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FIXED ALTERNATIVES AND WALD’S FORMULATION
OF THE NONCENTRAL ASYMPTOTIC BEHAVIOR
OF THE LIKELIHOOD RATIO STATISTIC!

By T. W. F. STrROUD
Queen’s University at Kingston

1. Introduction and summary. Let X be a random vector, taking values in
p-dimensional Euclidean space ¢’ with density f(x; 6). The parameter 6 be-
longs to a subset © of a Euclidean space ¢ ?and is unkown. Let g bea function
over the parameter space having continuous first partial derivatives and taking
values in &' (r < ¢). To test the hypothesis g(¢) = 0 against the alternative
g(6) # 0 using a sample of n independent observations of X, one frequently
uses the Neyman-Pearson generalized likelihood ratio test statistic 4,. The
limiting distribution of —2/r 2, under the null hypothesis, as #— oo, was shown
by Wilks (1938) to be chi-square with r degrees of freedom (assuming regularity
conditions). If {#,} is a sequence of alternatives converging to a point of the
null hypothesis at the rate n~*, the limiting distribution is noncentral chi-square
with noncentrality parameter equal to the limit of »[g(4,)]" X3, (¢,)[9(0,)]
where Y, () is the asymptotic covariance matrix of the quantity ni[g(0) — 9(6)]
as n— oo with 6 fixed (§ denoting the maximum-likelihood estimator of § based
on sample size n).

This noncentral convergence was first proved by Wald (1943), along with a
number of other results, on the basis of some rather severe uniformity condi-
tions. Davidson and Lever (1970) have proved the result using more intuitive
assumptions. Feder (1968) has obtained asymptotic noncentral chi-square for
the case where both the hypothesis and alternative regions are cones in ©; this
is essentially a generalization of g(6) = 0 versus g(6) + 0, since the hypothesis
g(f) = 0is locally equivalent to a hyperplane and g(f) + 0 to its complement.
Despite the generality, Feder’s assumptions are quite mild compared with
Wald’s.

The result appears in Wald’s paper as a special case of a more general state-
ment entitled “Theorem1X.” This theorem states that ford e ®and — co <1< 0
the relationship

(1.1 P[—2Ini, < t] — P[K, < t]—0

holds uniformly in t and 6, where K, has a noncentral chi-square distribution with
r degrees of freedom and noncentrality parameter equal to n[g(9)]" >3, (6)[9(9)]-
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This formulation of Wald is too strong. It will be shown by counterexample
that, if 6 is held fixed while n — oo, relationship (1.1) fails to hold uniformly
in z. The counterexample is that of testing the value of the mean of a normal
distribution with unknown mean and variance.

Wald’s proof of Theorem IX treats two cases separately, case (i) where 6,
approaches the null hypothesis set at the rate n~* or faster, and case (ii) where
it does not. The proof of (1.1) in case (i) requires convergence of ¢, at the
rate n~* in order that the Taylor series expansion of the logarithm behave
nicely. In case (ii) there is no reason at all to believe the distribution of K,
to be a good approximation to that of —2/n4,. From Wald’s paper (page 480,
line following (212)) one gets the impression that Wald felt that the statement
of uniform convergence of (1.1) in case (ii) was trivial, since pointwise con-
vergence is trivial (because both terms tend to zero for fixed 7). But, since K,
does not converge in distribution to a random variable in case (ii),there is really
no reason why pointwise convergence should imply uniform convergence.

In the same paper, Wald (1943) also described a test procedure based only
on the unrestricted maximum-likelihood estimator #,. This procedure rejects
for large values of the statistic

Q, = n[9(0,)] Z3" (9,)[90,)] -
Wald claimed in his paper that (1.1) again holds uniformly in rand 6 if —21In2,
is replaced by Q,. This claim too is false, in the stated generality, as the same
counterexample will demonstrate.

Keeping @ as a fixed alternative while n — oo has the disadvantage that the
limiting behavior of each of the quantities —2In4,, Q, and K, is degenerate
in the sense that the probability mass moves out to infinity with increasing n.
However, statement (1.1), uniform in ¢ for fixed #, has meaning here since both
—2In2, (or Q,) and K, may be related to quantities with genuine limiting
normal distributions which must be identical or at least very similar in order
for (1.1) to be uniform in ¢. The precise result is embodied in a theorem
presented in Section 2 of this paper.

In Sections 3 and 4 we consider the case of X normally distributed with
mean y and variance ¢?, where —oo < p < o0, 0 < 0, < 0 < g, and the
hypothesis to be tested is # = 0. It is'shown in Sections 3 and 4, respectively,
that for this problem the relationships

PO, < 1] — Pj[K, < 1] -0
and
Pj—2ini, <t]— PJK, < t]—-0

fail to be uniform in ¢ when § = (g, v) is fixed and satisfies ¢ # 0, 0> < ¢* <
o, — p*. The space of values of ¢ has been truncated in order to satisfy Wald’s
regularity conditions.
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In the following section boldface letters denote vectors and matrices. The
law of the random vector x is denoted throughout by .%(x). In particular,
A7 (g, Z) refers to a normal law with mean vector g and covariance matrix
2. By A(x,) —» Ay) or Lx,) — A (s, 3) is meant, respectively, that the
law of x, converges to the law of y or to the stated normal law, as n— oo.
The definitions of the Mann-Wald symbols O, and 0, may be found in Chernoff
((1956), Section 2), as may the statements of some basic results of large-sample
theory which are used freely in the proof of the theorem.

2. Wald’s uniform convergence relation (for fixed 6) and the asymptotic normality
of related quantities. Consider the statement (1.1), with ¢ fixed, where —2In 2,
is replaced by an arbitrary sample statistic (or other sequence of random
variables) J,. The statement now reads

(2.1 PylJ, < t] — Pj[K, < ] >0 uniformly in ¢.

If g(9) # 0, the noncentrality parameter for K, becomes infinite as 7 — oo, so
that K, does not possess a limiting distribution, and neither does J, if (2.1)
holds. However, K, is distributed as ny'y, where n*(y — %) has the r-variate
normal distribution _#7(0, I) and = ;% (9)[9(F)]. If J, hasa representation
J, ~ nh,'h,, where for some fixed § the random vector nt(h, — §) has a limiting

nonsingular r-variate normal distribution .#7(0, '), one may ask the following
questions, where denotes the usual vector norm:

(1) Does (2.1) hold if I' = I and |§| = ||?
(2) Can (2.1) hold if I" and § are otherwise?

The answer to (1) will be seen to be yes. The answer to (2) is that |§] = ||
is always necessary, but that I' = I may be relaxed slightly, assuming we are
dealing with the noncentral case (3 # 0). (In the central case the answer to
(2) is no; this will be treated briefly at the end of the section.) The condition
weaker than I' = I that may cause (2.1) to hold is that the norm of & under
the inner product given by I' be the same as under the inner product given
by I. This can only occur (for ' = I) if r > 2, and cannot occur if either
I' <TorI' > 1. The following theorem treats both (1) and (2) in the noncentral
case. l

THEOREM. Let {h,} be a sequence of random column-vectors in & such that
ZL[nih, — §)]— .17(0,T), where§ andT are fixed, § ¢ & and T is nonsingular.
For each n, let K, be a real random variable with the noncentral chi-square distri-
bution with r degrees of freedom and noncentrality parameter ny'y, where 3 is a
fixed r-dimensional vector, p = 0. Then, as n — oo,

(2.2) P[rh,'h, < t] — P[K, < t] — 0 uniformly for all real t
if and only if 'p = §'6 = &T&.
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Proor. First some results are developed which concern #h,'h, and K, sepa-
rately. From these results the condition »'p = §’§ = §T§ is then proved
sufficient and necessary.

DefineJ, = nh,’h andw, = nt(h, — §). Fromthe given asymptotic normality
of w, a statement concerning the cumulative distribution function (cdf) of J,
will be derived. From the definitions,

J, =€ + now,Y(E + niw,)
which implies
(2.3) nt(J, — n§'§) = 28w, 4+ nitw 'w_ .

Since =+ 0 isassumed, § = 0 is clearly necessary for (2.2) to hold; otherwise
J, =w,'w,_hasanon-degenerate limiting distribution while K, does not. Hence
we assume § = 0 throughout.

Since by hypothesis ./ (w,) —..#7(0, '), it is immediate that w, = O (1)
and hence n~tw,'w, = o,(1). Therefore, from (2.3),

Ln i, — n'§)] — lim ~(28'w,) = . 17(0, 46'T§) .

Using the theorem of Pélya (1920) that a sequence of cdf’s converging pointwise
to a continuous cdf must converge uniformly, we may write for any given

e>0

(2.4) ‘P[n—é(Jn _ n€'8) < a] — (I>< < ¢2

ey

for all real a, if n is sufficiently large, where the notation ®(.) refers to the
standard normal cdf. We may now write (2.4), in terms of the cdf of J,, as

(2.5) ’P[Jn < nta + ng'€] — @(@){ <2

for all real a, if n is sufficiently large.
By definition, K, is distributed as (z + n*%)’(z + n*n) where z has the r-variate
normal distribution _77(0, I). From this it follows that

n K, — np'p) = 29'z + ntz'z
which, since n#z'z = o,(1), implies
LYK, — np'p)] > L (29'2) = 470, 49'y) .
Using Polya’s theorem as before, a result resembling (2.4) is obtained which

may be rewritten in parallel form to (2.5) as follows:

o <o

(2.6) P[K, < ntb 4 np'p] — ®<W

for all real b, if n is sufficiently large.
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Sufficiency of the condition stated in the theorem will now be proved. Sup-
pose 9'np = §’§ = §'T§. Fora = b the left sides of (2.5) and (2.6) are identical,
except for the quantities J, and K,. Combining (2.5) and (2.6) yields

|P[J, < ntb + np'p] — P[K, < ntb + np'p]| < ¢

for all real b, if n is sufficiently large. But this is equivalent to (2.2), so that
sufficiency is proved.

To prove necessity, we develop some further consequences of (2.5) and (2.6),
and then show that the failure of either %’y = §’§ or 'y = §'T'§ leads to the
failure of uniformity or (2.2).

Let {a,} and {b,} be arbitrary sequences of real numbers. Then (2.5) and
(2.6) hold for sufficiently large n, by uniformity, when a and b are replaced
by a, and b, respectively. Let the particular sequences {a,} and {,} be defined
in terms of a sequence {z,}, whose definition is postponed, as follows:

a, = ntt, — n'§'§
b, = ntt, — nip'p.

Inequalities (2.5) and (2.6) now appear as follows:

ntt, — n'§'é
\P[Jn <1]— c1><—2( s >l < 2
_ n~it, — nip'y
for n sufficiently large. According to (2.2),
ntt, — w8 _ (M. —niy'p |
@7 (D< 2(§T¢)! ) q)( 2(n'y)} > 0

as n — co. Now put

1, =np'n + (np'n)t.
Then the second term of (2.7) becomes ®(4). Let us investigate the first term,
which is
2.8) q)( ni(y'p — §'€) + (v’v)*) ,

2(8§'Té)

Clearly, if 5’y + §'§, then the factor n* will dominate the expression and
convergence to @(}) becomes impossible. If 3'p = §’§, (2.8) becomes
D((9'n)}/2(§'T'§)t), which implies that for (2.7) to hold it is necessary that

H2ETE)! =4,

or, equivalently, 'p = §T§. The necessity of %'y = §'§ = §T'§ has been
proved. []
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Now consider the central case » = 0. Here K, has the chi-square distribution
x.” for every n. Clearly (2.2) fails if § + 0, since then rh,'h, fails to possess
a limiting distribution. If § =2 =0, it is clear thatI' = I is a necessary
condition for (2.2), since nh,’h, is asymptotically distributed as a weighted
sum of r independent central y,* random variables, where the weights are the
eigenvalues of I'. By considering characteristic functions one can easily see
that each weight must be unity (and hence I' = I) in order that the limiting
distribution of #h 'h_ be y,2. Thus, in the case 7 = 0, the conditions § = 0
and T' =1 are necessary for (2.2). If § = 0 and T" = I are assumed to hold,
the limiting distribution of »h,'h, is clearly y,>. Uniformity follows from
Polya’s theorem, making the conditions & = 0 and I" = I sufficient as well as
necessary in the central case.

3. Failure of Wald’s uniform convergence relation for 0,. Let X,, X,, ---, X,
be real-valued random variables, independently normally distributed with
unknown mean z and variance ¢%, where —co < pt < 00 and 0 < 0, < 0 <

o, < oo. We wish to test the hypothesis
H:p=0

against all alternatives. Let 8’ = (p, 0); the likelihood equations are known
to be satisfied at § = (X, 6), where X = Y X,/nand ¢* = Y\(X, — X)/n. Wald’s
statistic Q,, is given by

0, = nk*/é* .

At issue is the statement (2.2) which appears in the theorem of the previous
section with h, = X/¢ and the noncentrality parameter of K, equal to np?/s?

Although the assumptions I—VII of Wald’s paper are far from intuitive,
with a little work one can check that they are satisfied for the present example.
Assumption I can be seen to hold if we interpret the region referred to by Wald
as D, to be the set of all sample points for which the likelihood equations have
a solution, which appears to be the way this assumption was used by Wald.
Assumptions II, Illc and VII are guaranteed by the assumption made here that
0 < g, < oo, and Assumptions Illa, IIIb and V by ¢ > ¢, > 0. Assumption
IV is well known to hold for problems concerning the normal distribution,
and Assumption VI is trivial since we are testing a co-ordinate of 6.

It is shown below that for fixed (¢, o) the limiting distribution of nt(h, — &§) =
n(X/6 — plo)is 47(0, 1 4+ 12/(26%)). When p + 0, the variance differs from
unity, and hence, by the theorem, relation (2.2) fails to be uniform in ¢, con-
trary to the claim of Wald ((1943), page 480, relation (210)) that this relation
is uniform in ¢ (and in @ as well).

To derive the limiting distribution of n}(X/é¢ — /), consider first the limit-
ing distribution of n(6 — @), known to be normal with zero mean and covari-
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== [82 0‘22} '

Let ¢(8) = p/o; then the distribution of n*[gb(én) — ¢(8)] is asymptotically
normal (see Rao (1965), page 322) with mean zero and variance equal to a'Za
where

ance matrix

@' = (plop 4)ds) = (1o —pfo?).
Thus the asymptotic variance of ntX/¢ = nmd@,) is a'Sa = 1 + 12/(20?).

4. Failure of Wald’s uniform convergence relation for —2/n 4,. Let the random
variables X, - - -, X,, the parameter 8’ = (1, ) and the hypothesis H be as in
the previous section. Denote the restricted maximum-likelihood estimator
under H by 6’ = (0, 5), where 3> = Y X;>/n. The likelihood ratio statistic is
given by 2, = (4/)", or equivalently

—2In2, = nin[1 + (X/6)"] .

We note that Y} X;?/n converges to ¢* + ¢* as n — oo, a.s. and in L, for each
p = 1. Let us consider a fixed (g, o) satisfying ¢ # 0, 0 < 0* < 0* — o2
Then, as n — oo, ¢* and 32 converge to ¢* and ¢* + p, respectively, both of
which lie in the open interval (s., 6,%). We consider the theorem of Section 2
with h, = {In[1 + (X/6)*]}*. The stochastic limit of h, as » — co (denoted by
&) is {In[1 + (¢/o)*]}t, so that
n[{in[1 + (X[6y ]} — {n[1 + (¢/o)]}]

has a limiting normal distribution (see Rao, (1965), page 319). As in the pre-
vious section, the noncentral chi-square random variable referred to by Wald
(our K,) has noncentrality parameter equal to ny*/¢*, and the corresponding
value of 7 is y£/o. By the theorem of Section 2, the uniform convergence state-
ment of Wald’s Theorem IX for fixed @ (our (2.2)) cannot hold unless §’§ = 5",
i.e. unless In[1 + (p/0)*] = p*/o?, which is clearly false when p == 0.
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