is a known result for a normal density—namely that $q(r) \to 0$ faster than any power of r as $r \to \infty$. Here is a more precise result.

THEOREM 2. If $\alpha = 2$, then

(5)
$$q(r) = \frac{r^{N-1}}{(4\pi)^{N/2}} \int_{S^{N-1}} g(\phi)^{-N/2} \exp(-r^2/4g(\phi)) \lambda(d\phi) ,$$

where λ is Lebesgue measure on S^{N-1} .

PROOF. The inner integral of (3) can be evaluated explicitly ([1] formula 6. 631-4). Formula (5) follows.

THEOREM 3. Let m be positive integer. As $r \to 0$,

(6)
$$q(r) = \frac{4r^{N-1}}{(4\pi)^{\frac{1}{2}(N+1)}\alpha} \sum_{k=0}^{m} \frac{(-1)^{k} \Gamma(\frac{1}{2}(1+2k)) \Gamma((N+2k)/\alpha) r^{2k}}{\Gamma(1+2k) \Gamma(\frac{1}{2}(N+2k))} \times \int_{S^{N-1}} g(\phi)^{-(N+2k)/\alpha} \lambda (d\phi) + O(r^{N+2m+1}),$$

where λ is Lebesgue measure on S^{N-1} . If $\alpha > 1$, q(r) equals the infinite series obtained by letting $m = \infty$.

PROOF. As in the proof of Theorem 1 we assume that $N \neq 1$. Let $\rho(r) = q(r)r^{-N+1}$. The proof is a rather straightforward application of Taylor's formula to $\rho(r)$. From (2) we obtain

$$\frac{\rho^{(n)}(0)}{n!} = \frac{(-i)^n}{(2\pi)^N n!} \int_{S^{N-1}} \int_0^\infty \int_{S^{N-1}} s^{n+N-1} \exp(-s^\alpha g(\phi)) \langle \phi, \theta \rangle^n \lambda(d\theta) \, ds \, \lambda(d\phi) \, .$$

We use Lemma 1 and formula 8. 380-2 of [1] to evaluate the inner integral. The middle integral becomes a complete gamma integral if $t = s^{\alpha}g(\phi)$, and formula (6) follows. If $\alpha > 1$, one obtains the equality of q(r) and the infinite series by showing that the remainder term in Taylor's formula goes to zero as m approaches infinity.

REMARK. In Theorem 3 the term with k=0 is positive if and only if p(0)>0. In [5], Taylor showed by an indirect argument that p(0)=0 if and only if $\alpha<1$ and μ is concentrated on a hemisphere. I know of no direct proof giving these necessary and sufficient conditions for $\int g(\phi)^{-N/\alpha}\lambda(d\phi)$ to equal zero. If p(0)=0, then using the one-dimensional asymptotic theorem [4] we can conclude that all terms in the expansion (6) are zero. In this case the problem remains of finding a function asymptotic to q(r) as r approaches zero.

REFERENCES

- [1] Gradshteyn, I. S. and Ryzhik, I. M. (1965). Tables of Integrals, Series, and Products.

 Academic Press, New York.
- [2] Lévy, P. (1937). Théorie de l'addition des Variables Aléatoires. Gauthier-Villars, Paris.
- [3] PRUITT, W. E. and TAYLOR, S. J. (1969). The potential kernel and hitting probabilities for the general stable process in \mathbb{R}^N . Trans. Amer. Math. Soc. 146 299-321.
- [4] SKOROKHOD, A. V. (1954). Asymptotic formulas for stable distribution laws. Dokl. Akad. Nauk. SSSR 98 731-734. (English translation in Selected Transl. Math. Statist Prob. 1 (1967) 157-161.)
- [5] TAYLOR, S. J. (1967). Sample path properties of a transient stable process. J. Math. Mech. 16 1229-1246.