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ON WEAK CONVERGENCE OF EXTREMAL PROCESSES
FOR RANDOM SAMPLE SIZES'

By PraNAB KUMAR SEN

University of North Carolina

The results of Dwass (1964) [Ann. Math. Statist. 35 1718-1725] and
Lamperti (1964) [Ann. Math. Statist. 35 1726-1737] on the weak convergence
of extremal processes (in the Skorokhod Ji-topology) to appropriate Markov
processes are extended here for random sample sizes.

1. Introduction. Let {X,, X, -- -} be a sequence of independent random vari-
ables defined on a probability space (Q, .97, P), where each X; has a common
distribution function (df) F(x), x € R, the real line (— oo, co). For the sample
maxima

(1.1) M, =max{X;: 1 <i<n}, nx=1,

Gnedenko (1943) has determined all the three possible types of nondegenerate
df G(x) which can appear in

(1.2) lim, .. P{(M, — a,)/b, < x} = G(x), xeR,

where a, and b,(>0) are suitable constants; see (2.8). All such G are continuous.
Extensions of (1.2) for random sample sizes are due to Berman (1962), Barndorfi-
Nielsen (1964) and Lamperti (1963), among others.
Dwass (1964) and Lamperti (1964) have considered the so called extremal
stochastic processes {m,(t): 0 < t < oo}, n > 1, where
(1.3) m (1) = (M — a,)/b. t>nt,
= (X, — a,)/b, , 0st<n?,

([s] being the largest integer contained in s), and have shown that (1.2) insures
the weak convergence (in the Skorokhod J;-topology) of {m,()} to an appropriate
Markov process. The object of the present investigation is to show that for
random sample sizes, under the usual convergence condition (viz., Blum et al.
(1963) and Mogyorodi (1965)), this weak convergence holds. This extension is
comparable to Theorem 17.2 of Billingsley (1968) which extends the classical
Donsker Theorem for random sample sizes.

2. The main result. Let {N,;n > 1} be a sequence of nonnegative integer-
valued random variables such that

2.1) n'N,— 2, in probability, as n— oo,
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where 1 is a positive random variable having an arbitrary distribution and defined
on the same probability space (2, .97, P). For every n > 1, we define a stochastic
process

2.2) my (1) = my(t) if N,=k=>1,
=—c0, if N,=0, 0<t< o;

where m,(t) is defined by (1.3). Consider then a Markov process {m(¢): 0 <
t < oo} for which for nonnegative ¢ and s,

2.3) P{m() < 5} = [G)],

(2.4) Pim(t + s) < ylm(t) = x} =0, if y<x,
= [Ga)r, yzx,

where G(x) is defined by (1.2). Further, consider the space D[0, 1] of real func-

tions y(f) defined on [0, 1] with the properties that (i) y(t — 0) and y(t + 0)

exist for 0 <t < 1, y(f) = y(t + 0), 0 < ¢ < 1, and (ii) y(¢) is continuous at

t=0and t=1. Also, let A be the class of strictly increasing, continuous

mapping of [0, 1] onto itself. Then, with D[0, 1], we associate the Skorokhod
J-topology

(2:5) op(%, y) = infyc 5 [sup, [x(r) — p(2(1))] + sup, [A() — 1],
where both x and y belong to D[0, 1]. We also denote by
(2.6) m = {m(t), te [0, 1]}, m, = {m,(1), te[0, 1]} ;

@7 my, ={my (1), 1€[0, 1]} and  myy = {mg,,(1), 1€]0, 1]},

where m,(t), m, () and m(r) are defined earlier, and my,,,(?) is defined as in (2.2)
with N, being replaced by [r4]; all these processes belong to D[0, 1] and are
non-decreasing in ¢. Finally, we consider the three types of G(x) that can appear
in (1.2). These are respectively

G(x,0)=0, x<0,

= exp(—0x~), x>0, 6>0, a>0,

(2.8) Gy(x, 0) = exp(—0(—x)*), x<0,
=1, x>0, 6>0, a>0,

Gy(x, 0) = exp[—0(exp[—x])], —co<x< o, 6§>0.

Then, the main theorem of the paper is the following.

THeoREM 1. Under (1.2) and (2.1), m, converges in distribution in the Skorokhod
Ji-topology on D[B, 1] to the Markov process m, where 8 = 0 when G is of the type
G,, and 8 > O for the other two types.

The proof of the theorem is postponed to Section 4. Certain other results
needed in the proof are considered in Section 3.
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3. A few basic results. With the notations in (1.2) through (2.8), we have the
following.

LemMA 3.1. For every ¢ > 0, there exist a 6 > 0 and an n, = ny(c), such that
for n = nye),

(3'1) maxk:lk—nl<6n |(bk - bn)/bnl < € and maxk:lk—n|<5n l(ak - n)/bn| < €.

Proor. Let n* = [n(l — d)], and define M,., a,. and b,. for n = n* asin (1.1)
and (1.2). Then, by (1.2) and Theorem 2.1 of Lamperti (1964), we have

(3.2) lim,_, P{(M,. — a,.)/b,. < x} = G(%), xeR,
(3.3) lim,_.. P{(M,. — a,)/b, < x} = [G(x)]'"*, xeR.

Let us denote the exact df of (M, — a,)/b, and (M,. — a,)/b, by G,(x) and
H, ,(x) respectively, so that on writing

(3'4) (Mn‘ - n)/bn = (bn_lbn‘)[(Mn* - an*)/bn’] - (an - an*)/bn ’
we have
3.5) H, (x) = G,(b!b,x + (a, — a,.)/b,), xeR.

Now, by (3.2) and (3.3), G,.(x) — G(x) and H, ,(x) — [G(x)]'~?, at all points of
continuity of G, as n— oo, and |G(x) — [G(x)]'~°| can be made arbitrarily small
by proper choice of d(> 0). Hence, from (3.5), we conclude that for every
e > 0, there exists a d( > 0), such that as n — oo,

(3.6) 16,7, — 1] < ¢ and b, (a, — a,.)| <ce.
Similarly, on defining n** = [n(1 + 6)] + 1, we have for n — oo,
3.7 |, by — 1| < € and |b, (@, — a,m)| < ¢.

Finally, we note that for G, and G,, defined in (2.8), a, is a constant, independent
of n, while for G, a, is | in n. Further, for all the G;, i = 1, 2, 3, b, is mono-
tonic (either non-increasing or non-decreasing depending on the type). Hence,
(3.1) readily follows from (3.6) and (3.7). [J

Lemma 3.2. (Uniform continuity, in probability.) For t > 0, and every ¢ > 0,
n > 0, there exist a 6(> 0) and an n, (¢, 1), such that for n = n, (¢, 1),

(3.8) P{U s 1k=n1<on [[m(t) — m, ()] > e} < 7.
Proor. For ¢ > 0, by (1.3), we have

(3.9)  m (1) — my(t) = (1 — b,'b,ym, (1) + b,~'b,[m, (1) — m,(kt[n)]
- bk_lbn([an - ak]/bn) .

Hence, by virtue of Lemma 3.1, it suffices to show that as n — oo,
(3.10) |m,(2)] is bounded, in probability,
(3.11) MAaX, |, ni<on [Ma(1) — My (tk[n)| = 0, (1) .
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Now, by (2.3) and Theorem 2.1 of Lamperti (1964), for every K > 0,
(3.12) lim, ., P{im,(1)] < K} = P{im(1)] < K}
= [G(K)] — [G(=K)]", t>0.

Thus, for every » > 0, there exists a positive K, (< o), such that [by (2.8)] the
right-hand side of (3.12) exceeds 1 — 7/4 by choosing K > K,. Hence, there
exists an ny(y), such that for n > ny(y),
(3.13)  Pm()| =K}=1-79/2, e, P{m(1)>K}<1/2,
which proves (3.10). Again, by the monotonicity of {m,(?), ¢ > 0}, we have
(.14)  max,. ,_yicon [M(2) — m(thn)| < [m,(((1 + 0)) — m,(¢(1 — 9))] ,
where by Theorem 2.1 of Lamperti (1964), for every ¢ > 0, as n — oo,
(3.15) P{[m,(((1 + 9)) — m,((1 — 9))] > ¢}

o 1= §2, (% + ] d[G))
which can be made smaller than /4, 7 > 0, by choosing & (> 0) appropriately
small. Hence, there exists an n,(y), such that for n > ny(y), the left-hand side
of (3.11) is bounded above by ¢ with a probability > 1 — »/2. ]

Suppose now that for a fixed ¢(> 1), <, < --- < t, < 1, are given points,
where § is defined in Theorem 1. Then, by (3.8) and the Bonferroni inequality,
we obtain that for every ¢ > 0 and 7 > 0, there exist a § > 0 and an nye, 7),
such that for n = ny(e, ),

(3.16) PlUS = Uictimnicon [Imi(t;) — m(8)] > €]} < 7.

For a non-decreasing jump process x = {x(f), t € [0, 1]}, we define for every
8 =0andd >0,

(.17) Ay, x) = supyg, i [min{|x(( + 0)") — x(®)], |x(£) — *((£ — 8))]}] »
where (t — 6)’ = max (8, t — d) and (¢ + 9)”" = min(l, ¢ + d). Note that Ay(d, x)
is non-decreasing in 6 (> 0) and non-increasing in 8 (= 0).

LemMMA 3.3. For every ¢ > 0, there exist an 7 > 0 and an nyc), such that for
n = nye), 0 > 0, and n* = 279/(1 + 1),

(3.18) MAX,. 4 p <y Bs(0, 1)} < (1 4 €)*Agu_ (8, M, 40,) -

Proor. Let n* = n 4 [np]. Then for every k: |k — n| < yn, by (1.3) for
0<<s<t<l,

my(t) — my(s) = (M — My,)/b,
(3.19) = (Oue B (Miarpmoriy — Mipsiisnersn)/Bne]
= (bye/by) [, (ktn*) — m.(ksjn*)] ,
where 1 — n* < k/n* < 1. Therefore, by (3.17) and (3.19), for n — [ny] <
k < n*,
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(3:20) Ay(0, my) < [Agpme(Kd[n*, m,))(D,e /D))
é [Aﬁ(l—wy*)(a’ mn*)][ma’xk:Ik—nl<ryn(bn*/bk)] :

The proof of the lemma is then completed by using Lemma 3.1, which bounds
the second factor on the right-hand side of (3.20) by (1 + ¢)?, by proper choice

of > 0. [J

With reference to the probability space (Q, %7, P), for 4e .% and Be .5
let P(A|B) be the conditional probability of 4 given B; if P(B) = 0, we set
P(A| B) = P(A).

LemMMA 3.4. If Ae . and 8 > 0, then for every ¢ > 0,
(3.21) lim,_, lim sup, ., P{Ay(0, m,) > ¢| 4} = 0.

Proor. Since m,(¢) increases only by jumps, the event {Ay(0, m,) > ¢} is
contained in the union of the two events A4, = {G(m,(8)) < »} and B, =
{G(m,(B)) > n and for some ¢ € [B, 1], m,(¢) has at least two jumps in (¢, (£ + 8)"")},
where » > 0. Since 8 > 0, by Lemma 2 of Barndorff-Nielsen (1964), |P(4, | A) —
P(A,)] — 0 as n — oo, where by (2.3), P(4,) — »° and can be made arbitrarily
small by choosing » (> 0) small. Also, by Theorem 3.2 of Lamperti (1964),
(3.22) P(B,) = 0(9) as n—oo.
Since the event B, is completely determined by the set of random variables
(3:23) {(M, —a,)/b,, [nf] < k < n},

the arguments of Lemma 3 of Blum, Hanson and Rosenblatt (1963), adapted
from the treatment of mixing sequences of sets by Rényi (1958), can be used
as in Lemma 2 of Barndorff-Nielsen (1964) to show that
(3.24) lim,_,, |P(B,|4) — P(B,) = 0.
Consequently, by (3.22) and (3.24), as n — oo,
(3.25) P(B,| A) = 0(9),
and the proof of the lemma is complete.

LEMMA 3.5. If G in (1.2) is of the type G, and A € .57, then for every ¢ > 0,
(3.26) lim,_, lim sup,_,., P{Ay0, m,) > |4} = 0.

Proor. We note that if G is of the type G,, then b, 1 oo as n—oo, while g, = a
is independent of n. Thus, for every A€ .%” and ¢ > 0, P{m,(0) < —¢/2| A} =
P{X, < a—b,e[2| A} — 0 as n — oco. Consequently, with the modifications as
in the first part of the proof of Theorem 3.2 of Lamperti (1964), the proof follows
along the same line as in the preceding lemma, and hence, is omitted.

For a p-vector (p = 1) x, let [x < a] denote the coordinate wise inequality
x; <a,i=1,...,p, and let ||x|| be the Euclidean norm (x’ x)t.

LEMMA 3.6. Let {Y,, n = 1} be a sequence of stochastic p-vectors, such that (i)
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P{Y, < X} — F(x) at every point of continuity of F, as n— oo, (ii) for every ¢ >0
and n > 0, there exist a 6 > 0 and an ny(e, ), such that for n = nye, 3),

(3.27) P{max,. , ni<onl|Ye — Yal| > €} < 7,
and let {N,, n > 1} be defined as in (2.1). Then
(3.28) lim, ., P{Y, =<x}=F(x),

at every point of continuity of F.

The proof follows as a direct multivariate extension of the proof of Theorem
2 of Mogyorodi (1965), by essentially replacing in each step of his proof the
scalar Y, by Y, and |Y, — Y,| by |[Y, — Y,||. Hence, for brevity, the details
are omitted.

4. Outline of the proof of Theorem 1. By Theorem 2.1 of Lamperti (1964),
whenever (1.2) holds for some non-degenerate df G, the finite-dimensional laws
of the process m,, defined by (1.3) and (2.6), converge on the parameter interval
(0, 1) to those of the Markov process m, defined by (2.3) and (2.4). Thus, for
every0 <, < -+ t, <1, g=1,as n— oo,

(4.1) [m.(t), - -, m(1)] = [m(t), - - m(1)]
where —_ indicates convergence in law. Also, by (3.16), for every ¢ > 0 and
n > 0, there exists a 6 > 0, such that

(4.2) Pimax,. . ,1<sn MaX;_, . imy(t;) — m,(t;)] > e} <7 as n— oo.
Hence, by (4.1), (4.2) and Lemma 3.6, under (1.2) and (2.1), as # — oo,
(4.3) [, (), - o> My (t)] = [m(t), - -, m(2,)]

foreveryg>1and 0 < t, < --- < t, < 1; t, = 0 is permissible for G being of
the type G,. This establishes the convergence of the finite dimensional distribu-
tions of the process m, to those of m.

In order to show that as n — oo, my_—_ m on D[§, 1] in the Skorokhod J,-
topology, we bring in the process m,,;; = {my,(?), t € [ 8, 1]}, defined in the same
manner as in (2.2) with N, being replaced by [n4]. We also define A,(d, m, )
and A9, m,;) in the same way as in (3.17). Now, we require to show that
for every ¢ > 0 and » > 0, there exist a d, = dy(¢, 7) and an ny(e, ), such that
for n = nye, 1),

(4.4) P{Ay(0p, my ) > €} < 7.

Now, 4 is a positive random variable. So, for every 0 < » < 4, there exists
an ay(n), such that

(4.5) P2 =< ayn)} < 7/4.

Also, by (2.1), for every 0 < 7' < } and 0 < 7 < §, there exists an (7", 7),
such that for n > ny(7’, 1),
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(4.6) P{n7'N, — 4| > 7",} < n/4,

where 7’ is so chosen that (3.1) holds for 4 being replaced by 7’ and some
0<e< 4. We may, equivalently, denote ny(»’, 7) by ny(¢, ). Then, by Lemma
3.3, (4.5) and (4.6), for n = ny(e, 1),

P{Ay (0, my ) > ¢}
(4.7) = P2 = an)} + Pn'N, — 4| > 7'}
+ P{A(0, my ) > ¢, 4> afn), |n7'N, — 1| = 7'}
= P{Ag(0, mpai,m) > /(1 + €)' 2 > a(n)} + /2,
where g* = g(1 — 29’/(1 + 5’)) is 0 or > 0 according as 8 = 0 or > 0.

Let us now select a countable set of points

(4'8) a, = ah(’]’ v’) = (1 =+ 7/')"“0(7/) s for h=0,1,..-,00,

and let

(4.9) A, ={a,_,< i< a}, h=1,2,..-,0c0.
Then, rewriting the first term on the right-hand side of (4.7) as

(4.10) D1 P40, mppiiyy) > /(1 + )| A} P(4,)

and then using Lemma 3.3, we may bound (4.10) by

(4.11) 27 P{Bg(9, Mippayaiyy) > €f(1 4 ¢)' [ A}P(4,) ,

where

(4.12) p**=p(1 —=279'/(1 +7'))* is 0 or >0 accordingas f= or >0.

Since, min,,n(1 4+ 7)), = na(n)(1 4 7')*— oo, as n— oo, by Lemmas 3.4 and
3.5, it follows that for every 5 > 0, ¢ > 0, there exist a d, = dy(¢, ) and an
ny(e, 1), such that for n = ny(e, n) and 6 < 9(e, 1),

(4.13) P{A (B, My iiag) > /(1 + )| 4} < 92,  forall hx>1.

Consequently, by (4.11) and (4.13), the right-hand side of (4.7) is bounded by
y for all n = my(e, 7). [

ReMARKS. Lamperti (1964) has actually considered the weak convergence
(in the Skorokhod J;-topology) of m, to m on an arbitrary finite interval (0<)8<
t < s < co. The same is true for Theorem 1; we only need a magnification of
the scale of ¢ to extend the definition of the J;-topology to [, s].

Secondly, instead of defining m, as in (2.2) and (2.7), we could have con-
sidered a related process m; = {m} (), t€[0, 1]}, where

m;\kfn(t) = (MN[nt] - aN,n)/bN,n ’ an g 1’ N[nt] g 1 ’
(4.14) = (X, — aNn)/bN'n , N,z21,0<ZN,,£1,
= —0, otherwise.
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In such a case, we require a little more stringent condition on the mode of con-
vergence of N, to nd. For example, if n~!N, — 2 a.s., as n — oo, i.e.,

(4.15) P{sup,,.., |[m'N,, — 2| > ¢} >0 as n— oo,
then, the proof of Theorem 1 can be readily extended to show that as n — oo ,
(4.16) my —,m on D[B, 1] in the Skorokhod J;-topology.

Acknowledgment. The author is grateful to Professor John Lamperti for pro-
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