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ASYMPTOTIC THEORY FOR SUCCESSIVE SAMPLING WITH
VARYING PROBABILITIES WITHOUT REPLACEMENT, I1

By BENGT ROSEN
Royal Institute of Technology, Stockholm

This paper is a direct continuation of the corresponding paper [7], in
which our main results were formulated in Section 3. Some of these results
were proved and we prepared ourselves for the proof of the asymptotic
normality of the sample sum. Our main concern in this part is to carry
through the remaining proofs.

9. A Hilbert space. In this section we shall introduge some notation and con-
cepts concerning a Hilbert space, whose relevance will become clear in the next
section.

H will denote the real separable Hilbert space which somewhat loosely can
be described as the twofold product Hilbert space of /, with itself. Elements
in H will be denoted as doubly infinite sequences in the following way (* denotes
transposition), :

.1 U= (X3, Xp =+ [ Yoo Yis Yoo+ 0)*
where x,, x,, - -+, ¥y, 1, Ja» - - - are real numbers which satisfy
(9.2) DXt Doyt < oo

The “unsymmetric” way of indexing in (9.1), i.e. to index the first sequence (the
x’s)by 1, 2, - - - and the second sequence (the y’s) by 0, 1, 2, - - . will turn out to
be convenient later on.

Addition and scalar multiplication in H are defined as componentwise opera-
tions in the natural way. The inner product (., . is defined as follows. Let
u € H be according to (9.1) and let

(9.3) uw = (x5, oy sy )R
Then,
(9.4) u, 'y = Zvi % + Doy -

The corresponding norm will be denoted by || ||.
In the sequel f, and g, will be the following elements in H.

9.5) f,=©,0,...,0,1,0,---/0,0, ---)* where the 1 isin compo-
nent v in the first sequence, v =1,2,....

9.6) 9,=0,0,---10,0,---,0,1,0, ---)* where the 1 is in compo-

nent g in the second sequence, ¢ =20,1,2, ...
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It is easily seen that the set f}, f;, - - -, g¢» 01, 05 - - - is an ON-basis in H. This
ON-basis will be called the natural ON-basis

Next we settle some notation concerning bounded linear operators 4 on H.
The adjoint of 4 will be denoted by 4*. When we talk of matrix representations
of operators we always mean the matrix representation relative to the natural
ON-basis. By the matrix representation of the operator 4 we thus mean the
following “doubly infinite”” matrix.

[ ak a?) i}
v, p=1,2,... | v=1,2,...
=0,1,2,---
9.7) A~ #
aj, a
v=0,1,2,--+ |v,p=0,1,2, ...
_#21,2,~-- i
where

9-8) aly =<Af, £y, aL =LA49, 1), &l ={Af» 0.,
al, = <A49,,9.) - ,
The four parts of the matrix (9.7) will be called its blocks. We have the following

formulas. Let u and «’ be the elements in (9.1) and (9.3) and suppose they are
related according to &' = Au. Then

9-9) X = DX + L aly; s h=1,2,....
(9.10) »W=Xxooadix + Niealy;s [=0,1,2,.-..
Furthermore, the matrix representation of a product of operators is obtained

by multiplying the corresponding matrices according to the natural rules.

10. Main steps in the proof of Theorems 3.2 and 3.3. In this section we shall
present the broad lines in the proof of Theorems 3.2 and 3.3. In order not to
conceal the fundamental ideas by too many details some of the basic lemmas
are only stated while their proofs are postponed. First some notation, assump-
tions and preliminary results.

To the sampling situation (p = (p,, - - -, py)» * = (4, - - -, ay)) We associate the
mass distribution in R* (the (x, y)-plane) whose distribution function is

(10.1) H(x,y;p,n-):%~ﬂ(s:Np8§x,as§y), —oco <X, p< 0.

The corresponding marginal mass distribution along the x-axis only depends
on p. Its distribution function will be denoted by

(10.2) H(x;p):iN-#(s:Npsgx), —o0 < x < oo .

We shall be concerned with the following conditions on the sequence (p,, 7,),
k=1,2,...
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(10.3) 0 < /< min Nyp,, < max, N,p,, < L < o0, k=1,2,...
(10.4) max |a,| <M < oo,
(10.5) H(x, y; p,, 7,) = H(x, y) as k—oo.

Note that condition (10.3) is equivalent with (3.22). When (10.5) holds, the
corresponding marginal masses also converge, i.e.

(10.6) H(x; p,) = H(x) as k—oo.

It is readily verified that H(x, y; p,, =,) all have total mass 1 and that these
masses all lie on the rectangle0 < / < x < L < o0, —M < y < M. Thus the
limit mass H(x, y) in (10.5) also has total mass 1 which lies on the rectangle
above. Hence the marginal masses H(x; p,) and H(x) also have total mass 1 and
these masses lie on the interval 0 < I/ < x < L < co.

DEerFINITION 10.1. When (10.3) and (10.6) are fulfilled we define the function
p(a), 0 < a < 1, implicitly by the following relation

(10.7) l —a = \Fer**dH(x), 0axl
where H(x) is the limit mass in (10.6).

The above definition is always meaningful since, as H(x) has total mass 1 and
no point mass in x = 0, the integral

{¢ e r*dH(x) , oez=0
decreases strictly from 1 to 0 as p increases from 0 to .
The following properties of p(a) are easily verified.
LeMMA 10.1. The function p(a) in Definition 10.1 satisfies.

(i) p(a) is strictly increasing for 0 < a < 1 and p(a) — oo as a — 1.
(ii) p(«) is continuous for 0 < a < 1.
(iii) p(0) = 0.
LemMa 10.2. Let
(10.8) (@) = t,(aN,)/N, , 0saxkl, k=1,2,...

where t,(y), 0 £ y < N,, is according to Definition 3.1. Then, if (10.3) and (10.6)
hold, we have

(10.9) (@) — p(a) as k—oo, 0Za<l.

The convergence in (10.9) is uniform in a on every interval 0 < a < a, < 1.
PROOF. As is easily seen, formula (3.2) can be written in the following way.

(10.10) l — a=\yer“dH(x;p,), 0sa<l, k=1,2,.--.

The assertion in the lemma now follows readily from (10.10), (10.6) and (10.7).
We omit the details.
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DerFINITION 10.2. When (10.3)—(10.5) are fulfilled, the functions «;;(a), 0 <
a<1,i,j=0,1,2, ... are defined by

(10.11) k(@) = §§ g2 X'yie P dH(x, y) , 0sa<l

where H(x, y) is the limit mass in (10.5) and p(a) is according to the previous
definition.

As the entire mass H(x, y) lies on a bounded rectangle, we have no convergence
problems for the integral (10.11).
We list some easily verified properties of «,;(a).

LemMA 10.3. The functions k() in (10.11) satisfy,

(i) x;;(a) is continuouson 0 < a < 1,i,j=0,1,2, -% -,
(ii) #;(a) >0asa—1,i,j=0,1,2, ... .

LemMMA 10.4. Let ¢\ (x, ), k = 1,2, - .. be a sequence of functions such that
(10.12) du(x, y) — ¢(x, ) as k— oo, (x,y)eR?,
where ¢(x, y) is continuous on R, and assume that the convergence in (10.12) is uni-
form on every bounded region in R*. Then, if (10.3)—(10.5) hold, we have
(10.13)  §§.0 (%, y) dH(%, y; Pis mi) = §§ 2 G(x, y) dH(x, ) as k— oo

Proor. The lemma follows from well-known results about relations between
weak convergence of measures and convergence of integrals.

Lemma 10.5. Let (p,, w,), k = 1,2, - - - satisfy (3.21) and (10.3)—(10.5) and
let v,'%)(i, ) be defined by (8.10). Let furthermore

(10.14) n/N,— a, 0<axl.
Then, we have fori,j=10,1,2, ...
(10.15) R (i, ) = £iy(a) 0<sacxll

where k() is defined in (10.11).
Proor. Formula (8.11) can be written
(10.16)  v(i j) = §§ 5% exp (= pu (% )x) dHx, yi Buo ) + s £ )IN
R2? k
k=1,2,....
When (3.21), (10.3) and (10.4) are fulfilled, we get from (8.12) and Theorem 3.1
(10.17) lim sup, ., [ru(m, 1, j)| < LM/ lim sup,_, ry(n,) = 0 .
(10.15) now follows from (10.16), (10.17) and Lemmas 10.1, 10.2 and 10.4.

We now enter the core of the proof of Theorems 3.2 and 3.3. Let as usual
(p, =) be a sampling situation and let Y,(i, j) be as in (8.2). Furthermore, let y
be a positive number which is greater than Lin (2.18). Then, asis easily realized,
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the following X’s are random elements which take their values in the Hilbert
space H, which was introduced in the previous section.

1

(10‘18) Xu = ——'< Yv(l’ O)C'—L ’ Yv(zf 0)6' ‘1_ st Yy(o’ 1)0, Yv(l’ l)c' L >
Nt r r r

Yy(2,1)c._1;,...)*, v=1,2,...,N.
r

By (10.18) we get the following double sequence of random elements associated
with our sequence (p,, 7,), k = 1, 2, - - -, of sampling situations

Xil), X;l)i e, Xﬁ\};
(10.19) XP, X, -, X5

k k k
Xi )’X;)’ ’X(N,)c

We shall assume that (10.3) is fulfilled, and we assume henceforth that y is
chosen (independently of k) larger than L in (10.3). We are now in the frame-
work of the author’s paper [4] and the basic tool in the subsequent analysis will
be Theorem B in [4]. We adopt a great deal of terminology and notation from
[4] without explanation. Unfortunately common notation in sampling theory
has led us into notational disagreement with [4] in the following respect. The
letter n, in [4] here corresponds to N, while n, in this paper has nothing to do
with n, in [4].
As in [4] we put

(10.20) S0 = Ylmiyw  0<a<l, k=12, ...

Our interest in the stochastic process S,*’, 0 < a < 1, depends on the fact that
our original random variable Z, (see (3.1)) is “embedded” in the S, -process in
the following way

(10.21) (@ = EZP) = (SEy 009

where g, is defined in (9.6). Formula (10.21) is realized from (10.18), (8.2),
(8.3) and (8.5).

As stated before we shall apply Theorem B in [4]. However we will not be
able to verify condition (C1)in this theorem, but only a slightly weaker condition,
which we shall call (C1)’. This condition runs as follows.

(10.22) (C1) Condition (C1) in [4] is modified to the effect that y(s) need
only be defined for 0 < s < 1 and the inequality in [4] need
only hold for 0 < a, 8 < 9, < 1, but for every d, € [0, 1).

A scrutiny of the arguments in [4] shows that if the assumption (C1) is changed
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to (C1)" in Theorem B in [4], then the conclusion still holds if a;, a,, - - -, a,, a
and § are confined to the half-open interval [0, 1).

LEMMA 10.6. We assume that the sequence (p,,x,), k = 1,2, - - -, satisfies (3.21),
(10.3)—(10.5). Then, the corresponding sequence {S,', 0 < a < 1}, k= 1,2, ...
satisfies

(@) condition (CO) in [4];

(b) condition (C1)’ (see (10.22)),

(c) condition (C2d) in[4),d=1,2, ..., for the operator function M(a), 0 <
a < 1, whose matrix representation is

u(@) J@)| O )
v@) 0 |0 J(a)

(10.23a) M(a) = (

where, with k() according to (10.11),

(10.23b) u*(a) = <’520(a’) .1 Kyo(@) i Eq(Q) ) 12 , .- ) ,

£rg()? ’ Fo(@)® 7 ’ Bg(@) 7
(10.23c) v*(a) = (rcn(a) o7, Fn(@) | 1, fg(a) 1 , .- > ,
k(@) £10(@)? to(@)* 7
(10.23d) J(a) is the diagonal matrix with all diagonal entries equal to
—7/Eg(@);

(d) condition (C3d) in [4], d = 1,2, - -, for the operator function D(a), 0 <
a < 1, whose matrix representation is

(10.24) D(ax)

faf};}(a) _ T—(w+y)<’cv+y+l,0(a) a(a) = r—(v+#)<lcv+/l+l,l(a) )
K1o( ) K1)
_ ’:v+1,0(a)"cp+1,o(a)> _ ’Cy+1,o(a’)"‘p+1,1(a)>
£o(a)? (@)’
v, u=1,2,.... v=1,2,...
~ H = 0, 1, 2, ;
U,(,S;Z(a) = ”;:Z»)(a') oW(a) = r—(»+#)<’5u+p+1,2(0‘)
v=20,1,2,... . Ko@)
p=12 ..., . Ev+l,l(a)"c;t+l,l(a)>
K@)’
L v,y =0,1,2,.... B

(e) condition £C4) in [4].

The proof of this lemma is given in the next section.

It is easily verified that the operator functions M(«) and D(a) are weakly con-
tinuous. Thus, Lemma 10.6 yields that Theorem B in [4] is applicable with the
slight modification that was mentioned before Lemma 10.6. According to this
theorem we have for (a,, a,, - - -, @) € [0, 1)¢,
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(10.25) S Sy ey S

= NQO, [Ma,, a,);v,p=1,2,---,d]) as k— oo,
where the symmetric operator function A(a, B), (a, ) € [0, 1)* is uniquely de-
termined by the following conditions. (Here we make a notational change in
comparison with [4] to the effect that we let @ and 8 change places. The reason
for this change is that we find the ordering @ < 8 in some sense more natural
than 8 < «.)

(10.26) (i) A(a, B) is weakly continuous in (a, 8) for (a, B)€]0, 1)%

(10.27)  (ii) ‘%A(a, a) = M(a)A(a, &) + Aa, a)M(a)* + D(a),

0<saxl.
(10.28) (i) A(0,0) = 0.
(10.29)  (iv) di;A(a, B) = M(B)A(, B) , O<a<f<l.
(10.30)  (v) A(B, a) = Aa, B)*, (a, B)ef0, 1).
The matrix representation of A(a, 8) will be denoted
[, B) A3(as B ]
v,p=12,-.-|v=12,...
p=0,1,2,....
(10.31) Aa, B) ~
A5u(a, B) Asu(a, B)
v=0,1,2, ...y, p=0,1,2, ...
lp=1,2,... i

LemMA 10.7. When M(a) and D(a) are according to (10.23) and (10.24), the
unique solution A(a, B) of (10.26)—(10.30) is determined by (10.31) and the fol-
lowing formulas (10.32)—(10.35), which hold for 0 < a < g < 1.

(10.32) Aia, p) = y=+m gg( rr1o(®) x,:><m+l,o(/3) _ xp>

R\ Ky (@) £1(B)
X (1 — e~r@=)er®= dH(x, y),

(10.33)  agya §) = oo §§ (Sl p(BousolP) )

R2 £y(Q) £10(B)
X (1 — e p(a)z)e p(Bz dH(x, y) ,
(10.34) (e, B) = Ai(a, B) ,
W — (vt 21, (@) " £,+11(8) R
0039 dsten ) = 7o g (g =y (S0 - o)

X (1 — e~e@=)e=e®= dH(x, y) .

Again we postpone the proof, and it is given in Section 12. The following
theorem sums up our reasoning so far.
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THEOREM 10.1. If (p,, m,), k = 1,2, - - -, satisfies (3.21) and (10.3)—(10.5),
then for everyd,d = 1,2, ..., and every (a;, a,, - - -, a;) € [0, 1]* we have
(10.36) LASE, SEy e S

= N, [Ma,,a,);v,p=1,2,...,d]) as k— oo
where the operator function A(a, B), (a, B) € [0, 1]* is given by the previous lemma.

REMARK. Earlier we said that we had to confine the a’s to the half-open in-
terval [0, 1), while the above theorem is formulated for [0, 1]. We shall justify

this extension. By letting 8 — 1 in (10.32)—(10.35) we get that A(a, ) — 0 as
B — 1. By definition we put

(10.37) Aa, 1) =0, 0saxl.
From the fact that the sample sum attains a constant value when the sample size
equals the population size, we get
(10.38) S® =0, k=1,2,....
From (10.37) and (10.38) it is seen that the extension to [0, 1] is correct.

The next theorem is only a special case of Theorem 10.1.

THEOREM 10.2. If (p,, =), k = 1,2, - - -, satisfies (3.21) and (10.3)—(10.5),
then for everyd,d = 1,2, -- -, and every (ay, a, - - -, a,;) € [0, 1]%, we have

1 1 1
(10.40) g(m (ZEy, s x (ZE)s s E ZE.’;)N,,Y)
= N, [B(a,, a,);v, p = 1,2, .-+, d]) as k— oo,
where
10.41 B(a, §) = </cu(a) U\ Ea(B) (1 — em#t@=)e=r®= dH(x, y) ,
( ) §fzs (@) y>< £1(B) y>

0<a=sp=l1

= B(B, a), 0=pg<acxsl.

Proor. Follows from Theorem 10.1 and (10.21). The covariance function

B(a, B) in (10.41) is obtained as B(a, B) = A{§(a, B), where 2(a, B) is given in

(10.35).

We have now taken the essential steps in the proofs of Theorems 3.2 and

3.3. Only fairly standard arguments remain to deduce these theorems from
Theorem 10.2.

Lemma 10.8. Let Ay(n,?, n,®, - - -, n,'¥) be according to (3.33). If (p,, 7,), k =
1,2, ..., satisfies (3.21) and (10.3)—(10.5) and if

(10.42) n"IN, — a, as k—oo, u=12,...,d,
then
(10.43) (1/N)A(m Y, 2, -, @) — [B(a,, a,); v, ot = ,2,...,d]

as k— oo,
where B(a, ) is according to (10.41).
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Proor. (3.13)—(3.15) can be written as follows

(10.44)  &(n) = §§ x exp <_ pk<]%>x> dH(%, y; Py 7,) » k=1,2, ...
R2? k
n

(10.45)  n(n) = §§ xpexp < - pk(]—v—>x> dH(X, y;pe 7)), k=1,2, ...
R2 k

(10.46) le au(m,m) = § (¥ - 2:22;) Y- 225:;)(1 —ep (0 "<1%)x)

X exp <— Pk<]§k>x> dH(x, y; Py, ) »

l<m<n<N, k=1,2,....

From (10.44)—(10.46) and Lemmas 10.2 and 10.4 we get that if m,/N, — « and
n/N,— B as k — oo, then

(10.47) Eu(m,) — £(B) s as k— oo
(10.48) () — £1(8) as k— oo
(10.49) (1/Ny)e(my, n,) — B(a, B) as k— oo .

The assertion in the lemma now follows from (10.49), and the lemma is thus
proved.

Lemma 10.9. Let ay, a,, - - -, a, be different numbers on the interval (0.1). Then
the matrix [B(e,, a,); v, p = 1,2, - -, d], where B(a, B) is according to (10.41), is
positive definite if and only if the following condition (10.50) is fulfilled.

(10.50) H(x, y) does not have its entire mass along a line y = y,.

The proof of this lemma is given in Section 13.
We shall be concerned with the following normalizing conditions on our popu-
lation sequence 7, k = 1,2, ... (cf. (2.21) and (2.22))

(10.51) fe, =0, k=1,2, ...
(10.52) ot =1, k=1,2, ...

LemMma 10.10. Let (p,, w,), k= 1,2, ... satisfy (10.3)—(10.5), (10.51) and
(10.52). Then the limit mass H(x, y) in (10.5) satisfies condition (10.50).

Proor. The assumptions (10.51) and (10.52) can be written

(10.53) §§ 52y dH(X, y; P 1) = O, k=1,2,-
(10.54) NkN—k - §§ Py ) = 1, k=1,2,...
By letting k — oo in (10.53) and (10.54) we get from Lemma 10.4

(10.55) $SreydH(x,y) =0 and §Yrey*dH(x,y) > 0.

From (10.55) we conclude that the H(x, y)-mass is not concentrated along a line
Y = ¥, Thus the lemma is proved.
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LemMA 10.11. Let(p,, 7,), k= 1,2, - - -, satisfy (3.21), (10.3)—(10.5), (10.51)
and (10.52). Let furthermore (10.42) be fulfilled with a,, a,, - - -, a, different num-
bers in (0.1). Then

(10.56) (a) (%(zg;gm)v, ];%(z;k,;(d))ﬁ is asymprotically N(O, Ay(n,®, - - -,
k k

m,'Y))-distributed as  k — co, where A (n,©, ..., n,'Y) isdefined
in (3.33).
(b) The assertion in (b) of Theorem 3.3 is true.

Proor. The claim (10.56) follows from Theorem 10.2, (10.43) and the fact
that [B(a,, a,); v, p = 1,2, - - -, d] is pesitive definite under the assumptions in
the lemma (see Lemmas 10.9 and 10.10). The assertion (b) follows from (10.56)
and the following formula (10.57), which is a conse&luence of (3.12), (3.10),
Theorem 3.1 and (10.3).

EZ,"® — m(n)| _ 0.

T Np=nStoNy, N 3
k

(10.57) lim,_,., max

Thereby the lemma is proved.

Thus we have proved (b) in Theorem 3.3 under the extra conditions (10.4),
(10.5), (10.51), (10.52) and (10.42). Our next aim is to show that these extra
conditions are superfluous for the validity of (b) in Theorem 3.3. Conditions
(10.5) and (10.42) can be removed by a compactness argument which is quite
analogous to that on page 217 in [5]. We only give a sketch. Under (10.3) and
(10.4) all the masses in the family 27 = {H(x, y; p,, n,), k = 1,2, - . .} lie on the
rectangle / < x < L, — M < y < M. This implies that 57 is sequentially com-
pact under weak convergence. Furthermore, under (3.29) and (3.30) it is always
possible to pick a subsequence for which (10.42) is fulfilled. By using these facts
it is straightforward to show that (10.5) and (10.42) are superfluous.

That (10.51), (10.52) and (10.4) can be removed if instead (3.23) is assumed,
is a consequence of the fact that Theorem 3.3 (b) is “invariant under linear trans-
formations of the population”. This is seen from the following formulas, whose
verification is left to the reader. When checking (10.59) remember (3.2). Let
T =(a,0a, - --,ay) and 7’ = (a/, a/, ---, a,’), where

(10.58) a' =zta, + 1, s=1,2,...,N.

Let * denote that a quantity relates to z’. Then, with x(+), o(+, ;) and Z as in
(3.11), (3.15) and (3.1), we have

(10.59) y'(n) = tu(n) + ni,
(10.60) g'(m, n) = t*e(m, n) ,
(10.61) Z) =1tZ,+ ni.

Thus, (b) in Theorem 3.3 is completely proved. To deduce (a) in Theorem 3.3
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and Theorem 3.2 from what is already proved we shall need the results in the
following two lemmas. These results are well known and therefore not proved.
In the sequel || || denotes Euclidean norm.

LEMMA 10.12. Let D, be the covariance matrix of the random vector U, k = 1,
2, ---. Suppose that U, is asymptotically N(0, A,)-distributed as k — oo. If for
some 0 > 0 we have

(10.62) lim sup, .., E||4,71U,||*** < oo,
then U, is also asymptotically N(0, D,)-distributed as k — co.

LemMA 10.13. Let U, be asymptotically N(0, A,)-distributed as k — co. Then
U, is also asymptotically N(0, B,)-distributed as k — o, if and only if

(10.63) B, At —1 as k— oo .

We are now prepared to finish the proof of Theorems 3.3 and 3.2. We start by
showing that (a) in Theorem 3.3 is true. We first prove it under the assumptions
(10.51), (10.52) and (10.4). Let the sequence (n,V,n,®, ---,n,¥), k=1,2, .-,
satisfy (3.29) and (3.30), and let 4, be the corresponding matrix according to
(3.33). Further let D, be the covariance matrix of (Z""m, cee, Z‘,,";(d)). We have

(10.64) E|| 4, (Zw)s - (Zha) ) = ||A IP w1 El(Zw) !

C n(d)
< cd- @y My C ()
VAR YN

according to Lemma 8.5.
From (10.43), Lemmas 10.9 and 10.10 and a simple compactness argument
we conclude that

(10.65) lim inf, ., ‘%&Lﬁ >0

k

Now, (10.64) and (10.65) yield that
(10.66) lim sup, .. E[| 4,7} ((Z5)w)"s -+, (Z3a))'||* < oo .

From Lemma 10.11 (a), Lemma 10.12 and (10.66) we conclude that (a) in
Theorem 3.3 is true under the assumptions (10.51), (10.52) and (10.4). That
these conditions can be replaced by (3.23) follows from the easily verified fact
that also (a) in Theorem 3.3. is “invariant under linear transformations of the
population.” We omit the details of this verification. Thus Theorem 3.3 is
completely proved.

Next we shall prove Theorem 3.2. From (a) and (b) in Theorem 3.3 and from
Lemma 10.13 we conclude that if

10.67 0 < liminf, ™ <limsup, . ™% < 1,
( ) <h N = Px Nk<

k
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then

(Z(k)
g k(nk’ ny
From this we can conclude that (3.26) holds for m = n by an indirect proof as
follows. Assume that (3.26) with m = n does not hold. Then we can pick a
subsequence {k'} for which (10.67) holds and such that

(10.68) lim,

(10.69) liminf,._, |r,**"(n,,, n,.)] > 0.
As (10.67) is fulfilled for n,, so is, according to what is proved, also (10.68).
But (10.68) and (10.69) then contradlct each other, yielding that (3.26) holds

for m = n.
Let m,and n,, k = 1,2, ..., be such that

10.70 0 < lim inf,_,, 7% < lim sup,_, 2% < 1
( ) < by = Px N, <
and
10.71 lim inf, . <ﬂ — %> 0.
(107 = \N, N7
From (a) and (b) in Theorem 3.3 and from Lemma 10.13 we then conclude that
(10.72) |: 2(2’:1” . Cov (Z)Z;r{c,ik’ zpy :| ,: o l(my) o (my, nk):|_1 ST,
Cov (VAL g (Z;,,)) o (my, m,) o,(m)

The off-diagonal element in the matrix product in (10.72) yields
Cov (Zi), ZE)aX(my) — o¥(Z)a(my, 1)

mk’
o (m)ol(ny) — o (my, m,)

which can be written
*) | ZE) — g p p 2(Z(k) _ o, (my, m)
(10.74) Cov (75, Z8) = ou(ms m) + ooy | (Tomsl — 1) it )
o o(my) o (my, m)’
+ )< o (m) ”k3(mk)”(nk) >jl .

From Lemma 13.1 and (10.46) it follows that the function ¢,(m, n) is nonnegative.
Thus,

(10.75) jou(m, )| < 0,(m)-0,(n) .

Moreover, by using the results in Lemmas 10.9 and 10.10 one can in a fairly
straightforward way deduce that if (3.21)—(3.23) are fulfilled, then

(10.73) = a(m,, n,)— 0,

(10.76) lim sup,_., Max, v, < nseyw,

for 0 < 7, < 7, < 1. By an argument similar to that which was used to derive
(3.26) for m = n from (10.67) and (10.68), we now can conclude from (10.70)—
(10.76) that the following relation holds,
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(10.77) lim sup, _,., MAX_ v, <cms vy <iyipsaseyyy [T (M M) = 0

for0< <A< <<,

Thereby we have almost proved Theorem 3.2. It now only remains to get rid
of the separating 4’s in (10.77). As a full proof will be lengthy but quite straight-
forward we omit it. We content ourselves with pointing out the following
“continuity” property of Cov (Z,, Z,), and we leave the details to the reader.

(10.78)  [COV(Zon Zsx) — 04(Zen)] < @[ — al*-N-M*Cp, max (a, §))

where M, p and C(-, +) are as in (2.23), (2.20) and (1.4). By using Lemmas 7.1
and 11.1 we obtain (10.78) as follows. Assume that aN < SN.

(10.79)  |COV (Zuys Zpy) — 0(Zon)]| ‘
= |EZ\y(Zsy — Ziy)| S (B(Zen))VE(Zsy — Ziy)')?
< (N-MClo, )M(BN — aN)M*-Clp, B) .

Now (10.78) follows from (10.79). This concludes the proof of Theorems 3.2
and 3.3.

11. Verification of the C-conditions. In this section we shall prove Lemma 10.6,
i.e. we shall show that the conditions (C0)—(C4) are satisfied.

Condition (CO) is trivially satisfied, as we are dealing with a sum process. We
prepare ourselves for the verification of (C1)" with the following lemma, which
is an extension of Lemma 7.1.

LemMA 11.1. With the same assumptions as in Lemma 7.1 we have for0 < n <
n+m<N,uz=0.

(11.1) ElZf:;n“ Dyclu < mu/z'M"'-Cu <,0, n —]i;/m) )

Proor. We have
(11.2) E|yutm, Df|* < C,EE+ T1tn, (D, — E“wD,)|
+ C.E| L0 (E7»D, — ED)[* .
Let
(11.3) n(#,) = {d,: s G(HZ,)}
where G(.,) is defined in (6.2). According to Lemmas 6.1 and 7.1 we have

— n

_ ot b€, (Y.

(11.4) B+ 5520, (D, — E7wD,)|* < m M(=(Z,))"- C.( 0, ")

The following estimate is easily derived from Lemma 8.6,

3 u
(11.5) E|E#+-D, — ED,|* < (LM> .C, <p, i) .
N N
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By Holder’s inequality and (11.5) we get for u > 1,

(11.6) E|xrtm, (E“»D, — ED,)|*
= m Fuita E|[EZ2D, — ED,|*
< me <MM)uCu<p, n+ m) < mu/ZCu<p’ n+ m) .
- N N /™ N

Thereby the lemma is proved for u > 1. The extension to u > 0 is straight-
forward.

Verification of (Cl)’. Let f, and g, be according to (9.5) and (9.6). From
Lemmas 8.1 and 11.1 weget for 0 <:f < a < 1

(11.7) lim sup, ., E¢S,® — S8, f,)?

1 .. 1 « !
= lim sup,H,o]V E<Zy=Npk1vk+1 Y, (h, 0))
k

7,42h
- 1 [al,]

< Llimsup, . _<(a — P)N,- L. C<p : ___L))
7’2h' k Nk k k Nk

< (@ - 9(%)"c@

for some function C(a) which is continuous on 0 < a < 1. In a quite similar
manner we get

(11.8) lim sup, ... E(S,® — S,, g5 < (a — ﬂ)<%>ZlMZC(a) .

Now condition (C1)’ is easily verified by using (11.7) and (11.8) and the fact
that L/y < 1.

Verification of (C2). We shall show that condition (C2d) is fulfilled for every
natural number d. By using Lemma 8.7 we get the following formula
(11.9)  E“Ys,,(i, ) = E“sE“wn-1Y, (i, j)
— _Ll:/vn&m—l(i + l’j)ch(l, 0)
NL (1, 0)
1 . . .
_ —  _Z. (i + 1,])} + O(n, m, i, j),
vn+m—1(1’ 0)
where
.. 1 [Vimei(+ 1, )) g
11.10 ,m, i, =_[ME WZe, (1,0) — Z.(1, 0
(1L10)  Qn,m, i, j) = | Prim=tt P D EN(Z, (1, 0) = Z(1,0)
_ 1
vn+m—1(1’ 0)
+ E“»R®(n + m, i, j),

Eo(Zsyn (i + 1, ) — Z:(i+1,j>>}

where R® is defined in (8.31). According to Lemma 11.1 we have
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.. . 1 N
(1) EZinn)) = 206 ) = B Bt Y2G))

< (.”ﬁ’u‘Mf)"cu@, n+ ’") .
=\N N

By using the estimates (11.11) and (8.32) we get (after some computation) from
(11.10),

(11.12)  E|Q(n, m, i, j)* < (%‘; L ;2m>uLi“Mj“Cu<p, n ‘]*v’”>

where C,(+, +) is as in (1.4). Formula (11.9) can be written more compactly
as follows.

(11.13) E“avX,,, = %[M(a, m)S, + R(a, m)]

where

(11.14)  M(a, m)

mi)(a, m) mL“;}(a, m)
v p=1,2,--. v=1,2,.--,2=0,1,2, ...
| m(a, m) m* (e, m)

y=091921"'9ﬂ:1’25"' L/,/,t:O,l,2,-~-

where m, (a, m) = 0 in all but the following cases:

174

(11.15) m(a,m) = Pevina(* +1,0) v=1,2, ...
Vaysm-r(1, 0)2- "7

(11.16) m (e, m) = Llerenna £ L1 v=0,1,2, -
Vay4m-1(1, 0)% -7~

11.17 mr, (a,m) = —— T
( ) ' +1( ) /vaN+m—1(1’ O)

y:1929""P:l’)":07192,“',p:4.

Furthermore, R(a, m) is a random element with values in A whose components
are as follows:

(11.18) (R(a,m), .5 = FI;Q(aN, m, v, 0). L, b= 1,2,
T’w

(11.19) (Rla,m), g5 = L0(@N,m, p, 1)- L, p—0,1,2,....
Nf 7//‘

By applying Lemma 12.1 in [4] the assertion (c) in Lemma 10.6 now follows
from the above formulas and from Lemma 10.5. We omit the computations
which are straightforward but somewhat lengthy.
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Verification of (C3). We shall prove assertion (d) in Lemma 10.6 by applying
Lemma 12.2 in [4]. From (8.37) we get

(11.20)  EZ»Y:, (i ) Yorm(ins Ji)
= EZ2E%ntm-1Y° +m(lla ]1) +m(l2’ .]2)

Votm— 1(i1 + ’2 + 1’]1 +]2) _ n+m—l(i1 + l’jl)"vn+m—1(i2 + 1’j2)
n+'m. 1(1 0) vn+m—l(1’ 0)2
+ EC«R(n +m — 1,1, 4, ji, ju) >

where the last term can be estimated by using (8.38). From (11.20), (8.38) and
Lemma 10.4 it is readily verified that condition 2’ in Lemma 12.2 in [4] is fulfilled
for D(«) according to (10.24). We omit the details. We are through if we show
that also condition 3’ in Lemma 12.2 in [4] is fulfilled. In the following lemma
we give the essential estimate and we leave the rest of the verification to the
reader.

LemMA 11.2. For 1 < m, = my, < N — n we have

n+my

(1121)  EIEZn Y (1 ) Vi )] S Lt abissinG(p, " MEX (7))

where C(-, +) is as in (1.4).

Proor. We shall use the following inequality, where notation and assumptions
are as in Lemma 8.9. For 1 < m, + m, < N — n we have,

| < __M(nl) M(m,)- C( n + max (m, m2)> .

(11.22) E|E“nD:,
N

n+mq n+m2

The inequality (11.22) can be derived from (8.43) by a conditioning argument
which is quite analogous to that which was used in the proof of Lemma 8.9 in
the extension from v, = 1 to a general value of v;. Therefore we omit the proof.

Now choose =, = (i}, j,) and =, = #(i,, j,) (see (8.6)). In view of Lemma 8.1
and (8.13), (11.22) then yields (11.21) and the lemma is proved.

Verification of (C4). We shall verify (C4) by showing that the condition in
the remark to Lemma 12.3 in [4] is fulfilled. From Lemmas 8.1 and 11.1 we
conclude, with fas in (9.5),

(11.23) lim sup,_., E(SH, — S, ¥, f;)*
= lim sup,_,, EN_<Z(a+A)Nk Y, ®(i, 0) - )‘
i [(a + A)N,
< F lim sup,_... W(ANk)2'L4‘ C<Pm Tk])
LN\% .
=A2<—> llrl'ISLlr)k—N”o C(lolc’a_l_A)’ i: 1, 2, LRI
7
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In the same manner we get, with g as in (9.6),

(11.24)  limsup, . E(SE, — 5,90  8( L) Melim sup, ... Clpy, o+ 4 ,
7

i=0,1,2,....

Now only straightforward computations remain to show that the condition in
the remark to Lemma 12.3 in [4] is fulfilled. Thereby (C4) is verified and the
proof of Lemma 10.6 is complete.

12. Solution of the differential equations. We shall here prove Lemma 10.7.
According to Theorem B in [4], (10.26)—(10.30) are uniquely solvable. One
way of proving Lemma 10.7 would be to check that (10.31) with components
as in (10.32)—(10.35) actually satisfies (10.26)—(10.30). However, we shall
produce the solution in a more constructive way.

It is easily checked that (10.27)—(10.30) are homogeneous in the parameter
7, which enters in M(«) and D(a) (see (10.23) and (10.24)) in the following
sense. If 2()(a, B) solve (10.27)—(10.30) for the original M(a) and D(«a), then
rU+m i (a, B) solve (10.27)—(10.30) with y = 1 in M(a) and D(a). It is there-
fore no loss of generality to assume that y = 1, and we do so throughout this
section.

We point out that the mass H(x, y) lies on a rectangle 0 </ < x < L < oo,
—M < y < M. From this it follows that we do not have any problems of con-
vergence of the integrals which will be considered in the sequel. Concerning
integrals we adopt the convention that when no domain of integration is specified
in double integrals, the integration is over R®.

We state without proof an elementary result about partial differential equa-
tions, which will be used repeatedly in the course of the solution.

LemMma 12.1. Consider the differential equation

0 , m 0
(12.1) —U(X, Y15 Yyt 0 Yu) T+ @(X) 20
ox )

(X, Yis Yas ***> V)

= R(X, Y1 Vas ** *5 Ym) > X < x< X, —oo <y, < o0
with given, sufficiently smooth boundary data along the hyperplane x = x,.
This equation is uniquely solvable and the solution is
(12.2)  u(*, y1 Yo -+ > V)
= U(Xp, Y1 — (%) + a(Xo), -+ 5 Y — UX) + a(Xo))
+ §5, R(u, yy — a(x) + a(u), - -+, pu — a(x) + a(u)) du .
The following formula (12.3) will be used repeatedly without explicit reference
every time.

LEMMA 12.2. For p(a) and ,a) according to Definitions 10.1 and 10.2 we have

(12.3) o'(a) = 0O<a<l.

Fo(@)
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Proor. By differentiating with respect to « in (10.7) we get
—1 = —p'(a) {§ xe *'2* dH(x) = —p'(a)r (@) , 0<a<l,
and (12.3) follows.
We now begin the solution of (10.26)—(10.30) and we start with the equation
(10.27). To simplify writing, we write A(a) and 4,,(a) instead of A(a, a) and

lv#(a’ Cl').

By writing (10.27) in terms of matrices we get the following systems of dif-
ferential equations.

From the upper left-hand block:

e — 1o ) Ky, o(a) 1
12.4 —2 A (e A (a AV (a
(12.4) (@) = 10(a)( ( )+ (a)) +. @)’ # (@)
K p1,0(%) o(@) A (a v+;l+1,0(a) K41, o(a)”p+1 o(a)
* K1()? ) + K1o(@) K10(@)*

O<a<l, vyp=1,2,....
From the upper right-hand block:

(12.5) %Ww-(wmmwmmm+wﬁWW>
Epr1\¥) 1(2) AN (a vrut1,1(Q) Ky o( @) g0 0()
e+ S @

0<a<1a l)=1,2,"',/,l=0,1,2,"~

Because of symmetry the lower left-hand block will add nothing new.
From the lower right-hand block:

(12:6) LAY = 2 (@) + Ah(@) + 22 23w
Kpt1,1(%) (@) A2(a Byapr1,2(®) Ky 1(@)Fu410()
@ T @ @

O<a<l, v,p=0,1,2,....
Furthermore, from (10.28) we get the following initial values
(12.7) 2,0 =0 for all 2,,(a) in A(a) .
Next we introduce some functions which will turn up during the solving process.

(12.8) K (a,f) = ’| ki (@) = §§ xpremer @ dH | p=0,1,2, ...

g

(12.9) Vi(a’ t, S) Zv —o Z# 0 . # ,Cv+p+1 z(a) —_ ss xy i@tz g8z p—pla)e dH
i = 0’ 1, 2, P
(12.10) T,(0) = §§ wyr(l — ee@Rer T dH oy p=0,1,2, -
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(12.11) T(a,0) = 25 —z'w(a) = {{ yre’*(l — er@m)e el dH |
©r=0,1,2,.
P
(12.12) Oi(a, t,8) = 20, Z:;o‘,— : ﬁ_’TV+p,i(a)
vl !
= {§ yle*ers(1 — e e @=)e=r @z dH | i=0,1,2,....

The following relations, which are easily checked, will be needed in the sequel.
When checking (12.14) remember (12.3)

(12.13) K, (u,t — p(a) 4 p(v)) = K, (a, 1),
Vilu, t — p(@) + p(u), s — p(@) + () du = Qy(a. 1, 5) ,
i=0,1,2,....

(12.14) V&

1
£10(4)

Next we make the following observation. Let {A)(@);v, p = 1,2, ...} solve
(12.4). Then, the enlarged system {A{)(a); v, p = 0, 1,2, ...}, where

(12.15) ANa) =0, 0a<l1l, when v.pp=0

solves the enlarged system (12.4) which is obtained by letting v and ¢ run over
0,1,2,.... In fact, as is easily realized, this enlargement of the solution is
unique under the assumptlon that 2{2(0) = 0 for v- ¢ = 0. In the same manner
a solution {A®(a); v =1,2, ..., =0,1,2, ...} of (12.5) can be enlarged to
a solution {22 (a); v, p = 0, 1 2, .- -} of the enlarged system (12.5) which is ob-

vp

tained by letting also v run over 0. Such an enlargement is obtained by putting
(12.16) A2(a) =0, 0a<l, p=0,1,2,-.-,

and it is unique under the assumption that 22(0) =0, o =0, 1,2, .... In the
sequel we consider the systems (12.4), (12.5) and (12.6) for v, 1 = 0, 1, 2, .-
We introduce the following functions.

(12.17) P (a, 1,5) = Ty Do o - .S_' @(a), p=124
V.

(12.18) 1P(a, 1) = _,zm(a) p=1,24.

We note the following relations, which are easily checked.

(12.19) =, z;;o% o L, () = qw(a t,s), p=124
(12.20) =, Z}.;o:—: : if’zy;;,“(a) - %(I)‘P)(a, s, p=124.

Next we observe that the system (12.4) only contains A-functions. Thus this
system can be solved separately and we start by doing this. We multiply (12.4)
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by #s#/ulpu! and sum over v, # =0, 1,2,.... Observing the formulas (12.8),
(12.9), (12.17)—(12.20) and (12.3) we get the following equation.
12.21) L ow(a, 1,5 + p'(@) L OV(a, 1, 5) + o'(@) L OV(a, 1, 5)
oa ot s
= RY(a, t, 5) , O<a<l, —co<Kt, s< o0,

where
(12.22) RY(a, t,s) = I )2(Ko(a, HxV(a, s) + Ky(a, s)xV(a, 1))

k(@

T Vo(a, t, s) _ Ky(a, 1)-Ky(a, 5) )

K1(@) " £10()?

Furthermore, from (12.7) and (12.15) we get the following boundary values.
(12.23) o0 (©0,¢,5 =0, —co<Lt, s< o0,

According to Lemma 12.1 the solution of (12.21) and (12.23) is
(12.24)  ©(a, 1, ) = §3 RY(u, t — p(a) + p(4), s — p(a) + p(u)) du .
From (12.24), (12.22), (12.13) and (12.14) we get,
(12.25) OV (a, t, 5) = Ky(a, ) AP (a, s) + K(a, 5) AV (a, 1)
+ Oa, t, s) — Ky(a, )Ky(a, 5)-b(a) ,

where
(12.26) AV(a, 1) = o KW 1= 0() + p®) 4,
K1o(4)°
and
(12.27) b(a) = jo .
£10(1)*

The function A® in (12.25) is still unknown, and we proceed to determine it.
The following relation is a consequence of (12.15)

(12.28) DN (a, 1, 0) = PV(a, 0,5) = 0.

By putting ¢ = s = 0 in (12.25) and by observing (12.28) we obtain,
(12.29) 2K \(a, 0) AV (a, 0) + Qy(a, 0, 0) — K(a, 0)’b(a) =0,
which yields

(12.30) AD(a, 0) = _%%) + 1K@, 0)b(a) .

By putting s = 0 in (12.25) and by considering (12.28) we obtain,
(12.31) Ky(a, t)AV(a, 0) + Ky(a, 0)4A"(a, t)
+ Qya, t, 0) — Kya, )Ky(a, 0)b(a) = 0.



768 BENGT ROSEN

By inserting (12.30) into (12.31) and solving for 4™ () we get, by observing
(12.10)—(12.12),

(12.32) AV, )= — Q@59 | 10 0,0)- K@, 1) 4 1 o pp(a)

K@, 0 2 K0
_ _Tya, t) 1 () -Kya, ?) 1K, b(a
’Clo(a) 2 £10()? e

By inserting (12.32) into (12.25) we get

Ky, T 5) + Kefat, 9 Toat 1)
K1)

(12.33)  ®9(a,t,5) = Oyfa, 1, 5) —

Ki(a, t)-Ki(a, 5)

+ 1'00(0')

£19(2)?
=58 (8 ) )

X (1 _ e—p(a)x)e—p(a)z dH .

according to (12.10)—(12.12).
Thereby we have solved (12.4). Explicit formulas for 21})(a) can be obtained

from (12.33) by expanding the right-hand side in powers of ¢ and s.

We now proceed with equation (12.5) which we shall treat in a quite analogous
way. We multiply (12.5) by #*s*/v!p! and sum over v, p =0,1,2, --.. By
considering the formulas (12.8), (12.9), (12.17)—(12.20) we get the following
equation.

aa O(a, t,5) + p (a) @‘”(a t,s)

(12.34)
+p (a) (I)m(a' t,5) = R¥(a, t, s)
where

(1235 R®(a, 1,9) = —— (Ky(a, 7%(, 9) + Ki(@, 917 (, 1)

( )?
Vi(a,t,s)  Kya, )K(a, s) )
K1o() K1 (@)?

Furthermore, according to (12.7) and (12.16) we have

(12.36) ®=(0,1,5) = 0.

From Lemma 12.1 and the formulas (12.13) and (12.14) we get the following
solution of (12.34) and (12.36)
(12.37) D(a, t, 5) = Ky(a, t)A?(a, 5) + K,(a, s)A"(a, 1)

+ O, 1, 5) — Kfe, DK,(a, )b(@)
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where

(12.38) AP, 5) = 2 X085 — (@) + W) 4,
K1o(10)?

and A% (a, t) and b(a) are defined in (12.26) and (12.27). From (12.16) we con-
clude that

(12.39) P, 0,5) =0.
By putting ¢ = 0 in (12.37) we get from (12.39), (12.30) and (12.10)—(12.12),

_ _ T« 5) (@) Ki(@, 5)* 1K (a, s)b(a) .
K1) * 2r,9(@)? K 95

By inserting (12.40) and (12.32) into (12.37) and by paying regard to (12.8)—
(12.12) we get

(12.41) O (a, t,5) = Qy(a, t,5) — Ki(a, ) Ti(a, 5) + Ki(a, 5)T(a, t)

K1g(a)
n TOO(a)KOIE:(, at))zKl(a, s)
(St Y e

X (1 —_ e—p(u)x)e—p(a)z dH.

Thereby (12.5) is also solved and we continue with (12.6). As before we mul-

tiply (12.6) by #s#/v!u! and sum over v, p =0, 1,2, .. .. By observing (12.3),
(12.8), (12.9) and (12.17)—(12.20) we get
(12.42) 9 @w(a, 1, 5) + o'(a) 2 OW(a, 1, 5)
da ot
+ 0'(@) ;—(I)“’(a, 1,5) = R9(a, t, 5)
s
where

(12.43) R*a, t,s5) = ;(Kl(a, H1*(a, 5) + K(a, )1 (a, 1)

Eyo(@)?
I Via, t,5)  K(a, t)-K(a, s) )
K10(aX) £1(@)*
From (12.7) we get the boundary condition
(12.44) O“0,¢,5)=0.

Now solve (12.42) and (12.44) with the aid of Lemma 12.1 and remember (12.13)
and (12.14). Then we get
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(12.45) DY, t, 5) = K(a, )A¥(a, 5s) + K(a, 5)A?P(«, 1)
+ Ou(a, t, 5) — Ki(a, )K\(a, 5)-b(a) ,

where A® and b(«) are defined in (12.38) and (12.27). By inserting (12.40) into
(12.45) we get

K (a, )T\(a, 5s) + K(a, $)Ty(a, t)

(12.46) DW(a, t, 5) = Oy, t, 5) —

£10(@)
K 0K
s N )

X (1 — e p(a)a:)e—p(a)z dH .

Thereby we have solved (12.6). Thus, the equation (10.27) is solved and we
continue with (10.29). By writing (10.29) in its matrix representation we get
the following systems of differential equations.

From the upper left-hand block:

(12.47) i,{m B) = A (e, B) 4 £,41,0(B) (e, B),

g " ® £10(8) £10(B)?
0a<Bf<l, vyp=1,2,3,....

From the upper right-hand block:

d .5 Ahu(a; B) £y11,0(8) 5
12.48 — A(a, Ll A2(a, B) ,
(249 AP =20 Ty P

0§a<18<1’ V:112,39”'5 #=05192""'
From the lower right-hand block: '

(12.49) _d_,qu) ,B) = At (@, B) + B 1(B) A2(a, B),

ap £10(3) £1o(B)
0<a<fp<l, v,p=0,1,2, ..

As before we make the observation that the solutions of (12.47) and (12.48) can
be enlarged to solutions of the enlarged system which are obtained by letting »

and ¢ both run over 0, 1, 2, - ... Such enlarged solutions are obtained by
(12.50) W@, fy=0, O=<a<p<l for vop=0
(12.51) W@, f)=0, O0<a<p<l for p=0,1,2,---.

These enlargements are unique under the assumptions that their initial values
for 8 = a are 0. In the sequel we consider the systems (12.47)—(12.49) for
D,p:O,l,Z,

We introduce the following functions,

(12.52) R, B,1,5) = Ditg Dimo s - _zw(a 8) p=124
V. !
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(12.53) 1P(a, 8, 5) = Z;=0§l;’;zgg>(a, 8, p=1,2,4.

By multiplying by #s#/v!p! in (12.47) and summing over v, z = 0,1, 2, - .- we
get

(12.54) ;ﬁ@l)(a’ B,t,8) + p’(‘[-})_g;(l)(l)(a, B, t,s) = K8, tx)xz[;;f, B,5) .

Furthermore, according to (10.26) we have the following boundary values
(12.55) ONa, a, t, s) = OV (a, t, 5) ,

where @V (a, ¢, s) is defined in (12.17) and computed in (12.33). From Lemma
12.1 and (12.13) we obtain that the solution of (12.34) and (12.55) is

(12.56)  @V(a, B, t,5) = DV(a, t — p(B) + 0(a), 5) + KB, )4V (@, B, 5) »

0=sa=p<l,

where
(12.57) AD(a, B, 5) = L LO 8 gy

£1o(t)*

From (12.50) we get

(12.58) OV (a, 8,0,5)=0.
By putting ¢ = 0 in (12.56) and by observing (12.58) we get
(12.59) AV (@, B, 8) = —— @V (a, —p(B) + p(@), ) -

£10(B)
By inserting (12.59) into (12.56) we obtain

(12.60)  DD(a, B, £, 5) = OV(a, 1 — p(B) + p(@), 3)

— BB D, —p(p) + p(@) 5) -
£10(B)
From (12.60), (12.33) and (12.13) we get after some computation

e w5 (S5 e

X (1 — e~r@=)e=eP= dH
By expanding in powers of ¢ and s we get from (12.61), (12.52) and (12.8)
(12.62) 2%, B) = §§ (———”wl’o(ﬁ) - x’)(”————ﬁ“’“(a) — )1 — er)emr T dH
£10(8) K10()

Thus we have obtained the solution which was claimed in (10.32). Next we
consider the system (12.48) and we proceed as usual. By multiplying by #s/v!p!
and summing over v, g =0, 1,2, ... we obtain

(12.63) aa_ﬂclw(a, B, 1, 5) + p'(,@)g; O (a, B, 1, 5) = Kolb> Z)jézgf B:3)
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According to (10.28) and (12.51) we have the following boundary values,
(12.64) OV (a, a, t, 5) = OP¥(a, t, 5)

(12.65) (e, 8,0,5)=0.

By proceeding as before we obtain the following solution of (12.63) and (12.64),
(12.66)  ®(a, B, 1, 5) = DV (a, 1 — p(B) + (@), 5) + Ky(B, ) A(a, B, 5)

where

(12.67) AD(a, B, 5) = sﬁﬂ%f)du

From (12.66) and (12.65) we obtain,

(12.68) AP(a, B, 5) = ( o 2@ =)+ 0@, 9

By inserting (12.68) into (12.66) we get
(12.69) DO (a, B, t,5) = PU(a, t — p(B) + o(a), 5)

K8, t)q)ma a), 5) .
B0, —p(8) + @), 9

From (12.69) and (12.41) we get after some computation

1270 @ = 55 (B0 e)(KD o

X (1 — e~et@e)e=el= gl
By expanding in powers of ¢ and s in (12.70) and observing (12.52) and (12.8)
we get
(12.71) Z”’(a, B) = §§ < L+1,0(B) x»)(’%n,l(“) _ yxy>(1 — e~r@a)e=e®z JET
£10(8) £10(®)
This is the solution which was claimed in (10.33). We now conclude by solving
(12.49). In the usual way we get the following equation

(1270 S0, b1, + 0(3) g e, 1, 5) = DELL P

£1(B)?

Furthermore, from (10.26) we get the boundary values
(12.73) O (a, a, t, s) = P (a, t, s) .

By using Lemma 12.1 and (12.68) we get after some computation the following
solution of (12.72) and (12.73)

(1274)  ®9(a, B, 1, 5) = D9(a, 1 — p(6) + p(), 5)

_ KB ) g q, a), s) .
%) (@, —p(B) + o(a), 5)
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From (12.74), (12.41), (12.46) and (12.13) we get, again after some computation,

(12.75)  ®9(a, B, 1,5) = §§ <K1(£ﬂ)‘) yew><’%‘("c’oﬁ — yew>

X (1 — e~¢e@=)e=elhle dH

By expanding in powers of ¢ and s in (12.73) we get

(12.76) A9(a, B) = §§ < L+1.1(B) — X ><'C ﬂ—+1,1(0') _ yx,u>
£10(B) K10(®)
X (1 — e~rt@=)e=e®= g
This concludes the proof of Lemma 10.7.

13. Positivity of B(a, 8). In this section we shall prove Lemma 10.9. Put

(13.1) B(a; x, y) = <"u_@) - y>(1 — emptwny O<a<l
£10(®)
(13.2) d(a; x, y) = <_'C£@2 — y)e‘f"“’” R 0saxl.
£10()
We assume throughout this section that
(13.3) O<a, <o, < - <a;, < 1.

It is obvious that it suffices to prove Lemma 10.9 under the assumption (13.3).
Put

(13.4) d,(% y) = 0(a,; %, y)-d(a,; x, p) , v=p
=0(ap;x’y)’¢(av;x9y)9 #é”, D,#:l, ) ad

and

(13’5) D(al’ Agy * 00y ad; X, }’) = [dy,,(x, y), Y, f = 19 2, DR} d] .

Then we have
(13.6) [Bla,, a,);v,p=1,2,--,d] = §§p D(ay, - -+, ay; X, y) dH(x, y) .
LeMMA 13.1. Assume that (13.3) holds. Then the matrix D(a,, a,, - - -, ay; X, )
is
(a) nonnegative as soon as x = 0,
(b) positive if and only if x > 0 and
(13.7) "_H_(L“L)_yqeo, yv=1,2,...,d.
£1(@,)

Proor. We shall apply the results in Chapter 3, Section 3, pages 110-112, in
[3]. We have

(138) 0(0’, X, y)¢(a, X, y) = <£ll_§_g_;_ —_ y)a(l _ e—p(a)x)e—p(a)x ,
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and if &, (a)/k,(@) — y # 0,
(13.9) O(as; x, p)/d(a; x, y) = er®= — 1.,
The function e*@* — 1 is, as a function of a, strictly increasing when x > 0
(cf. Lemma 10.1). The claim in (b) now follows from Theorem 3.1 in [3], (13.8)
and (13.9). The assertion in (a) follows from (b) and the fact that D(a,, - - -,
@, %, y) is continuous in x and y. Thus the lemma is proved.

The positivity of [B(«,, a,); v, p = 1,2, - .., d] will now follow from (13.6)
and Lemma 13.1 if we show that D(a,, a,, - - -, ag; X, y) is positive on a (x, y)-
set of positive H(x, y)-measure. To do this we shall need the following lemma.

LeMMA 13.2. Let p, pty, + -+, ptq be probability measures on R(=the real line)
which all have means. Let the measure p be equivalent with each of p, pty, -+ -, ttg
(i.e. pand p, are absolutely continuous with respect to each other). Furthermore we
assume p to be non-degenerate. Then,

(13.10) My 7t dp(0) < pov=1,2, .-, d}) > 0.

PRrOOF. As p is non-degenerate, soisalso ¢, because of the equivalence. Then,
as is easily seen, we have

(13.11) ey 2 tdp, () <y} > 0.
In view of the equivalence between ¢ and p, we get from (13.11),
(13.12) wly: §2atdp(t) < ) >0, v=1,2,-,d.

Upon some thought it is realized that (13.10) and (13.12) are equivalent. Thus
the lemma is proved.

We are now prepared to finish the proof of Lemma 10.9. According to (10.11)
and (12.3) we have,

(13.13)  F®) _ e (o urp(a)er @ dH, 1) = §*. t du(t; a)

K@)
where the measure u(+; @), 0 < a < 1, is given by
(13.14) (=00, s @) = §5 2. up'(@)e=r " dH(u, 1) .
According to (12.3) we have
(13.15) 1 = {5 {2, up'(@)e=* % dH(u, t) , O<ax<l.
Furthermore,
(13.16) up'(a)e=r @ >0 for u>0, 0<axl.

Let p*(+) be the marginal mass, along the y-axis, corresponding to H(x, y).
We have
(i) p(+; a) (see (13.14)) is a probability measure for every a € (0, 1).
(ii) p(+; a) is equivalent to p*(+) for every a € (0, 1).
(iii) p*(+) is non-degenerate.
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(i) follows from (13.15). (ii) is a consequence of (13.14), (13.16) and the fact
that H(x, y) does not have positive mass along the y-axis. (iii) is another way
of expressing (10.50). Now, from Lemma 13.2, (i), (ii) and (iii) above and from
(13.13) we conclude that for each (fixed) a,, a,, - - -, @, satisfying (13.3) we have

(13.17) y%hﬁﬂ)<%u—12 }>>m

£1(e,)
From (13.17)and (b)in Lemma 13.1 it follows that, under the assumption (10.50),
the matrix D(a,, a,, - - -, @ ; X, y) is positive on a set of positive H(x, y)-measure.
This concludes the proof of Lemma 10.9.

14. On the Horvitz-Thompson estimator. The populatzon total =, corresponding
to the population = = (a, a,, - - -, ay) is

(14.1) =a,+at - +oay.

Asusual I, I, - . -, I, denotes a p-permutation of 1,2, ..., Nand ¥, ¥,, - .., ¥,
the corresponding p-permutation of the elements in = = (a;, a,, - - -, ay).

The Horvitz-Thompson estimator (for the population total) based on a sample
of size n, (HT),, was defined in (1.2) and (1.3). The interest in this estimator
depends on the fact that it is an unbiased estimator for the population total.
This follows immediately from (1.2) and (3.7). It is easily seen that (HT), can
also be expressed in the following form
(14.2) (HT), = X1, VNI, n) .

From (14.2) we see that (HT), can be viewed as the sample sum in a p-sample
of size n from the population (a,/A(1, n), a,/A(2, n), - - -, ay/A(N, n)). The esti-
mator (HT), is not however usable in general in practical situations, as we do
not have exact knowledge of A(s, n). The natural attempt to circumvent this

obstacle is to replace the A(s, n): s in (HT), by their approximations (see (3.4)).
Then we obtain the following “quasi” Horvitz-Thompson estimator,

a
(14.3) (QHT), = 2\, W“l——m = 2010 /(1 — exp (_Pl,,t(n))) .
As is seen from (14.3), the estimator (QHT), can be viewed as the sample sum
in a p-sample of size n from the following population,

(14.4) *(p, , n) = (a,/(1 — e 1*™), @, [(1 — e7P2!™), ... @, /(1 — e7PNt™)) |
We shall not go into the matter of the asymptotic behaviour of (HT), and

(QHT), in detail. We shall be satisfied with the following result which is a
straightforward application on Theorem 3.3.

THEOREM 14.1. Let (p,, x,) and n,, k = 1,2, .. -, satisfy (3.21), (3.22), (3.34)
and the following condition. The population sequence x*(p,, m\, 1), k = 1,2, .-,
(according to (14.4)) satisfies (3.23). Then (QHT), (according to (14.3)) is as-
ymptotically N(t,. , 6,%(n,))-distributed as k — oo, where 7 is as in (14.1) and where

TR
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(14.5)  &%m) = iv=1< a, _ _ XLipaerml —e“"“")))z

1 — e—Pst(n) Zi\’:'l pre_Prt(n)

X (1 . e—pst(n))e—p,t(n) .
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