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EXPANSIONS FOR THE DENSITY OF THE ABSOLUTE VALUE
OF A STRICTLY STABLE VECTOR

BY BERT FRISTEDT
Mathematics Research Center, University of Wisconsin

Let g be the density function of the absolute value of a strictly stable
random vector in R¥, N-dimensional Euclidean space. Asymptotic ex-
pressions for g(r) for large r and for small r are found. The proofs use
the Fourier inversion formula and contour integration. Bessel functions
play a role occupied by the exponential and trigonometric functions
when N = 1.

Let g be the density function of the absolute value of a strictly stable random
vector in RY, N-dimensional Euclidean space. Asymptotic expressions for g(r)
for large r and for small r are found. A harder problem not treated here is
to find asymptotic expressions for p(x), where p is the density function of a
strictly stable random vector. This problem is discussed quite completely for
N = 1in[4]. Pruitt and Taylor [3] discuss the behavior of p for N > 1 and,
in particular, they show by simple examples ([3] page 299) that the general
situation is quite complicated.

We say that a random vector X, as well as its distribution, is strictly stable
if for every positive integer n, there exists a number ¢, such that X = Y17, X, .
where X, ,,k =1, ..., n are independent and each has the same distribution
as ¢, X. Let (., «) denote the inner product in R" and let $'~* denote the
unit N — 1-dimensional sphere, the surface of the unit N-dimensional ball.
If X is a strictly stable random vector in RY, then it has a density p which
can be written in terms of a number « € (0, 2], a finite measure ¢ on S$¥~1,
and, in case @ = 1, a vector b via the following formulas [2]:

(1 p(x) = 2a)™" § v exp[—iu, x) — [u|*g(u/|u])] du,
(1a)  9(¢) = Ssv1[1 — isgn{g, 0) tan yma]|(p, Op|"n(dd) ,  a +1

= (v K9, 0)|p(dl) + (¢, by, a=1.
Given a, p such that

v Opu(dh) = 0

when a = 1, and, in case « = 1, a vector b, there exists a corresponding p
which is the density of a strictly stable random vector; only if « = 2, can
different measures p give rise to the same (normal) density. We assume that

¢ is not concentrated on a hyperplane of dimension N — 1; for, if it were,
we could consider the random vector to lie in R¥ for some M < N.
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THEOREM 1. Let m be a positive integer. As r — oo,
2I'(1 4 a) sin (3ma)pu (S

n.rH—a'

+ e o,

q(r) =
— 1" TN + ak))T (2 + ak))2"* sin (brak)
F(l + k)rl+o:k

X §sv-1 0($)*A(dg) + O(r-i-=im+v)

where 2 is Lebesgue measure on S*~'. If a < 1, q(r), for r > 0, equals the infinite
series obtained by letting m = co.

Before proceeding with the proof we state two lemmas.

LeEMMA 1. Let 2 be Lebesgue measure on S"*, ¢ € S¥*, and f be a continuous
complex function on [—1, +1]. Suppose N + 1. Then

Vv S, 0))2(dB) = #—1»‘ {5 f(cos y)(sin )" dy .

3(N—-1)

Proor. The proof is a straightforward calculation if one chooses one co-
ordinate axis parallel to ¢. Alternatively, the lemma is a special case of
formula 4. 644 of [1].

LEMMA 2. Let w be a complex number with a nonpositive real part. For any
nonnegative integer m,

Wk |W|m+1
w o m 7 S P A
= Lhogg| = (m + 1)!

Proor. The assumption that “#Zw < 0 yields the result for m = 0. An
induction argument using

k k
ev — yma W ¥ [e‘ — ka:ol%]dz

completes the proof.

Proor oF THEOREM 1. We consider only the case N = 1. The proof when
N = 1 is easier. In order, we use (1), Lemma 1 and the definite integral for-
mula 8. 411-7 of [1]:

() q(r) = r" §su1 p(r) A(d0)
= Q) "t (w7 sv—1 sVt exp[ —irs(p, 0) — s°9($)]A(d0) ds A(dp)
3) = 2a) V2 §on1 §5 (r8)Y2T sy (r5) €xp (—s°9(9)) ds A(dp) ,
where J, ,_, denotes a Bessel function of the first kind. Let ¢ = rs.
Since § . g(¢)A(dp) = 0,

(4) q(n) = 2r)~"(2/m)r
X {sn—1 F[exp(—niN|4) §7 1Ky o (— it exp(— (1/r)"9(9))dt] A(d$),
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where K, ,_, denotes a modified Bessel function of the third kind, which, in
particular, has the property ([1] formulas 8. 405-1 and 8. 407-1):
Jyw—a(t) = F2[(2[r) exp(—niN[H)K, 5 (—il)] .

Let 8 = iif @ < 1 and B = exp(ri/4a) if « = 1. Using Lemma 2, the fact
that, since .#8>0, K, y_, (—if) has a negative exponential tail as t — Sco along
aray ([1] formula 8. 451-6), and the fact that .Ze~*" < 0 along the ray from
0 to Boo, we have, as ¢ — 0,

§o V2K, o) (—it)e " dt
= (4= VK, (—it)e™t" dt

k
= ka=o (_kf) sgm t“k+NI2K5(N—2)(_it) dr + O(CMH)

_c)k‘BlJrakJrN/Z

= kazo ( !

§o u VK, ) (—ipu) du + O(c™) .

We use the definite integral formula 6. 561-16 of [1]: set ¢ = g(¢)/r®, insert the
resulting expression into (4), and simplify (4) using § _“g(#)*A(dp) = 0. The
term with & = O is zero and the terms with k > 2 check with those in Theo-
rem 1. For k = 1, we must show

LGN + a))L (G2 + @))2% Sonv—1 9()Ad) = 20 (1 + a)p(S¥7) .

We have
§sv—1 9(9)A(dP) = sv—1 §sv—1 [P, OD|*A(dp)p(d0) ,

which, by Lemma 1, the definite integral formula 8. 380-2 of [1], and the rela-
tion 27tI'(2z) = 4°T'(z)'(z + %), equals the desired ratio.

If « < 1, we want to show that the infinite series converges to ¢(r). Our
proof of the asymptotic result actually gives a remainder bound of the order of

[t (m - )] §5 7m0, o (— i) ]
which, as m — oo, behaves like ([1] formula 8. 451-6)
[Fi-emDm + DD (a(m + 1) + (N + 1)) - 0.

In case a = 2, Theorem 1 is a known result for a normal density—namely
that g(r) — O faster than any power of rasr — co. Here isa more precise result.

THEOREM 2. If a = 2, then

) q(r) = §sv—1 9(9)™"/* exp (—r’/49(8))A(d) ,

rN—-l
(4m)Niz
where 1 is Lebesgue measure on SV,

Proor. The inner integral of (3) can be evaluated explicitly ([1] formula
6. 631-4). Formula (5) follows.
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THEOREM 3. Let m be positive integer. Asr— 0,
4yt — DT (1 2k0ZT 2 2k
6) q(r) = rN paa (=DLGEA + 2k)T((N + 2k)/a)yr
(47)H Tl + 26T (4N + 2k))
X §sv-1 9(9)~ N IRIAdg) + O(r¥HIm

where 2 is Lebesgue measure on S"'. If a > 1, q(r) equals the infinite series
obtained by letting m = oo.

PROOF. As in the proof of Theorem 1 we assume that N == 1. Let p(r) =
g(r)r~"*'. The proof is a rather straightforward application of Taylor’s for-
mula to p(r). From (2) we obtain

OPO) (I g G S s exp(— (@) 03 2(dB) ds A(d) .
n! (27)"n!
We use Lemma 1 and formula 8. 380-2 of [1] to evaluate the inner integral.
The middle integral becomes a complete gamma integral if ¢t = s*g(¢), and
formula (6) follows. If @ > 1, one obtains the equality of ¢(r) and the infinite
series by showing that the remainder term in Taylor’s formula goes to zero as
m approaches infinity.

REMARK. In Theorem 3 the term with k = 0 is positive if and only if
p(0) > 0. In [5], Taylor showed by an indirect argument that p(0) = 0 if and
only if « < 1 and p is concentrated on a hemisphere. I know of no direct
proof giving these necessary and sufficient conditions for § g(¢)~*/*A(d¢) to
equal zero. If p(0) = 0, then using the one-dimensional asymptotic theorem [4]
we can conclude that all terms in the expansion (6) are zero. In this case the
problem remains of finding a function asymptotic to g(r) as r approaches zero.
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