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ASYMPTOTIC PROPERTIES OF GAUSSIAN PROCESSES

By CLIFFORD QUALLS' AND HisAO WATANABE?

University of North Carolina, Chapel Hill
University of New Mexico,
Kyushu University

We study separable mean zero Gaussian processes X(¢) with correla-
tion p(t, s) for which 1 — p(t, 5) is asymptotic to a regularly varying (at
zero) function of | — 5| with exponent 0 < a < 2. For such processes,
we obtain the asymptotic distribution of the maximum of X(#). This
result is used to obtain a result for X{(¢) as t — oo similar to the so-called
law of the iterated logarithm.

0. Introduction. Let {X(f), —co < t < oo} be a real separable Gaussian
process defined on a probability space (Q, .27, P). We assume EX(f) =0,
v*(f) = EX*(t) > 0, and the covariance function r(t, s) = E(X(f)X(s)) is con-
tinuous with respect to tand s. And we set p(t, s) = (¢, s)/(v(f)v(s)). In this
paper, we are concerned with Gaussian processes whose correlation functions
satisfy

0.1) p(t,s) =1 — |t — s|*H(|t — s|) + o(|t — s|*H(|t — s])) as [t—s|—O0.

where 0 < @ < 2 and H varies slowly at zero. The existence of such corre-
lation functions has been established by Pitman [9].

In Section 2, we extend a result of Pickands [7], which gives the asymptotic
distribution of the maximum Z(f) = max,_,., X(s), to condition (0.1) with
0 < @ < 2. Pickands treated stationary Gaussian processes whose covariance
functions p(|t — s|) = p(t, 5) satisfy condition (0.1) with 0 < @ <2 for
H(|t — s) = a constant. Such studies have been done for Holder continuity
of sample functions by Marcus [6], Kono [5], and Sirao and Watanabe [11].
Our efforts using Pickands’ methods to give the asymptotic distribution of
Z(1) for the case @ = 0 were not successful. A technical error in [7] (Lemma
2.8 is not true) is corrected herein.

In Section 3, we use the result of Section 2 to obtain the extension of the
0-1 behavior treated in Watanabe [13] and Qualls and Watanabe [10] to our
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present case. The method in [10] turns out to be powerful, while the method
in [13] does not seem to be successful in our case. Section 4 treats the non-
stationary case; in Section 2 and Section 3, we assume stationarity. In Section
5, we give the limiting distribution of the number of “‘c-upcrossings” and that
of the extreme value Z(f) as t — oo.

1. Preliminaries. We list some definitions and properties of regularly varying
functions that will be required in the following sections. Some general
references on regular variation are Karamata[4], Adamovic [1], and Feller [3].

DEFINITION 1.1. A positive function H(x) defined for x > 0 varies slowly
at zero, if for all t > 0,

H(tx) _1.

(1.1) lim,_, Hs)

DEFINITION 1.2. A positive function Q(x) defined for x > 0 varies regularly
at zero with exponent a = 0, if for all £ > 0,

(1.2) lim,_, 2% _ 4o |
O(x)

A function Q(x) satisfies (1.2) if and only if Q(x) = x*H(x), where H(x) varies
slowly.

Let Q(x) vary regularly with exponent « > 0 and H(x) vary slowly at zero.
Then, the following properties hold.

(1.3) The limits (1.1) and (1.2) converge uniformly in ¢ on any compact
subsect of the half line (0, o).

(1.4) For any ¢ > 0, we have that
lim,, xH(x) = co and lim _,x*H(x)=0.
(1.5) The function H(x) varies slowly at zero if and only if
H(x) = a(x) exp (¥, <(1)/1dt} ,
where ¢(x) >0 and a(x) > 4dasx —0 (0 < 4 < o).

DerINITION 1.3. The slowly varying function H(x) is said to be “normalized”
if a(x) = A in property (1.5) above.

(1.6) If H(x) is a “normalized” slowly varying function at zero, then for
any ¢ > 0, there exists 6 > 0 such that
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for all positive t < 1 and all x > 0 such that tx < 0.

(1.7) 1If H(x) is a “normalized” slowly varing function at zero, then for any
e > 0, there exists ¢ > 0 such that
< 20X
~ H(x) —
for all x > 0 and all ¢ > 1 such that tx < 4.

(1.8) If H(x) is a “normalized” slowly varying function at zero then for any
a > 0 the function x*H(x) is monotone increasing near zero.

2. The asymptotic distribution of the maximum. For the study of the
asymptotic distribution of Z(#) = sup,,, X(s) in this section, we assume that
the process X(#) is stationary in addition to its covariance function p(s) =
p(t, t + s) satisfying condition (0.1) with 0 < a < 2. We are assuming each
X(#) has mean 0 and variance 1. The non-stationary case is discussed in Section
4. Without loss of generality, we also assume the slowly varying function
H(s) in condition (0.1) is “normalized”. See Section 1 for definitions. Let
o’(s) = E{X(t + 5) — X(8)}* = 2(1 — p(s)), define G%(s) = 2|s|*H(s), 4,(t) =
inf,_,, 0(s5)/d(s) and A,(t) = sup,.,<, 9(5)/d(s).

The theorem of this section is an extension of Pickands’ result [7]. Since
Pickands’ methods apply in our case, we will only sketch the proof emphasiz-
ing the points of difference.

THEOREM 2.1. If condition (0.1) with 0 < a < 2 holds, o*(s) > 0 for s + 0,
and G(+) is defined as above, then

- PlZ() > x] _ g — 1 {e
2.1) 1 =" —H, =1 T eP Y(t ds ,
(2.1) lim, 1(x)/5 (1) a my_,. §5 [SUPo<i<r Y(2) > s]ds
and 0 < H, < co, where {Y(t),0 < t < oo} is a non-stationary Gaussian process
with Y(0) =0a.s., E{Y(#)} = —|t|%/2, Cov{Y(t), Y(8,)} = (|t|*+ |t,|*— [t,— 1,|*)|2,
and $(x) = (2r)~ix~ exp(—x?/2).

REMARK 2.1. By property (1.8) in Section 1, the G(+) defined above (or any
“normalized” regularly varying function of positive exponent) is monotone
on some small interval (0, 6). This useful fact does not seem to be well known
in this context. Of course, any function é(+) with d(s) ~ o(s) as s — 0 (or
o(+) itself) that is monotone near the origin can be used in Theorem 2.1. In
fact, we can show ¢7'(1/x) ~ ¢7%(1/x) as x — oo.

REMARK 2.2. The condition that ¢*(s) > 0 for s = 0 excludes the periodic
case. However, if o(s) is periodic with period s,, then Theorem 2.1 holds
with ¢ in the denominator of (2.1) replaced by - = min (¢, 5,). See the remarks
in [10].

The proof of Theorem 2.1 is accomplished by a series of lemmas; and in
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particular Lemma 2.3 is a useful discrete version of Theorem 2.1. The con-
nection between the constants of Theorem 2.1 and Lemma 2.3 is that H, =
lim,_, H,(a)/a. The proof of the first lemma below illustrates the central idea
behind the discrete version of Theorem 2.1. For this discrete version, we
need a partition of the time interval (0, f) with mesh size A(x) approaching 0
at the proper rate as x — co. Let A(x) = ¢7%(1/x) for all x = 1/4(J).
LeMMA 2.1. If the conditions of Theorem 2.1 hold, then for a > 0,

im i P[Z,() > x] < o 1(fea )/

liminf, 1(9/A) =a'(l =237, (1 — OF(ka)?)),
where Z,(t) = maX,g,<,, X(ka - A(x)), m = [t/(aA(x))], [+] denotes the greatest
integer function, and ©(.) is the standard Gaussian distribution function.

Proor. This lemma corresponds to Pickands’ Lemma 2.4 [7]. Defining the

events B, = [X(ka - A(x)) > x] and using stationarity, we have
P[Z:c(t) > x] g Zl:n:o PBk - ZZO§j<k§m P(Bg n Bk)
= (m+ 1)(PB, — X P(ByN By) .
Now from [7], Lemma 2.3, we record that
(2.2) P(By 0 By) = 2¢(x){1 — @(x(1 — p)(1 + 0)7H)},
where p = p(ka - A(x)), and obtain
2.3)  liminf,_ PIZ0>x]
1(x)/A(x)
= a (1 — limsup, .. 2 57, {1 — @1 — (1 + p)) -

Tostudy 2 377 {1 — ®(x(1 — p)}(1 + p)~*)} partition the sum into three parts
according to (i) ka < 1, (ii) ka > 1, ka - A(x) < some d, and (iii) ka > 1,
ka - A(x) = 6. First, lim,_, 3" 2(1 — ®) = > lim,_, 2(1 — D).

We may ignore the third sum 3 %", For ka - A(x) > 0, there exists a
positive £ such that 1 — p = «, and

< mg(x(/2)}) S < exp(—mx'/4) =0

ah(x)
as x — oo.

For positive 4, sufficiently small, 4,(6,) > 0. For ;Y when ka - A(x) < 9,
estimate

1 —p\t _ x ) .
x<m> gzo(ka A(x)) =

1 g(ka - A(x))
2 5(A(x)

S A0) oka - A(x)) _ 4,(3) (ka)a,z[H(ka : A(x))]*.
2 o(Ak) 2 H(A(x))
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By property (1.7) in Section 1 and for ka > 1, there is a positive d, such
that H(ka - A(x))/H(A(x)) = (ka)~* provided ka - A(x) < d,. Take 0 =
min(d,, d,, t). Consequently

. 1 — o\t _ 4,0
infye.co % (12) 2 22 (ko

for ka > 1, ka - A(x) < d and T large.

Finally, defining a,(x) = 2{1 — ®(x(1 — p)¥(1 + p)~?} for ka - A(x) < o
and a,(x) = 2{1 — ®(27'(ka)**)} for ka - A(x) = 4, we have

T8 SUPrgrcm @) S Tt 2{1 = @ (A ke )| < o

1t follows that

(24) hm Supz—m Zloco:l ak(x) é Zl?:l llm Supa,_,°° ak(X)
= > 2(1 — ®Q27Y(ka)*'?) < oo,

since
x(1 — p)¥(1 + p)t ~ _;g o(ka - Ax)) ~ L 9ka- Ax)

1 a2
2 adoy 2

as x — co. Applying (2.4) in (2.3) completes the proof. []

The partition corresponding to Z () above was made to depend on a, and
the lower estimate of the distribution of Z,(f) (as well as the upper estimate)
depends on a. Since we wish to take a | 0, it is seen that Lemma 2.1 is not
sharp enough to obtain the desired result. Hence Lemma 2.2 will be needed.

LEMMA 2.2. If the conditions of Theorem 2.1 hold, then for a > 0

lim,_, P[Z,(na - A(x)) > x]
P(x)
= H,(n,a) =1+ (FeP[max,,_, Y(ka) > s]ds < oo .

Proor. Simplifying Pickands’ proof ([7] Lemma 2.2), we have
P[Z,(na - A(x)) > x]
= P[X(0) > x] + P[X(0) < x, max, ., X(ka - A(x)) > x].
The second term equals
V2w Plmax,g,s, X(ka - A(x)) > x/X(0) = u]p(u)du,,
where ¢(u) is the standard Gaussian function. Substituting ¥ = x — s/x, and
defining Y,(#) = x(X(¢ - A(x)) — x) + s, we obtain
¢(x) §¢ eP[max, ., X(ka - A(x)) > x/X(0) = x — s/x] exp (—s*/(2x%))ds
= ¢(x) {7 e P[max,, ., Y (ka) > s/ X(0) = x — s/x] exp (—s*/(2x%))ds .
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Note that
E(Y,(0)/X(©0) = x — /%) = x(o(¢ - A®)(x — 5/x) — x) + s
= —2(1 — p(t - A@) + s(1 — p(t - A(x)))
= —x'6%(A(x)) - [1%/2 + o(1)
= —|f92 +0o(l) as x— 0}
and that
Cov (Y,(t), Y,(1/X(0) = x — 5/x)
= ¥p((t, — 1) - AX) — p(t, - A)o(t, - AR))]
= 22— A@) [t — 4] + FA)[L" + A6l — FA)[64]7/2]
+ o(1)
=3~ — 4+ 4]+ (L] + o(l) as x—oco.
Consequently P[max,_,., Y,(ka) > s/X(0) = x — s/x] — P[max,_,_, Y(ka) > S]
as x — oo, and an application of Boole’s inequality and the Lebesgue dominated
convergence theorem completes the proof. []

LEMMA 2.3. If the conditions of Theorem 2.1 hold, then for a > 0

(2.5) lim,__ P20 > x] _ Hu(a)
1(x)/A(x) a
where 0 < H,(a) = lim,_, H,(n, a)/[n < oo, Z,(f) = max,,, X(ka - A(x)), and
m = [t/(ad(x))].

Proor. This lemma corresponds to [7], Lemma 2.5. For each nonnegative
integer k, let B, = [X(ka - A(x)) > x], and for an arbitrary positive integer n,
let 4, = Ui, B;- Then
(2.6) PIUEL 4] = PIZ,(1) > x] < P[Ur 4,]

where m’ = [(m + 1)/n]. By stationarity, P(4,) = P(4,) for all k > 1. Con-
sequently

PIZ(1) > x] < i P(4,) = (m' + 1)P(4,) .
Now using Lemma 2.2, we obtain
(m' + 1)PA, _
19(x)/Ax) = (HAE)SH)
On the other hand, (2.6) and stationarity imply

PZ (1) > x] =z X, P(4,) — 3 Zisk<jsm P(A, N A;)

(2.8) = mP(A4,) —m [, P(4, N 4))

= m{PA4, — Fi5 ik, P(B, N By} .

(2.7) lim supwa <limsup,_,, H,(n—1,a)/na.
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As in the proof of Lemma 2.1, inequality (2.2) applied to P(B, N B) =
P(B, N B,_,) and inequality (2.8) yield

2.9)  liminf,_, P10 >*]
th(x)/A(x)
= {H.(n — 1,a) — limsup,_, 33355 27, P(B, N B)/¢(x)}/na
2 (Hyn—1,a0) — 355 2. dii/na
where d; = 2{l — ®(4(ja)**)}. By (2.4) the ;7 ,d, < oo, and therefore
lim w2 2. d;_/na = 0, by Kronecker’s lemma.

n—oco k=0

Combining (2.7) and (2.9), we have

H,n—1,aq) < liminf,__ P[Z,(1) > x]
na (/A )
P[Z,(1) > x]
t)(x)/A(x)
H,mn—1,a)
na ’

- limsup, .,
< limsup, .,

< liminf,_,

and the conclusion of Lemma 2.3.

Now (2.7) implies H,(a) < co. By Lemma 2.1, H,(a) > 0 for a sufficiently
large, say for all @ > some @,. For any a > 0, there exists an integer m such
that ma > a,, Now H,(n, am) < H, (nm, a) implies H (am) < mH,(a) and
H,(a) > 0. []

LeEMMA 2.4. Under the same conditions as Theorem 2.1, it follows for a > 0
and 279t < b < 1 that

lim sup, .. P[X(0) = x — 7/x, Z(alA(x — 7[x)) > x] < M(a, 1),
d(x)
where
M(a,7) = (af2)" Ts 220 R((1 — b)(2Ja) (2 )" — 2-¥(aj2)22 =+

and
R(x) = 7 (1 — ®(s))ds .

Furthermore, for y = a® with 0 < 8 < /2 it follows that

M(a, a*
M@, @) _
a

lim,_,
Proor. Note that
[X(0) < x — 7/x, Z(aD(x — 7/x)) > x] = Uro D, and D, = N¥3'E;,,
where
D, = [maX,g;cok X(jal(x — 7/x)/2%) < x — rb*/x,
MaXyg, aeen X(Jab(x — 7/0)/247) > x — pb41jx]
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and
E, , = [X(jaA(x — 7/x)[2*¥) < x — rb*[x ,
X((2j 4 DaA(x — 7/x)[2"*1) > x — yb*+![x] .
By using [7] Lemma 2.6, we obtain P(E;,) < ¢(x)xp~*(1 — p*)*R(y), where
o = p(ab(x — 7/x)[2:"),

and

y = y(x) = (1 — bbrox(1 — p*)t — x(1 4+ p)7(1 — p")*.
Consequently
P[X(0) < x — 7/x, Z(aA(x — 7/x)) > *]

P(x)
< limsup,_.. N, 535 P(E; 4)/¢(%)
< limsup,_... Y15, 2507 (1 — *)IR(Y) .

(2.10) lim sup,_...

In order to apply the technique used in Lemma 2.1, we need to show
2 02k SUPrcc X0 (1 — PP)ER(Y) < o forsome T >0.

That this sum is finite follows from the following estimates for all x = T
sufficiently large:

xo(1 — o)}
< xpio(ab(x — 7/x)[2") < xS AG(aA(x — 7/%)[25)
< SUAX(x — 7/x)3(ab(x — 7/x)[2)]a(Ax — 7/x)
< S84, (1 — 7/x¥) Y @27+ )} (H(aA(x — 7/x)[/2¥+Y)/H(A(x — 7/x)))}
< S71A4,2(a27Ft)el (g2 kel by (1.6) in Section 1
= 28714, (a2 k1)l
and similarly
y(x) = r(1 — b)p*Sx~'fo — x(1 + S)~'o
= (1 — 7/ {r(1 — b)b*SA4,7'6(A(x — 7/x))/6(ab(x — 7/x)27*7)
— (L = 7/¥) (1 + S)74,6(ald(x — 7/x)2757)[6(A(x — 7/%))}
> 274p(1 — b)b+SA, " (2¥2/a)®!* — 4(1 + S)'4,(22/a)=*} .
Here S = infy_, coniey/m 0(5) = 1 — } and 4, = A,(aA(x — r/x)) < 1 4 § for
all x> some large T.
Therefore, (2.10) yields
P[X(0) < x — 7/%, Z(ab(x — 7/x) > x]
P(x)
< Yo limsup,_ . 2kxp7 (1 — p*)!R(y) = M(a, 1)

since x(1 — p?)? — (a/2)*/*27**/> as x — oo.

lim sup, .,
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In order to see that M(a,a’) >0 as a— 0, use the estimates R(x) <
(x)/x < exp(—x?*/2) for x* = (27)~*; note that one may disregard any finite
number of the leading terms of M(a, 7); and then factor exp (—ca=‘*~*') out
of the infinite sum M(a, a’). Here ¢ > 0 is a properly chosen constant.

Proor oF THEOREM 2.1. Lemma 2.8 in [7] is not true, though Pickands’
basic concepts for the proof of his Lemma 2.9 stand under the required closer
examination. (In a private communication Pickands outlined a verification
of his Lemma 2.9 without the use of Lemma 2.8.) We give an independently
develdped proof of our Theorem 2.1 that avoids use of his Lemma 2.8. Define
H,* = limsup,_.. P[Z(t) > x]/(t¢(x)/A(x)) and H,~ = lim inf,__ P[Z(t) > x]/
(th(x)/A(x)). Now since A(x — y/x)/A(x) — 1 and ¢(x — 7/x)/¢(x) — exp ()
as x — oo for y > 0, we see from Lemma 2.3 that lim,__ P[Z,_,(f) > x —
7)1 (x)A) = exp () - H@)fa, where Z, () = maXog,.p X(ka - A X
(x — 7/x)) and the integer m = [t/(aA(x — r/x))]. For y > 0, we obtain

H - — erHa(a) < H+t — erHa(a)
a a = a a

P[Z(t) > X] — P[Z,_1u(1) > X — 1/%]

= limsup,_,.,

1(x)/A(x)
< lim sup,_,, FX@Q = x = r/z;b (Zx()aA(x — 7/%)) > x]

< Mia, 1) by Lemma 2.4,
a

Using P[Z,(f) > x] < P[Z(#) > x] and (2.11), we have

212) 0<H-—H@ g+ Hd)  May) | (o 1)Hd)
a a a a

On examining (2.12) we see that H,~ and H,* are finite, and then that lim
sup and lim inf of H,(a)/a as a — 0 must be finite. Now choosing y = a® with
0< B <a/2 in (2.12) so that M(a,y)/a—0 as a— 0, we obtain that
lim,_,H (a)/a exists and that H, = H,* = H,~ = lim,_, H,(a)/a. Of course
H, is finite and H, = H,(a)/a > 0. -

Define H,*(T) = lim sup,_,., P[Z(TA(x)) > x]/(T¢(x)). We now develop an
expression for H, via the estimate

(2.13)  |H, — H,*(na)| < |H, — H,(a)|a| + |H.(@)/a — H,(n, a)/(na)|
+ |Hy(n, a)/(na) — H,*(na)| .
Considering the last term in (2.13) and noting that
[Z(nab(x)) > %] S [Z(nab(x — 7/x)) > ¥]
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for all large x, we obtain from Lemmas 2.3 and 2.4 that

(2.14)  H *(na) — er Ha(: @)
na
< lim inf;,;_.oo P[Z(n(lA(x — T/X)) > x] — P[Zx_r/z(naA(x — T/x)) >x— r/x]
B nag(x)

gM forall y>0.
a

Using P[Z,(nal(x)) > x] < P[Z(naA(x)) > x] and (2.14), we have

@19 0 Hy - B0A g MED 4 oy Bl

for all @ > 0, and all positive integers n, and all y > 0.

Again choosing y = af, 0 < 8 < /2, we see that there exists > 0 such that
foralla < d M(a, a*)/a< ¢/6, and exp(a®) — 1 < ¢/(12H,), and |H, — H (a)|a] <
¢/3. Since H,(n, a)/(na) < 2H,(a)/a < 2H, for all n > somen,, we obtain
from (2.15) that |H,*(na) — H,(n, a)/(na)| < ¢/3 for all a < 6 and all n >
some n, depending on a. Consequently for a fixed a, < d inequality (2.13)
yields

|H, — H,(nay)| < /3 + |Hel®) _ B @) | o3 forall nizm,
a, na,

< ¢ forall n=somen, > 1, -

Since for n = [T/a,), na, < T < (n + 1)a, and na,T'H,*(na)) < HY(T) <
(nay + a))T~'H,*(na, + a,), we have [H, — H,*(T)| < ¢ for all T = some T,
or H, = lim,__ H,*(T).

Finally for arbitrary fixed T > 0, we consider n = [T/a] with a | 0 for the
particular sequence a; = T277. Now by Lemma 2.3 and monotone convergence

lim, _,He(%;> a;)

a
J
nj a;

. 1
= llmaﬂ,? (I + §& erP[max,_,, Y(ka) > s]ds)

1
= 7 (L 57 P[P Y(1) > s)ds)

Taking the same limit as a; —0 in ineqhality (2.15)withy =a/,0< 8 < /2,
we obtain that

HAT) = 2 (14 55 P[suPcscr V(1) > 51ds) i

REMARK 2.3. Pickands’ Theorem 2.1 [7] concerning the expected number
of e-upcrossings is hereby generalized also.

3. An asymptotic 0-1 behavior. In this section, we use the results of Section
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2 to obtain an extension of the results in Qualls and Watanabe [10]. We
again postpone discussion of the non-stationary case to Section 4. Using the
notation of Section 2, we have

THEOREM 3.1. If o(t) satisfies (0.1) with 0 < a < 2, 6(+) is defined as in
Section 2, and
(3.1 o()=0(t"") as t— oo, forsome y>0;
then, for any positive non-decreasing function ¢(t) on some interval [a, o),

| PE, = P{At(0) >a: X(t) S ¢(¢) forallt =} =1 or 0
as the integral
K(g) = §2 ($(1)5~(1/6(1))~* exp (— §*(1)/2)dt

converges or diverges.

REMARK 3.1. Monotone d(-) other than the one defined in Section 2 can

be used; see Remark 2.1. Note that condition (3.1) implies p(?) is not periodic;
consequently Theorem 2.1 is applicable.

Proor. For everye >0, assumption (0.1) implies that s*+9/2 < G(s) < s'*=/?
and that s¥(«=9 < 7(s) < s¥(«+¢ for all positive s < some d. In particular, the
integrand of I(¢) is eventually a decreasing function of ¢.

(1) The case when I(¢) < oo.
Let ¢, = nA, where A >0andn=0,1,2, -... By Theorem 2.1 and for
fixed A > 0, we have

Din=ng PSUP: <ic, ., X(2) = 4(2,)}
< G Xy (tass — £)((2,)071(1/6(2,)) " exp (— ¢%(1,)/2)
= C, iy (1, — 6,20)(8(2,)671(1/6(2,)) 7 exp (— ¢(1,)/2)
= G §oma (8(0371(1/8(1))) " exp (— ¢*(1)/2)dt < o,
for n, sufficiently large. Here C, > 0 is a certain constant. So, the Borel-

Cantelli lemma yields

P{3ny(w): sup, X(t) < ¢(t,) foralln =z n} = 1;

nStSty g

and consequently PE, = 1. []

(2) The case when I(¢) = oo.
For this part of the proof, we need the following lemma.

LEMMA 3.1. If Theorem 3.1 when I(¢) = oo holds under the additional assumption
that
2logt < ¢*(t) < 3logt, for all large ¢,

then it holds without this additional assumption.
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Proor. From the bounds on ¢-(+) given above, there are positive constants
C, and C, such that

(3:2) G {7 (o)t  exp (—g¥(r)/2)dt
= l(9) = Gy §7 g(0)' 797  exp(—¢*(1)/2)dt .

When 0 < a < 2, choose ¢ > 0 such that @« + ¢ < 2and a« — e > 0. When
a = 2, it is well known that the H(s) in ¢%(s) cannot tend to zero; consequently,
we may choose ¢ = 0 in the left-hand side of (3.2) when a = 2. We obtain
for 0 < a < 2 that

(3-3) I(¢) = C)' §7 exp(—¢*(1)/2)dt = C,'J(9) -

Let ¢(7) be an arbitrary positive non-decreasing function such that /(¢) = oo.
Let ¢(r) = min (max (¢(?), (2 log #)}), (3 log #)}). To show I(§) = oo, we may
assume ¢(f) crosses u(t) = (2log¢)! infinitely often as # — co. Otherwise,
either ¢ < uand I(¢) = I(u) = oo, or ¢ > u and I($) = I(¢) = oo, for some
large a.

The proof of Lemma 1.4 in [10] now shows that J(¢) = oo; and by (3.3)
that I(¢) = oo.

That P[X(f) > ¢(f)i.0.] = 1 implies P[X(f) > ¢(#) i.0.] = 1 follows from
“Theorem 3.1 when I(v) < co” with v(f) = (3log #)}; details are given in
Lemma 4.1 in [13]. (]

The proof of the second part of Theorem 3.1 now proceeds in the same way
as in Qualls and Watanabe [10]. We will use the same notation as in [10].

Define a sequence of intervals by I, = [#4, nA + 8] for A > 0and 0 < 5 <A.
Let G, = {t,, = kA 4 v/m,: v =0, 1, - .-, [An,]} be points in /, where n, =
[(67'(1/p(kA + B)))7']. Let E, = [max,.,, X(s) < #(kA + §)]. Now using
Lemma 2.3 in the same way as in [10], we see that I(¢) = oo implies
3 P(ES) = .

So, we only need to prove the asymptotic independence of the E,’s, that is,

(3.4) lim,_lim __|P(N~ E,) — [In PE|=0.
Now by the use of Lemma 3.1 and the bounds on ¢7(+), we have ¢*(kA 4 ) =
2log (kA + §) and

n, é ¢(kA + ﬂ)2/(a——e) é (3 lOg(kA + ﬂ))l/(a—e) s

where ¢ > 0and @« — ¢ > 0. Now the proof of (3.4) given in [10] applies
without change. []

REMARK 3.2. By the use of inequalities (3.2) and Theorem 3.1, we can
easily show that for every ¢ > 0,

1 1 . (2 log HNZ(H) — (2log 1)) _ 1 1 } ,
P| — <l < 4+ | =
|:2+a—|-s_ {0 SUP e log log ¢ =2+a—s L
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and consequently

P[lim sup (2log H(Z(1) — (2log ") -1 + _!_] =1.
e log log ¢ 2 a

It is interesting that this is true whatever H may be (as long as it satisfies the
assumptions of Theorem 3.1).

REMARK 3.3. Generally speaking, it seems to be difficult to compute I(¢)
in the criterion of Theorem 3.1 in concrete examples. Of course, inequalities
(3-2) may be used except in the critical cases.

4. The non-stationary case. It is not surprising that Slepian’s result ([12],
Theorem 1) can be used to generalize Section 3. See Section 2 of [10]. It is
more interesting that Slepian’s result can be used to generalize Section 2.

Let X(f) be a separable Gaussian process with zero mean function and
correlation function p(z, s). We adopt the notation of Section 2 with modi-
fications to the non-stationary case. At first, we only assume that

(4.1) 1 — CheH(h) < p(c, = + h) < 1 — C,h*H{(h)

for 0 <h <4, and 0 <7 < ¢, where 0 < a« <2 and H is slowly varying at zero.
Without loss of generality, we take H to be “normalized”. There exist sepa-
rable zero mean stationary processes Y (¢) and Y,(¢) with covariance functions
satisfying ¢,(h) ~ 1 — C;h*H(h) and g¢,(h) ~ 1 — C,h*H(h) as h — 0, respec-
tively. For C, < C, < C, < C,, we have

(4.2) @(h) < p(r, c + ) < g (k) for 0 < h <,

and 0 <z < ¢t. We shall use the subscripts 1 and 2 throughout to correspond

to the stationary processes Y,(+) and Y,(.), respectively.
In order to exclude any type of periodic case, we assume

£ =supf{o(r,c+h):0, <h0<Zc+h<t}< 1.
THEOREM 4.1. If X(+) satisfies (4.1) and k < 1, then fora > 0

C i« H,(a) _ 2(Cllla _ C2”“) Ha(a)
a a
(43) < lim il’lfm_,°° —P[Z”(t) > x] < lim sup, .., P[Zz(t) > X]
B tp(x)[a7}(1)x) — t(x)/571(1/x)
< Ca H(a) ,
a
C21/aHa _ 2(C11/a _ Czlla)Ha
(4.4) < timinf, P20 > piyp  PIZ@) > x]
B tp(x)/o7(1/x) — t9(x))571(1/x)

é ClllaHa ,
where G*(h) = 2|h|*H(h).
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Moreover if X(-) satisfies (0.1) with0 < o < 2 and £ < 1, then for a > 0

(4.5) lim, _ PIZ0) >x] _ Hya)
T tg(x)[a7(1)x) a
and

(4.6) lim,  PLZO>X] _ p
1h(x)[57(1/x)

Proor. The proof consists of showing that the results only depend on the
“local condition” for p(zr, r + k) instead of on the total time interval (0, ¢).
Let the integer M be large enough that 0 = t/M is less than d,,/2. Define

A; = [MaX; 15 0h0000<40 X(Ka - A(X)) > x] .
That PA; < P,A; = P, A, is Slepian’s result in the non-stationary case together
with the fact that P, is a stationary measure. Since A(x) ~ C,Y*A/(x) as x —
oo, Theorem 2.1 (or rather Lemma 2.3) yields

(4,7) lim SUP, e ﬂZ_M < lim SUP, e }il[_Z_ZQ_)_?_x] = C”"M .

1p(x)/Ax) ~ dp)Ax) T a
Similarly
(4.8) lim sup,_,., PIZ(1) > x] < limsup,_,., P[2(0) > x] = CJll*H_ .
19(x)/A(x) ag(x)/A(x)
For lower bounds, we consider
(4.9) P[Z(t) > x] =2 21 PA; — X X hcicizn P(4; N 4)) .

For j— i =2 in the double sum, we use a well-known device (see, e.g.,
Lemma 1.5 in [10]) to obtain
—x*/(1
P 0 4) — PAPA| < € 5 B o] SRS 0D
< K'm*exp (—x*/(1 + k)),

where m = [t/(aA(x))].

Dividing by #(x)/A(x), we see that the error term and PA; PA; approach
zero as x — oo; and therefore we may ignore this part of the double sum. For
j—i=1,

(4'10) ;1:11 P(Aj n Aj+1) < M(2P1(A1) - P2(A1 U Az)) .
Using (4.10) in (4.9), we have

lim inf,__ PIZ0) > X 5 jjp jup ¢ PLIZY) > X]

tp(x)/A(x) T (x)/A(x)
(4.11) > lim inf,__ PZ:0)> X]
0 (x)/A(x)
— 2limsup, ... {PI[Z,(B) > x]  P[Z,(20) > x] }
0p(x)/A(x) 20¢(x)[A(x)
= CVa H,(a) — 2(Clle — C %) H,(a) .
a a



594 CLIFFORD QUALLS AND HISAO WATANABE

Choosing C, = C,, C, = C,, and letting a — 0 in (4.7), (4.8) and (4.11), we
obtain (4.3) and (4.4). Choosing C, = C, = 1 in (4.3) and (4.4), we obtain
(4.5) and (4.6). (]

Of course, Theorem 3.1 of Section 3 can be generalized easily to a result
analogous to Theorems 2.1 and 2.3 of [10]. We write the following theorem
without proof.

THEOREM 4.2. If X(.) satisfies (4.1) with 0 < a < 2 for 0 < h < J and all
> T, and

(4.12) p(r,t + 5) = O(s7?) uniformlyin t as s— oo forsome y >0,
then, for any positive non-decreasing function ¢(t) on some [a, o),

P[X(t) > v()¢(t) i.0.int] =0 or 1
as the integral I(¢) < oo or =oco.

5. Comments. By use of the results in Section 2, we can easily obtain the
extension of Theorem 3.2 in Pickands [8] to our case. We will state only the
result, because his proof is applicable by just changing x* to (¢7*(1/x))"".

THEOREM 5.1. Let {X(f), —co < t < oo} satisfy the conditions in Theorem

2.1. Also we assume that
lim,_ o(t)logt =0 or =, p*t)dt < co.

Let N(¢, y, t) be the number of “c-upcrossings” of the level y in the interval
(0, 1). An “c-upcrossing” of the level y is said to have occured at t, if X(t,) = x
and X(t) < x, for all t such that t, — ¢ < t < t,. Then

lim _, P(N(e, y, Afp) = k) = e 2 [k!, k=0,1,2, ...,
where p = E(N(e, y, t))/t has the same value for all t. Furthermore,

t~ (2a) a7 (1]y)) "y exp(—)[2) -

as y — oo, where H, is given by (2.1).

By using the above theorem, we can prove the following.

THEOREM 5.2 Under the same assumptions as in Theorem 5.1, we have for all
X, —oo < x < oo

lim, .., P((4(1)(Z(1) — B(1)) < x) = exp(—e™) ,

where A(t) = (2log )™t and B(t) = (2logt)? — (2logt)~t log (2H, (= log t)}
a7(1/(2 log 1)})).

PROOF. As in the proof of Theorem 2.1 in Pickands [8], it is sufficient to

prove that

lim,__, P(N(e, A(t)x 4+ B(t), ) = 0) = exp(—e~®)

t—eo
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for all x. In order to prove this, by the preceding theorem, it is sufficient
to show

lim,  tpg=e",
where p ~ H,(2z) 47 (1/y))*y* exp(—»*/2) and y = A(t)x + B(t). But
y}[2 = x*/(4log t) 4- logt + (4 log t)~* log(2H, (= log t)t67'(1/(2 log t)}))
+ x — x(2log t)~" log (2H, (7 log #)*6—'(1/(2 log ?)}))
— log(2H, (= log t)t6=(1/(2 log t)t))
=logt + x — log(2H, (= log t)}67"(1/(2 log t)t)) 4 o(1)
as t — oo.
So
exp(—y*2) ~ t7e*2H,(n log t)}67((2 log £)~%) .
Since y ~ (2 log f)t as t — oo, obviously we have

@A)y ~ (67((2log /)74)) (2 log 1),
and consequently,
tp ~ t(2n) " H, (67Y((2 log t)t))"!(2 log t)~tt~'e "2 H,\(x log t)td—*((2 log 1)~%)
= exp(—x) as t—oo.
The theorem is proved.

REMARK. Berman [2] proves Theorem 5.2 under different conditions which
do not seem to be weaker than ours.
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