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1. Summary. The properties of both a mixture random process, specified by
the multi-dimensional simple mixtures, F(xy %y ooy x,) = ayFy(xy, %, -+, X,) +
a,Fy(%,, Xy -+, X,), @, + @, = 1, and a related quasi-mixture process are inves-
tigated. It is shown that if the set of random variables of the component cdf’s
(cumulative distribution functions) are independent, then the random variables
of the resulting mixture are independent if and only if the mixture cdf F is
degenerate. The quasi-mixture process, on the other hand, does have the property
that factorization of the component cdf’s implies factorization of the resulting
mixture cdf. Specializing to the case of Gaussian cdf’s, it is further shown that
the GMP (Gaussian Mixture Process) never satisfies the strong mixing condition,
while with reasonable assumptions on the component correlation functions the
GQMP (Gaussian Quasi-Mixture Process) does satisfy the strong mixing condi-
tion. These, and other properties of the resulting mixture cdf’s are of importance
when mixture processes are used as models in various estimation and hypothesis
testing problems. Some examples are also given for generating GMP and GQMP
processes.

2. Introduction. The study of the identifiability of finite mixtures initiated by
Teicher (e.g., [10]) has recently been extended to include multi-dimensional
cdf’s [14], [15]. Finite mixtures are appropriate models in many statistical prob-
lems and the identifiability of such mixtures is of prime significance. Of equal
importance in problems of hypothesis testing and estimation are the properties
enjoyed by mixture cdf’s and the corresponding mixture random process. In
this paper we investigate three relevant properties of the simple mixture (Section 3)
and the quasi-mixture (Section 4) processes: the relationship between factori-
zation of the component cdf’s and the mixture cdf; the strong mixing property;
and invariance under linear transformation. The latter two properties are stud-
ied with the component cdf’s taken as Gaussian. The resulting nearly normal
processes appear to be useful models for testing and estimation problems, in
both continuous and discrete time, when the noise process is non-white, as can
be seen from [7] and the following discussion.

The need for nonnormal random processes arises when one is interested in
determining the robustness of hypothesis testing or estimation procedures. For
this situation, the statistic, .7 ,, upon which the test or estimate is based, is a
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functional of the observed process, x(f), on [0, T]. When the process is non-
Gaussian, there is generally little hope of finding the cdf of .77,. An exceptional
circumstance would be when .77, is a linear functional and the nth order cdf’s
of x(¢) are invariant under linear transformations. Hence, the importance of
invariance properties. It is shown in Section 8 that the Gaussian mixture process
is invariant under linear transformation.

When the cdf of the statistic .77, cannot be found for finite T, an alternate
approach is to obtain sufficient conditions under which .77, is asymptotically
normal. The test functionals for optimal procedures in the Gaussian case are of the
form W-YT) \7 q,(¢)x(t) dt in the continuous time case and W-YT) 2:7_, q,(£)x(¢)
in the discrete time case. Since one of the sufficient conditions for asymptotic
normality of functionals of this form is that x(¢) satisfies the strong mixing con-
dition [8], it is reasonable to attempt to find nonnormal processes which satisfy
the strong mixing condition. As might be expected from the factorization prop-
erty discussed above and in Sections 3, 4, the GMP never satisfies the strong
mixing condition while the GQMP does. In fact, it is the lack of factorization
of the simple mixture which leads to the definition of the quasi-mixture and the
subsequent specialization to the GQMP.

3. The mixture process. Let F(x,, - - -, X,) and Fy(x,, - - -, x,) be the joint dis-
tribution functions of two stochastic processes, x,' and x.?, —o0 < t < + o0,
for all time sets {t,, - - -, ¢,}, = 1. In the discrete time case we take —oo <
t < 4 oo to mean that ¢ takes on all integer values. Let a, and a, be given such
that @, @, = 0 and @, 4+ a, = 1. Then

(1) Fx, -+, x,) = a,F(x, -+, X,) + @& Fy(x;, -+, X,)

is a distribution function which we refer to as a simple mixture. Since the cdf’s
F, and F, are those of a stochastic process, they satisfy the Kolmogorov symmetry
and consistency conditions. It is clear that F satisfies these conditions by virtue
of its definition and, hence, there exists a stochastic process ¥, having F for its
cdf’s. We refer to the process X, as a mixture process.

DerINITION. The simple mixture £ will be called nondegenerate if a, > 0,
a, > 0 and F, # F,; otherwise F is called degenerate. If F(x, - .-, x,) is non-
degenerate for all sets {t,, - - -, ¢,}, n = 1 then %, is said to be a nondegenerate
mixture process.

At first thought one might hope that independence of a set of random variables
of the processes x,! and x,” would imply independence for the corresponding
random variables of the mixture process. Unfortunately this is not the case; the
pertinent result is stated as

LeMMA 1. Suppose F(x,, - - -, x,) = a, [17 Fi(%:) + @ 17 Fy(x;). ThenF(x,, - - -,
x,) = II7 £(x;) if and only if F is degenerate.
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Proor. The “if” part is obvious. For the “only if” part let
F(xv ceey X,) = Hfﬁ(x@)
= It [ Fi(x:) + a,Fy(x;)] -

By assumption

B(x, -y %) = @ 11 F(*) + a [T3 Fi(x)
so that forn = 2

I [a Fi(x:) + a, Fy(x)] — [a, I13 Fi(x:) + a T3 Fa(x:)] = O

or

a,a[Fi(x,) — Fy(x))]-[Fi(%,) — Fy(x%)] = 0.
Since the above relation must hold for all x,, x,, ¥ must degenerate.

4. The quasi-mixture process. We now introduce a “‘quasi-mixture” process
which has the property, which the mixture process lacks, that factorization of
the component df’s implies the factorization of the df’s of the process itself.

Let F,"(x,, - - -, x,) and F,*(x,, - - -, x,) be the cdf’s of two continuous parameter
stochastic processes x,' and x?, for the time sets {¢,, - - -, #,}. These cdf’s neces-
sarily satisfy the Kolmogorov symmetry and consistency conditions. Now let

2) G = G(x, -+, %,) =4 Dapn FH (i oo oo X )M, 5 o0 %)

where 0 Sk <m FP =F) =, 1, <i, < +++ <3 fpy < By < -+ < i and
where A,* indicates the summation over all the (}) ways of selecting k integers
from the set {1,2, ..., n}. Now, with a,a, =0, a, + a, = 1, we define the
quasi-mixture process by

3 F"(xl, Cees X)) =4 Dko @A TFGM (%, - - -, X,,)

F™ as defined is obviously an nth order probability distribution function. The
existence of a stochastic process, %, having F"(xl, ..+, Xx,) as its cdf’s for the
time sets {¢, - - -, t,} is guaranteed provided the Kolmogorov symmetry and con-
sistency conditions are satisfied. In the following theorem we show that these
conditions are in fact satisfied.

THEOREM 1. There exists a stochastic process, X,, having F"(x,, - - -, x,) as defined
by (3) for its df’s for the time sets {t,, - - -, t,}.

Proor. (i) Symmetry—Consider the effect on G,*(x,, - - -, x,) of interchanging
two of its arguments, say x, and x,. This exchange occurs in every term of
Zagn Xy oo X% )X, -5 % ). Ifina given term this exchange occurs
in one of the sets {i;, - .-, i,} or {i,,,, - - -, i,} then this term is not changed since
F* and F,*~* satisfy the symmetry condition by hypothesis. Suppose the exchange
is between an element of {i,, -- -, i,} and an element of {i,,,, ---,i,} for some
term. For every such term there is a matching term for which an opposite ex-
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change takes place. Such pairs of terms merely replace one another and hence
G M(X%y » v 05 Xy) = ZA;,"‘ Flk(xil’ “ee, xik)Fﬂn_k(x"kH’ ey, xin)

is invariant under any permutation of its arguments. The same is true of
F~(x,, - -, x,) and the symmetry condition is satisfied.
(ii) Consistency—Now consider lim, _. F*(x, ---,x,). We have

lim, o, Fr(x,, -+, x,) = lim, o Xm0 @a," 4G (X, - -5 %)
= Dhoodta* ZAkn lim,n_m Fl"(xil, )

X an_k(xik+1’ ey x":'n,) .
Let
Gk”(oo) =—a limzn—too Gkn(xl’ A ", n)
= Gk”(xv crts Xy °°) .
Then

Gy(00) = Fy(%y, -+ +5 Xpeyr ©0)
— an—l(:xl, ceey xn_l)
— Go'n,—l
G,M(0) = F™(%;, +++5 Xp_g )
= Fln_l(xv Tt xn—l)
= GZ:% .
Now consider G,*(co) for | < k <n— 1. G,*(co0) contains (3=}) terms for which
X;, = 00, and for each of these terms we have F*(x;, - - -, %;,_, 0) = FF=Y (x5
-++, %, ). Since for each of these terms i, = n, it must be that {i,, .- -, i,_;}

is some combination of the set {1, 2, ..., n — 1}, and {i;,,, - - -, i,,} are the remain-
ing integers. Thus for these terms we may write

Fr*(x; sy X)) = B0 L X )

k1’
with {i,, .-+, 7,,} = {,2,.---,n— 1} — {iy, -+ s B}

Hence there are (321) terms of the form F*='(x;, - - -, x;, )FH" 7% V(x;, -« -,
x;, ) with each {i,, - - -, i,_,} being a distinct combination of k — 1 integers from
the set {1,2, ---,n — 1}.

Thus

G, (o) = ZA}::} Flk_l(xil’ ceey xi,,_l)Fz(”_“_(k_l)(xi,,’ ceey xin—l)
+ X (terms with i, = oo0)

= Gpzi(%y -y X,_,) + X3 (terms with i, = oo).

The number of terms for which i, = oo is (,"3%,) = ("¢*), and each of these terms
is of the form

Flk(xil’ R xik)an_k(xi s X; s 00)

PTSLEN n-1
= F %, - x; 4% X )

k+1° “n—-1
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with the {7, .- ., 7} of each term being a distinct combination of k integers from
the set {1,2, ..., n — 1}. This means that
>, (terms with i, = c0) = G,* (%, - -+, X,)
and so
Gk”(oo) = G;::}(xv ) xn—l) + Gz_l(xv ) xn—l) .
Dropping arguments for convenience we have
limxn—m F”(xv ce X)) = Dheo 8" 7G"(00)
= @G + Drtata,MGRI + G 4 4G
— aﬁ’nGon—l + Zz;g alk+1a2n—k—len—l
+ Ll ata G + "Gy
— aﬁnGon—l + alaﬁn—lGOn—l
+ Zz;f [alk+la2'ﬂ—k—l + alkazn—k]Gk'n—l
+ a7 GT + @GR
= @ (a, + @)G ' + Yitiata 4 + a)G !
+ aln_l(al + a2)Gz:i
— Z;:;(l) alka2(n—l)—ka'n—l
= Fr(x, ooy X,_y) -
Therefore the consistency condition is satisfied.

It is to be noted that for a quasi-mixture process the condition F, = F, = F
does not in general imply that F = F, in contrast to the situation for a mixture

process.
Returning to the quasi-mixture process we note that it has

4) Fl(xl) = a,F(x,) + a,Fy(x,)

(5) Fz(xv X)) = a’F\(x,, X,) + a’Fy(x,, X,)

+ @ a,[Fi(%)Fy(x,) + Fi(%)Fy(x)]

as univariate and bivariate distributions. The univariate distribution is identical
to that of a mixture process having the same a,, a,, F, and F,. The bivariate
distribution differs from that of the corresponding mixture process by the in-
clusion of the terms F(x,)F,(x,) and F,(x,)F,(x,) and by the smaller weighting of
the terms F(x,, x,). It is this aspect of the structure which results in the follow-
ing lemma.

LEMMA 2. If the component random variables, x,, - - -, x,,, are independent, i.e.,
an(xv ) xn) = 117 Fjl(xi) s Jj= 1,2
then the corresponding quasi-mixture random variables are also independent, i.e.,

Frx,, « v, x,) = [Ie, F(x;) .
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Proor. It follows from the hypothesis that
ij(xv“"xk)z :"=1Fjl(xi)$ j:1’2 k<n
so that
Fr(x, -+, x,) = Dioalta" G (%, - - -, X,)
= Dk=o @@ Py a F(%;) - - B (% )F (%, ) -+ FBi(%)
= [Tz [a Fi(x:) + a F'(x;)]
= I, Fl(xi) .

5. The Gaussian mixture process (GMP). Let x,' and x> be stationary, zero
mean, Gaussian random processes having correlation functions R,(+) and Ry(-).
Then the df’s F(x,, - - -, X,) = @y(x, - - -, x,) and F,(%;, - - -, x,) = Py(x, -+ -, X,,)
for the various time sets {¢,, - - -, ¢,} are Gaussian df’s and the set of df’s
(6) Fo(x, - %) = a,@y(%, -+, %,) + @, Dy, - -+, X,)

define a Gaussian mixture process (GMP), X,. We assume throughout that X,
is nondegenerate. '

Since zero correlation implies independence for a Gaussian process, it is natu-
ral to ask what is the implication of zero correlation for a Gaussian mixture
process. Let x, = %, and x, = %,,.. With R(c) =, E;_x,x, it is clear that

(7) R(z) = a,R|(7) + a,Ry(7) for all .
For zero correlation between X, and X,,. we have

(8) a,R\(7) + a,R(7) = 0.

The possible solutions of (8) are

) R() = Ry(r) = 0;

(10) R\(7)/Ry(7) = —ayfa, .

DerINITION. If R,(¢)/Ry(¢t) = —a,/a, at 4 = 7 then X, is said to be singular at
; otherwise %, is said to be nonsingular at z. If R/(¢)/R,(¢) + —a,/a, for every
4, then %, is said to be completely nonsingular.

Thus R,(r) = R,(r) = 0 is the only solution of (8) for a completely nonsingular
Gaussian mixture process, X,; conversely, if %, is not completely nonsingular
then for some 7 there exists a solution of the form (10).

Suppose %, is nonsingular at ¢ and R(r) = 0. Then ®@y(x,, x,) = @;(x)D;(x,),
i =1,2,i.e., the component random variables are independent. However, ac-
cording to Lemma 1, the random variables ¥, and X, , are not independent. This
feature may be undesirable in some situations. For instance in some cases we
may demand that R(r) — 0 as  — oo and for such cases asymptotic independence
may be expected on an intuitive basis but is not obtained in this case. On the
other hand, it may sometimes be desirable to have model which exhibits long
term dependence effects (e.g., Van Ness [12]).
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6. The Gaussian quasi-mixture process (GQMP). If x,' and x? are stationary,
zero mean, Gaussian random processes having correlation functions R,(+) and
Ry(+), then the cdf’s Fy(x,, -« -, x,) = Qy(x;, - -+, X,) and Fy(x,, - -+, x,) = Dyfx,,
..., x,) for the time sets {t,, - - -, t,} are Gaussian cdf’s and the cdf’s

(11) Fo(xy, -5 %) = Dhooata ™ Yan Qo - oo X% )Po(Xi 5 05 Xi)

define a stationary, zero mean, Gaussian quasi-mixture process (GQMP), x,. We
assume throughout that %, is nondegenerate, the definition of degeneracy being
the same as for the mixture process.

Let R(z) =, E; 4% with x, = x, and x, = x,, . Then, noting the zero mean
assumption on the component processes, we have

(12) R(r) = aR(7) + a'Ry(7) , [z >0
(13) Var %, = R(0) = a,0® + a,0, .

The definition of singularity and nonsingularity for a GQMP is the same as
for a GQMP when (10) is replaced by

(14) R,(7)/Ry(7) = —(@/ar)’ .
The following theorem is an immediate consequence of Lemma 2.

THEOREM 2. Let %, be a stationary GQMP with component correlation functions
R(+) and Ry(+) and with component cdf’s having zero expectations. If R,(r) =
Ry(t) = 0, or if %, is singular at  and R(t) = 0, then Fo(x,x,,.) = Fo(x,)Fs(%,..)-

EXAMPLE. Suppose
R(7) = o,fe~l"!

Ry(c) = ojte= !
so that

R(z) = alo eIl 4 alo,le= " |z] > 0.

Then the corresponding GQMP, %,, is completely nonsingular; thus %, and %,
are asymptotically independent as ¢ — co.

One way of measuring the deviation from normality for both the GMP and
the GQMP is to define a distance from normality, using, for example, the
Kolmogorov distance. Let 5, = supy |[Fs(xyy + -+, X,) — Dy(x,, - -+, X,)| and 0, =
supy [Fy(%,, - - -5 X%,) — @y(%, - -+, %,)|, i.e., 6, and J, are the Kolmogorov dis-
tances of the nth order GMP and GQMP cdf’s from the nominal Gaussian cdf.

Since 8, < a,, it is clear that a normal process can be approximated by a
GMP in the sense that all of its nth order cdf’s will be within a distance a, of
the Gaussian cdf’s. It appears that closeness of approximation by a GQMP can
be easily specified only in terms of lower order df’s; certainly good approxi-
mations are easily obtained for the univariate and bivariate df’s (6, < a, and
0, < a,).

It is because we can approximate a Gaussian process by a GMP or a GQMP
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in the sense given above that we refer to these as nearly normal processes. Close-
ness of approximation in terms of 9, and §, does not, however, imply closeness
of moments, and this is precisely why such nearly normal processes are useful
in robustness studies [11], [7].

7. Strong-mixing. The strong mixing condition may be stated as follows [9].
Let x, = x(t) = x(t, ), —oo < t < co, be a random process jointly measurable
in t and w. As before we take —co < t < oo is to mean ¢ is any integer in the
discrete time case. Let U", be the g-algebra generated by x,, t < ¢, and U=
the g-algebra generated by x,, - = #,. The process x, is said to satisfy a strong
mixing condition if there is some positive function a(y) defined for 0 < y < oo
with a(y) — 0 as ¢z — oo such that for any 4, e U4, 4, ¢ Ui= 6 < &

(15) IP(AI n Az) - P(AI)P(AZ)I = a(tz - tl) .

For a stationary process we let , = ¢, t, =t 4+ 7, and then ¢, — ¢, = .

In this section we show that a (nondegenerate) GMP cannot satisfy the strong
mixing condition, and that with mild assumptions the GQMP does satisfy the
strong mixing condition. Since the strong mixing condition is a form of as-
ymptotic independence, these results are not surprising in view of the comments
of the preceding sections concerning factorization and independence.

THEOREM 3. A nondegenerate stationary Gaussian mixture process never satisfies
the strong mixing condition.

Proor. Let x, be a nondegenerate stationary Gaussian mixture process with
component variance ¢,%, ¢, and component correlation functions p,(7), p,(7).
Set X, = x;, X, = x,,.and define the events 4, € U’ ., 4, € U} by 4, = [X, < x,],
A, = [X, < x,]. Then P(4, N 4,) = Fy(x,, x,), P(4;) = F,(x;), j= 1,2, and

P(A, N A;)) — P(A)P(A,) = a,D(x,, x;) + a,Dy(x,, X,)

— [@DPy(x) + @, Dy(x)] - [a, Dy(x,) + @, Dy(x,)] -
Consider the following cases, where we assume that p, =, lim__, p,(r) exists,
i = 1, 2:
(i) o, = p, = 0. In this case

lim__,, |P(4, N A;,) — P(A))P(4,)|
= lim___, [[a,DP,(x,, x,) + a,DPy(x,, x,)]
— [ DPi(x,) + @, Dy(x))][a, Dy(X2) + @, Dy(x,)]]
= |[a; D,(x,)Dy(x,) + a, Py(x,)Dy(x,)]
— [ Dy(x) + a,Dy(x)][a, Py(X,) + a, Dy(x,)]]
= a,4,[[Dy(x)) — Dy(x,)]- [D(x;) — Dy(x,)]|
>0 for x,=x,, |x/>0
since by hypothesis, g, # 0,.
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(ii) p; # O foratleastonei, i =1, 2. For this case take 4, = [x, < 0]. Then
lim ., {P(4, N 4;) — P(4,)P(4,)} = lim___, {a, ®,(x,, 0) + a,Dy(x,, 0)
— 3[a Dy(x) + @, Do(x)]} -
Let
H(x;; p1s 03) =4 lim ., {2, Dy(x,, 0) + a2, Py(x;, 0) — Fa, Dy(x) + @, Dy(x)]} -
We now show that there exists an x, such that |[H(x; p,, p,)] > 0. First note
that

dH(x,; p1, p,) d d

2 o P — g * O (x, 0 a,—— Dy(x;, 0

dx, " dx, % 0) + * d, (4, 0)
- 71‘[‘11 ¢a1(x1) + a, ¢;2(x1)]

where ¢, (+) is the Gaussian density function with mean zero and variance o’

Now

i@i(xl’ 0) — 0_0° 1 eXp|: —x12 — 2pix1)’ + y‘z:]dy
a, 270 (1 — o)} 201 — p7)
= (i 1 exp [ =% —pf) — 1)2] dv
2r0 (1 — o)t 201 — p?)
= ¢ai(xl)[% + so—Pi’;l ¢0i(1—P2)i(v) d’U] ’ = 1’ 2
SO
dH(x;; py, —py2
A 00 03) — 4, (x) 55757 B, pp(0) d0

dx,
+ a, ¢02(x1) S()_ple ¢02(1—p22)§(v) dv *

If p, =0, p, + 0, i + j, then |[dH(x,; p,, p,)/dx,] > O for |x,| > 0. Ifp, = 0,i =
1, 2, then there exists an x, such that |dH(x,; p,, p,)/dx,| > 0. For assuming other-
wise we have

al ¢al(x1) - _ so_pzzl ¢02(1—p22)i(v) dv
a2 ¢02(x1) S()_plxl ¢02(1—p22)l’(v) dv

for all x;; but this is a contradiction since by the nondegeneracy assumption the
left-hand side of the above equation goes to 0 or o as x, — co while the right-
hand side goes to +1. Since dH(x,; p,, p,)/dx, is continuous in x, it follows that
there exists an x, such that |H(x,; p,, p;)| > O whenever p, == 0 for at least one
i,i=1,2. Hencelim__, |P(4, N A,)) — P(A4,)P(4,)| > O for some x, where 4, =
[¥ = x], 4, =[x < 0].

If both lim__,, o,(7) and lim__,, p,(7) exist then either case (i) or case (ii) applies
with the conclusion that |P(4, N A4,) — P(A,)P(A4,)| cannot be founded for all
A4, e U, 4,e Uy, . by a positive function a(+) for which lim__,, a(r) = 0. When
lim__,, p;(r) does not exist for at least one i then the argument for case (ii) may
be rephrased so that the result holds for some r in every neighborhood of co.
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Hence a nondegenerate stationary Gaussian mixture process never satisfies the
strong mixing condition.

It will now be shown that the GQMP satisfies the strong mixing condition
provided its component correlation functions satisfy certain sufficient conditions.
The proof follows closely the approach used by Kolmogorov and Rozanov to
show that under mild restrictions on the spectrum a stationary Gaussian process
satisfies the strong mixing condition [6], [9].

We now follow Rozanov’s terminology [9]. Given two collections of real
random variables {x'} = M’ and {x""} = M” having finite second moments, let

|E(x' — Ex')(x" — Ex")|

16 M, M"Y = SUP, ¢ yrri0r et .
( ) P( ) Pzrea; M [E(x’ _ Ex’)“"-E(x" _ Ex")z]%

Given two g-algebras, U’ and U”, let M’ and M” be families of all real random
variables on U” and U”, respectively, which have finite second moments. Then
the maximal correlation coefficient, p(U’, U"), is defined by (Rozanov):

(17) p(U’, U") =AP(M'v M") .
Let
(18) (U, U™y =, SUP ey ey | P(A'A) — P(A)P(A")] .

We have in mind, of course, that with U’ = U4, and U" = U=, a(U', U") be-
comes the function a(t, — t,) of (15).

LEMMA 3.
(19) a«(U', U") < p(U, U™

Proor. Let ¢, be the characteristic function of 4’ ¢ U'.
Then

E($y — Ep ) = P(A)[1 — P(A)] < 1.
Similarly
E, — Epp)<1,4"eU".

Thus

1A ’ ” |P(A,A") _ P(A,)P(A")l
P(A'A"y — P(AYP(A")| =
LD = PPN = (g — Bg 7B — BT
P(A' A"y — P(ANP(A™| < IE(SbA' - E¢A')(¢A" —_ ESbA”)I
PAAT) = PEVHAN = (5 B ) B — BT
|E(x’ — Ex")(x"" — Ex")|
[E(x' — EX')*E(x"" — EX")*]*

|P(4' A7) — P(A)VP(A")] < SUP,aypiarcarr

|P(A'A") — P(4)P(A")] < p(U', U”)
(U, U") = SUP e yrigrre s |P(A' A7) — P(A)P(A")|
< o(U'-U").
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If {x'} and {x"} are families of random variables having finite second moments
we let H,, and H,, be the closed (in mean square) linear manifolds generated by
{x'} and {x"}, respectively. Let U, and U, be the s-algebras generated by {x'}
and {x"}.

Furthermore let every finite set of random variables comprised of members
of {x'} and {x"} collectively have joint GQM distributions such that the com-
ponent correlation coefficients are of the same sign. Then we have the following.

THEOREM 4. There exists a constant C, 1 < C < oo, such that
(20) IO(Uz” Uz”) é C'p(Hz” Ha:”) .
In order to prove this theorem the following result is needed.

LemMMA 4. If the random variables x, and x, have a bivariate Gaussian quasi-
mixture distribution with density fG, parameters a,, a,, 6, 6, > 0, correlation coef-
ficient g, and component correlation coefficients p, and p, of the same sign, then there
exists a constant C, 0 < C < oo, such that

21 sup, i |E7,9(x)h(%)| < C-|p|

where the supremum is taken over all functions g and h for which
(22) E?G g(xl) = E?G h(x2) =0 N

(23) E;G gz(xl) = E7G hz(x2) =1.

Proor. We assume without loss of generality that Ex, = Ex, = 0. Then f,
is given by

Jo(xs %)) = a’fe (%1, %) + @fe, (X1 %) + @] fo (X1)f5,(%:) + fa,(%2)f6,(%1)]

where

x2+x2~29-xx} j
) = 0¥ - €X - 2 121 ’ t= 1’ 2
Jo (3 %) 210 (1 — pb)? p{ 20(1 — p%)
| { x?} ..
X) = ————exp{—_i.t, hi=12.
fGi( ]) (27[)}01 p 20',;2 ]

The f; (x,, x,) have the following expansions in terms of Hermite polynominals
(see, for example, Rozanov, page 182):

1 _x12+x22}. = Pi”H(i&)H(ﬁ) i=1,2
foito ) = osexp { =T P mn B () (). i=t,

? % 1 1

np— 42l
Hx) =, (—1yei L
x’IL
Since

E;,ng(x) = alEngz(x) + azEszgz(x) =1
E5 W(x) = alEfGIh2(x) + azEf%hz(x) =1



MIXTURE, QUASI-MIXTURE, NEARLY NORMAL PROCESSES 959

it follows that g(-) and A(.), being square integrable with respect to e~#*, have
~ the following alternate expansions (in the mean square sense):

(X vpr (¥
9(x) = X OM; 9(x) = 2% OL'(")
Ve V.
g g (X
h(x) = Z:ilol,((’l); h(x) = ?=0&L'<‘72>
V. . V.
where
at = or ;’«'o § g(x)H(:)exp[ x*20,%] dx
ﬁj:(h;*ai © ()H(:)exp[ x[20 2] dx i=1,2.
Now

E; 9(x)h(x) = §2, §=. {alzg(xl)h(x2)fG1(x1’ %,) + a’g(x)h(%,)f 5, (%5 X%,)
+ a,a,9(x)h(%,)[ fo (%) f6,(%:) + Se,(%)fe,(x1)]} dx,dx, .
Let
E; 9(x)h(x) =L + I + I, + 1, where I, 1, I,

and J, represent the four integrals comprising Ez_ g(x,)h(x;,).
Using the expansions of g(x,) and h(x,) with respect to f;; (x;), i = 1, 2 respec-
tively, we have

I = 2. §20 a’9(X)h(%,)f 5 (%1, X,) dx,dx,

) g H)

p— 2 (oo
L =a®§2. §2. X5 o—]— 2o i

X 1 exp{ xl_tfl} Z‘,”opl H,( )H,<ﬁ>dxldx2
g,

2
271'0‘ 20'1 g,

— oo 1
I, =a’ top—lalﬁl

Similarly, using the expansions of g(x,) and h(x,) with respect to f, (x;), we
obtain

pzl 20 2
I, =a’ 31 o a8’

Using mixed expansions for g(x,) and A(x,) we have

I, = a,a, § 20§20 9(0)A(%)f (%) f 6,(%;) dx,dX,
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wi(%)  wG)

13:a1a2 S°_° s—°° ZJ 0—_— Zk O_I-C—

J!
1 x?  x?
X exp{—(=2 i)} dx,d.
2r0,0, P{ (af" + a2 1%

— 102
13 - a1a2a0 :80

and similarly I, = a,a,a,'8,' so that

E;,9(x)h(x,) = a;® 257 o'ol allﬁl +a’ 2L 0&6"1218 + a,afa)' B’ + aBy']

B, 0(e)h0s) = S| a0 alpl + a2l iy |
+ [alaol + a2a02].[a1‘80 + a,8,] -
But

[alal)l + a2a02]~[al‘801 + azﬁoz] = Efag(x)'EZ;h(x)
=0

SO

E7Gg(x1)h(x2) =a’ ), ﬁl—a JB A+ al Y 1 a’}?

/3 |

B3, g(x)h(%)| < alol zw‘ B+ aloy zw'

B

+ ol e 1T [ BET

The normalization to unity variance leads to

E3,0%(%) = e, E;, 0(%) + @ Ep, 9%(%)

o alek(z%) 3} alek<0il> 1

=a §Z. 25 7! T ek=0 k! . (27[))"‘71
2 2H<dz> ) aﬁﬂ(%) 1

+ @ §2, 25 7! k=0 k! ‘(277-')%0'2

o e o a2
=a Zk:olﬁ;—l + a, Zk=o-|7€%|—
=1

and in the same manner
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2|2

o BT 1 i BT

Thus
il2
Zk”w%l— < l/a;

s BT g, i=1,2
k=0 k! = 2 ’ .

With m =, max {l/a,, 1/a,}
|E7, 9(x)h(x%;)| < m-{a|o,] + allo,} -
Now

Xy Xy
alal + a,0;°

—Gx

a, Efgl XX + a, Eng X, %

a0 + a,0;’

2
a’e,0 + a;’p,0,° .
a0 + a0y

Rearranging and noting that p, and p, have the same sign we have

|:a1 o :l [0 + a.]-|p| = ‘112IP1|01 + o + azlpzlol :02

g, 1

= a IP1I + a, Ipzl .
With
C=,m- ["1 ﬁ].[alz + o]
g2  of
we get
|E7,9(x)h(x)| = C-|p|
and the result follows.

ProoF oF THEOREM 4. The proof follows very closely the proof of Theorem
10.1 of Rozanov [9]. His proof utilizes Lemmas 10.1, 10.2 and 10.3 of [9]. Our
Lemma 4 replaces his Lemma 10.2 with obvious modifications in the resulting
proof.

Now let H! _ and H;> be the closed linear manifolds generated by x(u) for
u < tand ¢ >t + r, respectively.

THEOREM 5. If %, is a stationary nondegenerate Gaussian quasi-mixture process
having component correlation functions of the same sign in some neighborhood of
oo, and if

(24) 1 r—*°° p(H—OO’ Ht+r) - 0

then %, satisfies the strong mixing condition.
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Proor. The proof is an immediate consequence of Lemma 3 and Theorem 4
with
U, =U=U,,, H, = H',
U, =U'=Utz, H, =H
a(t, — t;) = a(r) = (UL, Us) -
Let ¢(2) be the spectrum of the GQMP, %,. From (12) and (13) we have
(25) P(2) = a’py(4) + a’py(2)
where ¢,(+) and ¢,(+) are the spectrum corresponding to R(+) and Ry(-), respec-
tively. Sufficient conditions for (24) to hold have been given by Rozanov. In

terms of the spectrum, ¢(2), they are as follows [9]:
If ¢(2) is uniformly continuous on the entire real line, does not vanish, and

satisfies the inequality
m

(26) F =9 =

Xk -1
for sufficiently large 4, for some positive m and M and integer &, then
lim__, p(H'., Hf3) =0.

Conditions (26) are satisfied, for instance, when the spectrum is rational; the
corresponding correlation function, R(-), then consists of a sum of exponentials.
Conversely, if the component spectra, ¢,(2) and ¢,(4), are rational, then $(2)
satisfies conditions (26) and the process is strong mixing.

8. Linear transformations of a GMP. Suppose that the random variables X,
..., X, have a nondegenerate Gaussian mixture distribution, Fy(xyy ooy x,) =
a, @,(x,, - -+, %,) + @ Dy(x,, - -+, x,) with R, and R, the correlation matrices of
@, and ®,, respectively. Now consider the linear transformation § = 4%. Itis
clear that the random variables y,, - - -, §, also have a nondegenerate Gaussian
mixture distribution F *(y,, -+, ¥u) = & C* (Vi -+ o5 V) + & P* (P15 -+ 5 Va)s
where R;* = AR;A’, i = 1,2. However, the property of nonsingularity is not
in general preserved under linear transformations.

Integrals of a GMP. If %, is a stationary Gaussian mixture process with a
finite variance and if the weighting function g(¢) is absolutely integrable (in the
Lebesgue sense) on the finite interval [a, b], then §} q(#)%(?) dt exists for almost
all sample functions and E[§? q(£)%(¢) dr] = §! q(t)E[x(#)] dt. (Apply Theorem2.7
of Doob [4], noting that E[x(f)] is absolutely integrable on [a, b]).

THEOREM 6. If %, is a stationary zero mean, finite variance, Gaussian mixture
process having continuous component correlation functions R;(+) such that $2ER,(t —
7)q(t)a(z) dt de exists, and if q(t) is absolutely integrable on the finite interval [a, b],
then

(27) Y = V2 q()x(2) dt
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has a Gaussian mixture distribution with component variances
(28) o= 2§t R,(t — 7)q(t)q(z) dtdr, i=1,2.

Proor. The proof follows that of Davenport and Root [3] for a Gaussian
process, noting that R(c) = a, R,(r) + a,R,(7) and that the characteristic function
of a Gaussian mixture process is a mixture of the component Gaussian charac-
teristic functions.

Karhunen-Loeve Expansion fora GMP. Theorem 6 is useful in connection with
the Karhunen-Lo¢ve (K-L) expansion of GMP, %(¢). Suppose

(29) X(t) = 27 x:4:()

is the K-L expansion of a zero mean GMP having a continuous correlation func-
tion R(r) = a,R,(v) + a,Ry(r). It follows from Theorem 6 and its extension to

vector valued ¢(f) and y that the coefficients x;, i = 1, 2, ..., N, have a multi-
variate Gaussian mixture distribution whose density, assuming it exists, is
(30) f(xl’ Tt xN) = a1¢R1(x1’ Tt xn) + d2¢R2(x1, Tt xzv) .

R, and R, are N X N correlation matrices with elements

(31) R = L R(t — )P (O)di(r)dtdr, jk=1,...,N; i=1,2.
For various purposes (e.g. forming the likelihood ratio for the hypothesis test-

ing problem H(6 = 0) against K(0 > 0) with X(f) = 0s(¢) + A(t), s(tf) known and

A(f) a GQMP), it is desirable to have a diagonal form for R, and R, for all N.

This will be the case if the discrete parameter process {x,, x,, - - -} consisting of

the K-L coefficients is completely nonsingular. There do not appear to be general

conditions on X(¢) such that {x,, x,, - - .} is completely nonsingular. For example,
complete nonsingularity of X(¢#) does not imply complete nonsingularity of {x,

Xy - }

The following simple condition does imply complete singularity of {x,, x,, - - -}:
(32) Ry(z) = K-Ry(7), k>0.
For then

Ex,x; = {2 8 R(t — O)pu(0)9,(c) dit de
= (a, + Ka,) §i §i Ri(t — 0)$,()$,(c) dt dr
= (@, + Ka,)R/*
=0, i#]
which implies that R/ = R,*Y = 0, i + j, since the K-L coefficients are uncor-
related. In this case the density f(x,, - - -, x,) is of the form:

7 2 2
(3 feneox) = aaep| - 50 2] ae e[ -z 2 L],
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9. Generation of Gaussian mixture and quasi-mixture processes.

GMP. Let (Q, 8, P) be a probability space, let {W )=, be i.i.d. random vari-
ables on (Q, 8, P) having a unit normal density function, and let 4 be a random
variable on (Q, 8, P)such that: (i) 4 is independent of {W,}=,, and (ii) P(A=a,) =a,,
P(A=a)=a,0< |a],|a,) <1, a + a,=1. Now consider the “conditional”
moving average

A

(34) X, = Zno AW, —o Lt <L 0.

We use the term conditional here to indicate that, conditioned on 4, X, is a
moving average in the usual sense, i.e.

X}t = D=0 al'th—,u
= e, 'W, ,  with probability a,.

with probability a, ;

It is easy to see that conditioned on 4 = a,(4 = a,), X, is a stationary Gaussian
process with correlation function R,(f) = a'/(1 — a,*) (R,(f) = a,}/(1 — a,?));
hence X, is a zero mean stationary GMP with R(f) = a,a,%/(1 — a?) +
a,a,t[(1 — a,?). A first order auto-regressive form is also possible, i.e.

(35) X}t+1 = A‘X}t + Wi —oo < t < o0
with 4 and {W,}>,, as given above generates the same GMP as does (34).
GQMP. Let (Q, 8, P) be a probability space with {W,}>_ and {V,}*,, two mu-

tually independent sequences of i.i.d. unit normal random variables. We define
the discrete time process X, by:

(36)  X!= Y=, arV,

t—p

X = Yaoat W, 0Z]ay, lay| < 1, D@L oo, j=1,2.

(36') P(X’t:Xti)zai, i=1,2, a+a,=1 —co<<t<
(36”) P(X, = X3, -+, X, = Xi) = [[}-, PR, = Xi9)
for all time sets {t,, - - -, t,} for all #n. Using the above definition it is easy to

verify that X, is a zero mean GQMP with R,(f) = a!/(1 — a?) and Ry(f) =
a'/(1 — a;’). We can of course use first order autoregressive schemes for X,!
and X%

Since the above methods utilize moving average forms we may generate both
GMP and GQMP processes for any given R,(+) and R,(+) such that the cor-
responding spectral distribution functions are absolutely continuous.

The GMP appears to be rather uninteresting from a structural viewpoint since
the realization scheme (34) indicates that its sample functions look like those
of a Gaussian process with a correlation function of either R,(+) or Ry(+). On
the other hand such a process may be useful for describing or approximating
processes arising in certain physical systems. For example, the model (35) occurs
in certain control problems where 4 is usually nonrandom, say P(4 = a,) = 1.
It may happen, however, that the “transition parameter” 4 is more appropriately
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described as originally given above. This would be the case for instance when
a system overloads or the transition parameter «, is incorrectly set at a, with
small probability a,, the overload or missed setting being constant for the dura-
tion of the process which is of interest.

The realization scheme for the GQMP reveals that it is obtained by a proba-
bilistic selection of one of two independent Gaussian processes at each instant
of time. In the discrete time case this poses no real difficulty and such processes
may arise in practice. In the continuous time case the GQMP is not a mean
square continuous process. This follows from (12) and (13) which show that
R(z) is discontinuous at r = 0 in the nondegenerate case a, > 0. That this should
be the case is also suggested by the realization scheme (36), (36") and (36”) for
a discrete time process. In continuous time what is essentially required is a
selection rule, i.e., a rule analogous to (36’), for X;' and X,” based on the values
of a continuous time white noise process. Thus it does not appear to be possible
to realize a continuous time GQMP exactly. However, there is no difficulty in
obtaining quite reasonable approximations to a GQMP by basing the selection
rule on a “nearly white” continuous time process.

To be specific consider the following means of generating an approximating
process:

Let

(37) X (t) = §L. ay(t — 1) dV(7)
X(f) = (L., a,(t — 7)dW(7)
where a,(+) and a,(+) are square integrable, and V(¢) and W(¢) are independent
stationary Gaussian white noise processes such that
Var Xi(t) = {7 a’(¢) dt, i=1,2.
Now define X(¢) by
(38) X*(1) = X'(2) if A@r)=1
= X*(¢) if A(f)=0
where A(f), —oo < t < oo, is a binary process derived from a Poisson process
with parameter 1 as follows: at each increment time ¢; of the Poisson process the
process A(t) changes state according to the rule P(A(t;) = 1) = @, and P(A(t;) =
0) = a,, @, + a, = 1, independent of A(¢), t < t;. The resulting first and second
order distribution functions are of the form:

(39) F*(x) = a,Qy(x) + a,Dy(x)
F*(x, X,4,) = afe ¥ 4+ (1 — e 1¥)a D, (x,, Xiru)
(40) + afe 1 4 (1 — e 1)a, [ Dy(x,, X,

+ a,a,(1 — e M) D, (x,)Dy(x,,,) + q)l(xt+,u)q)2(xt)]
so that

(41) Var X,* = a,R,(0) + a,R,(0)
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(42) R*(p) = afe ! + (1 — e"1*)a R (p)
+ afe 1 4 (1 — e~ *H)a, | Ry(p) -

Thus the process X*(¢) is mean square continuous. Furthermore, F*(x,, x,,,) =
F(x,, x,,,) for large 2|y, so that X*(¢) looks very much like a GQMP X(¢) as far
as the first and second order distributions are concerned. In fact for any set
t,, -+, t, for which min,,; |t; — t;| is sufficiently large the corresponding nth
order distribution function for X*(f) will be very close to that of a GQMP. In
practice one would probably choose 4 small compared with the correlation times
for R,(-) and Ry(+). It is conjectured that strong mixing for X(¢) implies strong
mixing for X*(z).

10. Concluding comments. The motivation of this investigation has been the
desire to extend robustness studies, in the spirit of Huber [5] and Tukey [11],
to the case of a process with dependence. We have defined two “nearly” normal
processes which can be used in studies of robustness [7]. The first process, the
Gaussian mixture process, is the continuous analog of a simple mixture for two
random variables. We have shown that the class of Gaussian mixture processes
is invariant under linear transformations, but the process never satisfies a strong
mixing condition. This deficiency led to the definition of the Gaussian quasi-
mixture process which, under certain conditions, does satisfy the strong mixing
condition. The class of Gaussian quasi-mixture processes is not, however, in-
variant under linear transformations. From the discussion of Section 9 it is
clear that it is rather straightforward to simulate a discrete time GMP or a
GQMP on the computer for Monte Carlo studies.

Although a continuous time GQMP is not mean square continuous, mean
square continuous approximations to a GQMP are easily obtained and are ex-
pected to be of utility in robustness studies. As in the discrete time case, simula-
tion for the purposes of Monte Carlo studies is possible.

In robustness studies one might well consider, in addition to the GMP and
GQMP, the spherically invariant processes as models of nonnormal processes
[1], [13]. Since the spherically invariant process is ergodic only in the Gaussian
case it is natural to compare its attributes with those of the GMP. Both GMP’s
and spherically invariant processes are invariant under linear transformations.
In addition, both processes may be used to model heavy tailed deviations from
Gaussian-ness. However, the GMP appears to be much more attractive in terms
of the computational advantages resulting from the simplicity of the mixture
form.

Whether or not one is willing to tolerate the non-ergodicity mentioned above
will depend to a great extent upon the physical situation for which the robustness
study is intended. Statistical dependency which exists over arbitrarily long time
or space intervals is known to occur in some physical situations [12]. If however
one insists on using a non-Gaussian model which is ergodic, then the GQMP
may be an appropriate process having a simple structure for low order c.d.f.’s.
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